Daniel Cousens
10 years ago
6 changed files with 207 additions and 62 deletions
@ -0,0 +1,183 @@ |
|||
var assert = require('assert') |
|||
var async = require('async') |
|||
var bigi = require('bigi') |
|||
var bitcoin = require('../../') |
|||
var blockchain = new (require('cb-helloblock'))('bitcoin') |
|||
var crypto = require('crypto') |
|||
|
|||
describe('bitcoinjs-lib (crypto)', function() { |
|||
it('can generate a single-key stealth address', function() { |
|||
var receiver = bitcoin.ECKey.fromWIF('5KYZdUEo39z3FPrtuX2QbbwGnNP5zTd7yyr2SC1j299sBCnWjss') |
|||
|
|||
// XXX: ephemeral, must be random (and secret to sender) to preserve privacy
|
|||
var sender = bitcoin.ECKey.fromWIF('Kxr9tQED9H44gCmp6HAdmemAzU3n84H3dGkuWTKvE23JgHMW8gct') |
|||
|
|||
var G = bitcoin.ECKey.curve.G |
|||
var d = receiver.d // secret (receiver only)
|
|||
var Q = receiver.pub.Q // shared
|
|||
|
|||
var e = sender.d // secret (sender only)
|
|||
var P = sender.pub.Q // shared
|
|||
|
|||
// derived shared secret
|
|||
var eQ = Q.multiply(e) // sender
|
|||
var dP = P.multiply(d) // receiver
|
|||
assert.deepEqual(eQ.getEncoded(), dP.getEncoded()) |
|||
|
|||
var c = bigi.fromBuffer(bitcoin.crypto.sha256(eQ.getEncoded())) |
|||
var cG = G.multiply(c) |
|||
|
|||
// derived public key
|
|||
var QprimeS = Q.add(cG) |
|||
var QprimeR = G.multiply(d.add(c)) |
|||
assert.deepEqual(QprimeR.getEncoded(), QprimeS.getEncoded()) |
|||
|
|||
// derived shared-secret address
|
|||
var address = new bitcoin.ECPubKey(QprimeS).getAddress().toString() |
|||
|
|||
assert.equal(address, '1EwCNJNZM5q58YPPTnjR1H5BvYRNeyZi47') |
|||
}) |
|||
|
|||
// TODO
|
|||
it.skip('can generate a dual-key stealth address', function() {}) |
|||
|
|||
it('can recover a parent private key from the parent\'s public key and a derived non-hardened child private key', function() { |
|||
function recoverParent(master, child) { |
|||
assert(!master.privKey, 'You already have the parent private key') |
|||
assert(child.privKey, 'Missing child private key') |
|||
|
|||
var curve = bitcoin.ECKey.curve |
|||
var QP = master.pubKey.toBuffer() |
|||
var QP64 = QP.toString('base64') |
|||
var d1 = child.privKey.d |
|||
var d2 |
|||
var indexBuffer = new Buffer(4) |
|||
|
|||
// search index space until we find it
|
|||
for (var i = 0; i < bitcoin.HDNode.HIGHEST_BIT; ++i) { |
|||
indexBuffer.writeUInt32BE(i, 0) |
|||
|
|||
// calculate I
|
|||
var data = Buffer.concat([QP, indexBuffer]) |
|||
var I = crypto.createHmac('sha512', master.chainCode).update(data).digest() |
|||
var IL = I.slice(0, 32) |
|||
var pIL = bigi.fromBuffer(IL) |
|||
|
|||
// See hdnode.js:273 to understand
|
|||
d2 = d1.subtract(pIL).mod(curve.n) |
|||
|
|||
var Qp = new bitcoin.ECKey(d2, true).pub.toBuffer() |
|||
if (Qp.toString('base64') === QP64) break |
|||
} |
|||
|
|||
var node = new bitcoin.HDNode(d2, master.chainCode, master.network) |
|||
node.depth = master.depth |
|||
node.index = master.index |
|||
node.masterFingerprint = master.masterFingerprint |
|||
return node |
|||
} |
|||
|
|||
var seed = crypto.randomBytes(32) |
|||
var master = bitcoin.HDNode.fromSeedBuffer(seed) |
|||
var child = master.derive(6) // m/6
|
|||
|
|||
// now for the recovery
|
|||
var neuteredMaster = master.neutered() |
|||
var recovered = recoverParent(neuteredMaster, child) |
|||
assert.equal(recovered.toBase58(), master.toBase58()) |
|||
}) |
|||
|
|||
it('can recover a private key from duplicate R values', function() { |
|||
var inputs = [ |
|||
{ |
|||
txId: "f4c16475f2a6e9c602e4a287f9db3040e319eb9ece74761a4b84bc820fbeef50", |
|||
vout: 0 |
|||
}, |
|||
{ |
|||
txId: "f4c16475f2a6e9c602e4a287f9db3040e319eb9ece74761a4b84bc820fbeef50", |
|||
vout: 1 |
|||
} |
|||
] |
|||
|
|||
var txIds = inputs.map(function(x) { return x.txId }) |
|||
|
|||
// first retrieve the relevant transactions
|
|||
blockchain.transactions.get(txIds, function(err, results) { |
|||
assert.ifError(err) |
|||
|
|||
var transactions = {} |
|||
results.forEach(function(tx) { |
|||
transactions[tx.txId] = bitcoin.Transaction.fromHex(tx.txHex) |
|||
}) |
|||
|
|||
var tasks = [] |
|||
|
|||
// now we need to collect/transform a bit of data from the selected inputs
|
|||
inputs.forEach(function(input) { |
|||
var transaction = transactions[input.txId] |
|||
var script = transaction.ins[input.vout].script |
|||
assert(bitcoin.scripts.isPubKeyHashInput(script), 'Expected pubKeyHash script') |
|||
|
|||
var prevOutTxId = bitcoin.bufferutils.reverse(transaction.ins[input.vout].hash).toString('hex') |
|||
var prevVout = transaction.ins[input.vout].index |
|||
|
|||
tasks.push(function(callback) { |
|||
blockchain.transactions.get(prevOutTxId, function(err, result) { |
|||
if (err) return callback(err) |
|||
|
|||
var prevOut = bitcoin.Transaction.fromHex(result.txHex) |
|||
var prevOutScript = prevOut.outs[prevVout].script |
|||
|
|||
var scriptSignature = bitcoin.ECSignature.parseScriptSignature(script.chunks[0]) |
|||
var publicKey = bitcoin.ECPubKey.fromBuffer(script.chunks[1]) |
|||
|
|||
var m = transaction.hashForSignature(input.vout, prevOutScript, scriptSignature.hashType) |
|||
assert(publicKey.verify(m, scriptSignature.signature), 'Invalid m') |
|||
|
|||
// store the required information
|
|||
input.signature = scriptSignature.signature |
|||
input.z = bigi.fromBuffer(m) |
|||
|
|||
return callback() |
|||
}) |
|||
}) |
|||
}) |
|||
|
|||
// finally, run the tasks, then on to the math
|
|||
async.parallel(tasks, function(err) { |
|||
if (err) throw err |
|||
var n = bitcoin.ECKey.curve.n |
|||
|
|||
for (var i = 0; i < inputs.length; ++i) { |
|||
for (var j = i + 1; j < inputs.length; ++j) { |
|||
var inputA = inputs[i] |
|||
var inputB = inputs[j] |
|||
|
|||
// enforce matching r values
|
|||
assert.equal(inputA.signature.r.toString(), inputB.signature.r.toString()) |
|||
var r = inputA.signature.r |
|||
var rInv = r.modInverse(n) |
|||
|
|||
var s1 = inputA.signature.s |
|||
var s2 = inputB.signature.s |
|||
var z1 = inputA.z |
|||
var z2 = inputB.z |
|||
|
|||
var zz = z1.subtract(z2).mod(n) |
|||
var ss = s1.subtract(s2).mod(n) |
|||
|
|||
// k = (z1 - z2) / (s1 - s2)
|
|||
// d1 = (s1 * k - z1) / r
|
|||
// d2 = (s2 * k - z2) / r
|
|||
var k = zz.multiply(ss.modInverse(n)).mod(n) |
|||
var d1 = (( s1.multiply(k).mod(n) ).subtract(z1).mod(n) ).multiply(rInv).mod(n) |
|||
var d2 = (( s2.multiply(k).mod(n) ).subtract(z2).mod(n) ).multiply(rInv).mod(n) |
|||
|
|||
// enforce matching private keys
|
|||
assert.equal(d1.toString(), d2.toString()) |
|||
} |
|||
} |
|||
}) |
|||
}) |
|||
}) |
|||
}) |
Loading…
Reference in new issue