7 changed files with 267 additions and 299 deletions
@ -1,317 +1,272 @@ |
|||||
var assert = require('assert') |
var assert = require('assert') |
||||
var crypto = require('./crypto') |
var crypto = require('./crypto') |
||||
var sec = require('./sec') |
|
||||
var ecparams = sec("secp256k1") |
|
||||
|
|
||||
var BigInteger = require('bigi') |
var BigInteger = require('bigi') |
||||
var ECPointFp = require('./ec').ECPointFp |
var ECPointFp = require('./ec').ECPointFp |
||||
|
|
||||
function implShamirsTrick(P, k, Q, l) { |
function deterministicGenerateK(ecparams, hash, D) { |
||||
var m = Math.max(k.bitLength(), l.bitLength()) |
assert(Buffer.isBuffer(hash), 'Hash must be a Buffer, not ' + hash) |
||||
var Z = P.add2D(Q) |
assert.equal(hash.length, 32, 'Hash must be 256 bit') |
||||
var R = P.curve.getInfinity() |
assert(D instanceof BigInteger, 'Private key must be a BigInteger') |
||||
|
|
||||
for (var i = m - 1; i >= 0; --i) { |
var x = D.toBuffer(32) |
||||
R = R.twice2D() |
var k = new Buffer(32) |
||||
|
var v = new Buffer(32) |
||||
R.z = BigInteger.ONE |
k.fill(0) |
||||
|
v.fill(1) |
||||
if (k.testBit(i)) { |
|
||||
if (l.testBit(i)) { |
k = crypto.HmacSHA256(Buffer.concat([v, new Buffer([0]), x, hash]), k) |
||||
R = R.add2D(Z) |
v = crypto.HmacSHA256(v, k) |
||||
} else { |
|
||||
R = R.add2D(P) |
k = crypto.HmacSHA256(Buffer.concat([v, new Buffer([1]), x, hash]), k) |
||||
} |
v = crypto.HmacSHA256(v, k) |
||||
} else { |
v = crypto.HmacSHA256(v, k) |
||||
if (l.testBit(i)) { |
|
||||
R = R.add2D(Q) |
|
||||
} |
|
||||
} |
|
||||
} |
|
||||
|
|
||||
return R |
var n = ecparams.getN() |
||||
|
var kB = BigInteger.fromBuffer(v).mod(n) |
||||
|
assert(kB.compareTo(BigInteger.ONE) > 0, 'Invalid k value') |
||||
|
assert(kB.compareTo(ecparams.getN()) < 0, 'Invalid k value') |
||||
|
|
||||
|
return kB |
||||
} |
} |
||||
|
|
||||
var ecdsa = { |
function sign(ecparams, hash, D) { |
||||
deterministicGenerateK: function(hash, D) { |
var k = deterministicGenerateK(ecparams, hash, D) |
||||
assert(Buffer.isBuffer(hash), 'Hash must be a Buffer') |
|
||||
assert.equal(hash.length, 32, 'Hash must be 256 bit') |
|
||||
assert(D instanceof BigInteger, 'Private key must be a BigInteger') |
|
||||
|
|
||||
var x = D.toBuffer(32) |
var n = ecparams.getN() |
||||
var k = new Buffer(32) |
var G = ecparams.getG() |
||||
var v = new Buffer(32) |
var Q = G.multiply(k) |
||||
k.fill(0) |
var e = BigInteger.fromBuffer(hash) |
||||
v.fill(1) |
|
||||
|
|
||||
k = crypto.HmacSHA256(Buffer.concat([v, new Buffer([0]), x, hash]), k) |
var r = Q.getX().toBigInteger().mod(n) |
||||
v = crypto.HmacSHA256(v, k) |
assert.notEqual(r.signum(), 0, 'Invalid R value') |
||||
|
|
||||
k = crypto.HmacSHA256(Buffer.concat([v, new Buffer([1]), x, hash]), k) |
var s = k.modInverse(n).multiply(e.add(D.multiply(r))).mod(n) |
||||
v = crypto.HmacSHA256(v, k) |
assert.notEqual(s.signum(), 0, 'Invalid S value') |
||||
v = crypto.HmacSHA256(v, k) |
|
||||
|
|
||||
var n = ecparams.getN() |
var N_OVER_TWO = n.shiftRight(1) |
||||
var kB = BigInteger.fromBuffer(v).mod(n) |
|
||||
assert(kB.compareTo(BigInteger.ONE) > 0, 'Invalid k value') |
|
||||
assert(kB.compareTo(ecparams.getN()) < 0, 'Invalid k value') |
|
||||
|
|
||||
return kB |
// enforce low S values, see bip62: 'low s values in signatures'
|
||||
}, |
if (s.compareTo(N_OVER_TWO) > 0) { |
||||
|
s = n.subtract(s) |
||||
|
} |
||||
|
|
||||
sign: function (hash, D) { |
return {r: r, s: s} |
||||
var k = ecdsa.deterministicGenerateK(hash, D) |
} |
||||
|
|
||||
var n = ecparams.getN() |
function verify(ecparams, hash, r, s, Q) { |
||||
var G = ecparams.getG() |
var e = BigInteger.fromBuffer(hash) |
||||
var Q = G.multiply(k) |
|
||||
var e = BigInteger.fromBuffer(hash) |
|
||||
|
|
||||
var r = Q.getX().toBigInteger().mod(n) |
return verifyRaw(ecparams, e, r, s, Q) |
||||
assert.notEqual(r.signum(), 0, 'Invalid R value') |
} |
||||
|
|
||||
var s = k.modInverse(n).multiply(e.add(D.multiply(r))).mod(n) |
function verifyRaw(ecparams, e, r, s, Q) { |
||||
assert.notEqual(s.signum(), 0, 'Invalid S value') |
var n = ecparams.getN() |
||||
|
var G = ecparams.getG() |
||||
|
|
||||
var N_OVER_TWO = n.shiftRight(1) |
if (r.compareTo(BigInteger.ONE) < 0 || r.compareTo(n) >= 0) { |
||||
|
return false |
||||
|
} |
||||
|
|
||||
// enforce low S values, see bip62: 'low s values in signatures'
|
if (s.compareTo(BigInteger.ONE) < 0 || s.compareTo(n) >= 0) { |
||||
if (s.compareTo(N_OVER_TWO) > 0) { |
return false |
||||
s = n.subtract(s) |
} |
||||
} |
|
||||
|
|
||||
return ecdsa.serializeSig(r, s) |
var c = s.modInverse(n) |
||||
}, |
var u1 = e.multiply(c).mod(n) |
||||
|
var u2 = r.multiply(c).mod(n) |
||||
verify: function (hash, sig, pubkey) { |
|
||||
var r,s |
|
||||
if (Array.isArray(sig) || Buffer.isBuffer(sig)) { |
|
||||
var obj = ecdsa.parseSig(sig) |
|
||||
r = obj.r |
|
||||
s = obj.s |
|
||||
} else if ("object" === typeof sig && sig.r && sig.s) { |
|
||||
r = sig.r |
|
||||
s = sig.s |
|
||||
} else { |
|
||||
throw new Error("Invalid value for signature") |
|
||||
} |
|
||||
|
|
||||
var Q |
var point = G.multiplyTwo(u1, Q, u2) |
||||
if (pubkey instanceof ECPointFp) { |
var v = point.getX().toBigInteger().mod(n) |
||||
Q = pubkey |
|
||||
} else if (Array.isArray(pubkey) || Buffer.isBuffer(pubkey)) { |
|
||||
Q = ECPointFp.decodeFrom(ecparams.getCurve(), pubkey) |
|
||||
} else { |
|
||||
throw new Error("Invalid format for pubkey value, must be byte array or ECPointFp") |
|
||||
} |
|
||||
var e = BigInteger.fromBuffer(hash) |
|
||||
|
|
||||
return ecdsa.verifyRaw(e, r, s, Q) |
return v.equals(r) |
||||
}, |
} |
||||
|
|
||||
verifyRaw: function (e, r, s, Q) { |
/** |
||||
var n = ecparams.getN() |
* Serialize a signature into DER format. |
||||
var G = ecparams.getG() |
* |
||||
|
* Takes two BigIntegers representing r and s and returns a byte array. |
||||
|
*/ |
||||
|
function serializeSig(r, s) { |
||||
|
var rBa = r.toByteArraySigned() |
||||
|
var sBa = s.toByteArraySigned() |
||||
|
|
||||
if (r.compareTo(BigInteger.ONE) < 0 || r.compareTo(n) >= 0) { |
var sequence = [] |
||||
return false |
sequence.push(0x02); // INTEGER
|
||||
} |
sequence.push(rBa.length) |
||||
|
sequence = sequence.concat(rBa) |
||||
|
|
||||
if (s.compareTo(BigInteger.ONE) < 0 || s.compareTo(n) >= 0) { |
sequence.push(0x02); // INTEGER
|
||||
return false |
sequence.push(sBa.length) |
||||
} |
sequence = sequence.concat(sBa) |
||||
|
|
||||
var c = s.modInverse(n) |
sequence.unshift(sequence.length) |
||||
var u1 = e.multiply(c).mod(n) |
sequence.unshift(0x30); // SEQUENCE
|
||||
var u2 = r.multiply(c).mod(n) |
|
||||
|
|
||||
// TODO(!!!): For some reason Shamir's trick isn't working with
|
|
||||
// signed message verification!? Probably an implementation
|
|
||||
// error!
|
|
||||
//var point = implShamirsTrick(G, u1, Q, u2)
|
|
||||
var point = G.multiply(u1).add(Q.multiply(u2)) |
|
||||
|
|
||||
var v = point.getX().toBigInteger().mod(n) |
|
||||
|
|
||||
return v.equals(r) |
|
||||
}, |
|
||||
|
|
||||
/** |
|
||||
* Serialize a signature into DER format. |
|
||||
* |
|
||||
* Takes two BigIntegers representing r and s and returns a byte array. |
|
||||
*/ |
|
||||
serializeSig: function (r, s) { |
|
||||
var rBa = r.toByteArraySigned() |
|
||||
var sBa = s.toByteArraySigned() |
|
||||
|
|
||||
var sequence = [] |
|
||||
sequence.push(0x02); // INTEGER
|
|
||||
sequence.push(rBa.length) |
|
||||
sequence = sequence.concat(rBa) |
|
||||
|
|
||||
sequence.push(0x02); // INTEGER
|
|
||||
sequence.push(sBa.length) |
|
||||
sequence = sequence.concat(sBa) |
|
||||
|
|
||||
sequence.unshift(sequence.length) |
|
||||
sequence.unshift(0x30); // SEQUENCE
|
|
||||
|
|
||||
return sequence |
|
||||
}, |
|
||||
|
|
||||
/** |
|
||||
* Parses a buffer containing a DER-encoded signature. |
|
||||
* |
|
||||
* This function will return an object of the form: |
|
||||
* |
|
||||
* { |
|
||||
* r: BigInteger, |
|
||||
* s: BigInteger |
|
||||
* } |
|
||||
*/ |
|
||||
parseSig: function (buffer) { |
|
||||
if (Array.isArray(buffer)) buffer = new Buffer(buffer) // FIXME: transitionary
|
|
||||
|
|
||||
assert.equal(buffer.readUInt8(0), 0x30, 'Not a DER sequence') |
|
||||
assert.equal(buffer.readUInt8(1), buffer.length - 2, 'Invalid sequence length') |
|
||||
|
|
||||
assert.equal(buffer.readUInt8(2), 0x02, 'Expected DER integer') |
|
||||
var rLen = buffer.readUInt8(3) |
|
||||
var rB = buffer.slice(4, 4 + rLen) |
|
||||
|
|
||||
var offset = 4 + rLen |
|
||||
assert.equal(buffer.readUInt8(offset), 0x02, 'Expected a 2nd DER integer') |
|
||||
var sLen = buffer.readUInt8(1 + offset) |
|
||||
var sB = buffer.slice(2 + offset) |
|
||||
|
|
||||
return { |
|
||||
r: BigInteger.fromByteArraySigned(rB), |
|
||||
s: BigInteger.fromByteArraySigned(sB) |
|
||||
} |
|
||||
}, |
|
||||
|
|
||||
serializeSigCompact: function(r, s, i, compressed) { |
return sequence |
||||
if (compressed) { |
} |
||||
i += 4 |
|
||||
} |
|
||||
|
|
||||
i += 27 |
/** |
||||
|
* Parses a buffer containing a DER-encoded signature. |
||||
|
* |
||||
|
* This function will return an object of the form: |
||||
|
* |
||||
|
* { |
||||
|
* r: BigInteger, |
||||
|
* s: BigInteger |
||||
|
* } |
||||
|
*/ |
||||
|
function parseSig(buffer) { |
||||
|
assert.equal(buffer.readUInt8(0), 0x30, 'Not a DER sequence') |
||||
|
assert.equal(buffer.readUInt8(1), buffer.length - 2, 'Invalid sequence length') |
||||
|
|
||||
|
assert.equal(buffer.readUInt8(2), 0x02, 'Expected DER integer') |
||||
|
var rLen = buffer.readUInt8(3) |
||||
|
var rB = buffer.slice(4, 4 + rLen) |
||||
|
|
||||
|
var offset = 4 + rLen |
||||
|
assert.equal(buffer.readUInt8(offset), 0x02, 'Expected a 2nd DER integer') |
||||
|
var sLen = buffer.readUInt8(1 + offset) |
||||
|
var sB = buffer.slice(2 + offset) |
||||
|
|
||||
|
return { |
||||
|
r: BigInteger.fromByteArraySigned(rB), |
||||
|
s: BigInteger.fromByteArraySigned(sB) |
||||
|
} |
||||
|
} |
||||
|
|
||||
var buffer = new Buffer(65) |
function serializeSigCompact(r, s, i, compressed) { |
||||
buffer.writeUInt8(i, 0) |
if (compressed) { |
||||
r.toBuffer(32).copy(buffer, 1) |
i += 4 |
||||
s.toBuffer(32).copy(buffer, 33) |
} |
||||
|
|
||||
return buffer |
i += 27 |
||||
}, |
|
||||
|
|
||||
parseSigCompact: function (buffer) { |
var buffer = new Buffer(65) |
||||
assert.equal(buffer.length, 65, 'Invalid signature length') |
buffer.writeUInt8(i, 0) |
||||
var i = buffer.readUInt8(0) - 27 |
r.toBuffer(32).copy(buffer, 1) |
||||
|
s.toBuffer(32).copy(buffer, 33) |
||||
|
|
||||
// At most 3 bits
|
return buffer |
||||
assert.equal(i, i & 7, 'Invalid signature type') |
} |
||||
var compressed = !!(i & 4) |
|
||||
|
|
||||
// Recovery param only
|
function parseSigCompact(buffer) { |
||||
i = i & 3 |
assert.equal(buffer.length, 65, 'Invalid signature length') |
||||
|
var i = buffer.readUInt8(0) - 27 |
||||
|
|
||||
var r = BigInteger.fromBuffer(buffer.slice(1, 33)) |
// At most 3 bits
|
||||
var s = BigInteger.fromBuffer(buffer.slice(33)) |
assert.equal(i, i & 7, 'Invalid signature type') |
||||
|
var compressed = !!(i & 4) |
||||
|
|
||||
return { |
// Recovery param only
|
||||
r: r, |
i = i & 3 |
||||
s: s, |
|
||||
i: i, |
|
||||
compressed: compressed |
|
||||
} |
|
||||
}, |
|
||||
|
|
||||
/** |
|
||||
* Recover a public key from a signature. |
|
||||
* |
|
||||
* See SEC 1: Elliptic Curve Cryptography, section 4.1.6, "Public |
|
||||
* Key Recovery Operation". |
|
||||
* |
|
||||
* http://www.secg.org/download/aid-780/sec1-v2.pdf
|
|
||||
*/ |
|
||||
recoverPubKey: function (r, s, hash, i) { |
|
||||
assert.strictEqual(i & 3, i, 'The recovery param is more than two bits') |
|
||||
|
|
||||
// A set LSB signifies that the y-coordinate is odd
|
|
||||
// By reduction, the y-coordinate is even if it is clear
|
|
||||
var isYEven = !(i & 1) |
|
||||
|
|
||||
// The more significant bit specifies whether we should use the
|
|
||||
// first or second candidate key.
|
|
||||
var isSecondKey = i >> 1 |
|
||||
|
|
||||
var n = ecparams.getN() |
|
||||
var G = ecparams.getG() |
|
||||
var curve = ecparams.getCurve() |
|
||||
var p = curve.getQ() |
|
||||
var a = curve.getA().toBigInteger() |
|
||||
var b = curve.getB().toBigInteger() |
|
||||
|
|
||||
// We precalculate (p + 1) / 4 where p is the field order
|
|
||||
if (!curve.P_OVER_FOUR) { |
|
||||
curve.P_OVER_FOUR = p.add(BigInteger.ONE).shiftRight(2) |
|
||||
} |
|
||||
|
|
||||
// 1.1 Compute x
|
var r = BigInteger.fromBuffer(buffer.slice(1, 33)) |
||||
var x = isSecondKey ? r.add(n) : r |
var s = BigInteger.fromBuffer(buffer.slice(33)) |
||||
|
|
||||
// 1.3 Convert x to point
|
return { |
||||
var alpha = x.pow(3).add(a.multiply(x)).add(b).mod(p) |
r: r, |
||||
var beta = alpha.modPow(curve.P_OVER_FOUR, p) |
s: s, |
||||
|
i: i, |
||||
|
compressed: compressed |
||||
|
} |
||||
|
} |
||||
|
|
||||
// If beta is even, but y isn't, or vice versa, then convert it,
|
/** |
||||
// otherwise we're done and y == beta.
|
* Recover a public key from a signature. |
||||
var y = (beta.isEven() ^ isYEven) ? p.subtract(beta) : beta |
* |
||||
|
* See SEC 1: Elliptic Curve Cryptography, section 4.1.6, "Public |
||||
|
* Key Recovery Operation". |
||||
|
* |
||||
|
* http://www.secg.org/download/aid-780/sec1-v2.pdf
|
||||
|
*/ |
||||
|
function recoverPubKey(ecparams, e, r, s, i) { |
||||
|
assert.strictEqual(i & 3, i, 'The recovery param is more than two bits') |
||||
|
|
||||
|
// A set LSB signifies that the y-coordinate is odd
|
||||
|
// By reduction, the y-coordinate is even if it is clear
|
||||
|
var isYEven = !(i & 1) |
||||
|
|
||||
|
// The more significant bit specifies whether we should use the
|
||||
|
// first or second candidate key.
|
||||
|
var isSecondKey = i >> 1 |
||||
|
|
||||
|
var n = ecparams.getN() |
||||
|
var G = ecparams.getG() |
||||
|
var curve = ecparams.getCurve() |
||||
|
var p = curve.getQ() |
||||
|
var a = curve.getA().toBigInteger() |
||||
|
var b = curve.getB().toBigInteger() |
||||
|
|
||||
|
// We precalculate (p + 1) / 4 where p is the field order
|
||||
|
if (!curve.P_OVER_FOUR) { |
||||
|
curve.P_OVER_FOUR = p.add(BigInteger.ONE).shiftRight(2) |
||||
|
} |
||||
|
|
||||
// 1.4 Check that nR isn't at infinity
|
// 1.1 Compute x
|
||||
var R = new ECPointFp(curve, curve.fromBigInteger(x), curve.fromBigInteger(y)) |
var x = isSecondKey ? r.add(n) : r |
||||
R.validate() |
|
||||
|
|
||||
// 1.5 Compute e from M
|
// 1.3 Convert x to point
|
||||
var e = BigInteger.fromBuffer(hash) |
var alpha = x.pow(3).add(a.multiply(x)).add(b).mod(p) |
||||
var eNeg = BigInteger.ZERO.subtract(e).mod(n) |
var beta = alpha.modPow(curve.P_OVER_FOUR, p) |
||||
|
|
||||
// 1.6 Compute Q = r^-1 (sR - eG)
|
// If beta is even, but y isn't, or vice versa, then convert it,
|
||||
var rInv = r.modInverse(n) |
// otherwise we're done and y == beta.
|
||||
var Q = implShamirsTrick(R, s, G, eNeg).multiply(rInv) |
var y = (beta.isEven() ^ isYEven) ? p.subtract(beta) : beta |
||||
|
|
||||
Q.validate() |
// 1.4 Check that nR isn't at infinity
|
||||
if (!ecdsa.verifyRaw(e, r, s, Q)) { |
var R = new ECPointFp(curve, curve.fromBigInteger(x), curve.fromBigInteger(y)) |
||||
throw new Error("Pubkey recovery unsuccessful") |
R.validate() |
||||
} |
|
||||
|
|
||||
return Q |
// 1.5 Compute -e from e
|
||||
}, |
var eNeg = e.negate().mod(n) |
||||
|
|
||||
/** |
// 1.6 Compute Q = r^-1 (sR - eG)
|
||||
* Calculate pubkey extraction parameter. |
// Q = r^-1 (sR + -eG)
|
||||
* |
var rInv = r.modInverse(n) |
||||
* When extracting a pubkey from a signature, we have to |
|
||||
* distinguish four different cases. Rather than putting this |
var Q = R.multiplyTwo(s, G, eNeg).multiply(rInv) |
||||
* burden on the verifier, Bitcoin includes a 2-bit value with the |
Q.validate() |
||||
* signature. |
|
||||
* |
if (!verifyRaw(ecparams, e, r, s, Q)) { |
||||
* This function simply tries all four cases and returns the value |
throw new Error("Pubkey recovery unsuccessful") |
||||
* that resulted in a successful pubkey recovery. |
} |
||||
*/ |
|
||||
calcPubKeyRecoveryParam: function (origPubKey, r, s, hash) { |
|
||||
for (var i = 0; i < 4; i++) { |
|
||||
var pubKey = ecdsa.recoverPubKey(r, s, hash, i) |
|
||||
|
|
||||
if (pubKey.equals(origPubKey)) { |
|
||||
return i |
|
||||
} |
|
||||
} |
|
||||
|
|
||||
throw new Error("Unable to find valid recovery factor") |
return Q |
||||
|
} |
||||
|
|
||||
|
/** |
||||
|
* Calculate pubkey extraction parameter. |
||||
|
* |
||||
|
* When extracting a pubkey from a signature, we have to |
||||
|
* distinguish four different cases. Rather than putting this |
||||
|
* burden on the verifier, Bitcoin includes a 2-bit value with the |
||||
|
* signature. |
||||
|
* |
||||
|
* This function simply tries all four cases and returns the value |
||||
|
* that resulted in a successful pubkey recovery. |
||||
|
*/ |
||||
|
function calcPubKeyRecoveryParam(ecparams, e, r, s, Q) { |
||||
|
for (var i = 0; i < 4; i++) { |
||||
|
var Qprime = recoverPubKey(ecparams, e, r, s, i) |
||||
|
|
||||
|
if (Qprime.equals(Q)) { |
||||
|
return i |
||||
|
} |
||||
} |
} |
||||
|
|
||||
|
throw new Error('Unable to find valid recovery factor') |
||||
} |
} |
||||
|
|
||||
module.exports = ecdsa |
module.exports = { |
||||
|
calcPubKeyRecoveryParam: calcPubKeyRecoveryParam, |
||||
|
deterministicGenerateK: deterministicGenerateK, |
||||
|
recoverPubKey: recoverPubKey, |
||||
|
sign: sign, |
||||
|
verify: verify, |
||||
|
verifyRaw: verifyRaw, |
||||
|
serializeSig: serializeSig, |
||||
|
parseSig: parseSig, |
||||
|
serializeSigCompact: serializeSigCompact, |
||||
|
parseSigCompact: parseSigCompact |
||||
|
} |
||||
|
Loading…
Reference in new issue