|
|
@ -10,118 +10,6 @@ function integerToBytes(i, len) { |
|
|
|
return bytes; |
|
|
|
}; |
|
|
|
|
|
|
|
/** |
|
|
|
* Find a quadratic residue (mod p) of this number. p must be an odd prime. |
|
|
|
* |
|
|
|
* For a given number a, this function solves the congruence of the form |
|
|
|
* |
|
|
|
* x^2 = a (mod p) |
|
|
|
* |
|
|
|
* And returns x. Note that p - x is also a root. |
|
|
|
* |
|
|
|
* 0 is returned if no square root exists for these a and p. |
|
|
|
* |
|
|
|
* The Tonelli-Shanks algorithm is used (except for some simple cases |
|
|
|
* in which the solution is known from an identity). This algorithm |
|
|
|
* runs in polynomial time (unless the generalized Riemann hypothesis |
|
|
|
* is false). |
|
|
|
* |
|
|
|
* Originally implemented in Python by Eli Bendersky: |
|
|
|
* http://eli.thegreenplace.net/2009/03/07/computing-modular-square-roots-in-python/
|
|
|
|
* |
|
|
|
* Ported to JavaScript by Stefan Thomas. |
|
|
|
*/ |
|
|
|
BigInteger.prototype.modSqrt = function (p) { |
|
|
|
var ONE = BigInteger.ONE, |
|
|
|
TWO = BigInteger.valueOf(2); |
|
|
|
|
|
|
|
// Simple cases
|
|
|
|
if (this.legendre(p) != 1) { |
|
|
|
return BigInteger.ZERO; |
|
|
|
} else if (this.equals(BigInteger.ZERO)) { |
|
|
|
return BigInteger.ZERO; |
|
|
|
} else if (p.equals(TWO)) { |
|
|
|
return p; |
|
|
|
} else if (p.mod(BigInteger.valueOf(4)).equals(BigInteger.valueOf(3))) { |
|
|
|
return this.modPow(p.add(ONE).divide(BigInteger.valueOf(4)), p); |
|
|
|
} |
|
|
|
|
|
|
|
// Partition p-1 to s * 2^e for an odd s (i.e. reduce all the powers
|
|
|
|
// of 2 from p-1)
|
|
|
|
var s = p.subtract(ONE); |
|
|
|
var e = 0; |
|
|
|
while (s.isEven()) { |
|
|
|
s = s.divide(TWO); |
|
|
|
++e; |
|
|
|
} |
|
|
|
|
|
|
|
// Find some 'n' with a legendre symbol n|p = -1.
|
|
|
|
// Shouldn't take long.
|
|
|
|
var n = TWO; |
|
|
|
while (n.legendre(p) != -1) { |
|
|
|
n = n.add(ONE); |
|
|
|
} |
|
|
|
|
|
|
|
// Here be dragons!
|
|
|
|
// Read the paper "Square roots from 1; 24, 51, 10 to Dan Shanks" by
|
|
|
|
// Ezra Brown for more information
|
|
|
|
|
|
|
|
// x is a guess of the square root that gets better with each
|
|
|
|
// iteration.
|
|
|
|
//
|
|
|
|
// b is the "fudge factor" - by how much we're off with the guess.
|
|
|
|
// The invariant x^2 = ab (mod p) is maintained throughout the loop.
|
|
|
|
//
|
|
|
|
// g is used for successive powers of n to update both a and b
|
|
|
|
//
|
|
|
|
// r is the exponent - decreases with each update
|
|
|
|
|
|
|
|
var x = this.modPow(s.add(ONE).divide(TWO), p); |
|
|
|
var b = this.modPow(s, p); |
|
|
|
var g = n.modPow(s, p); |
|
|
|
var r = e; |
|
|
|
|
|
|
|
for (;;) { |
|
|
|
var t = b; |
|
|
|
|
|
|
|
var m; |
|
|
|
for (m = 0; m < r; m++) { |
|
|
|
if (t.equals(ONE)) break; |
|
|
|
|
|
|
|
t = t.modPowInt(2, p); |
|
|
|
} |
|
|
|
|
|
|
|
if (m == 0) { |
|
|
|
return x; |
|
|
|
} |
|
|
|
|
|
|
|
var gs = g.modPow(TWO.pow(BigInteger.valueOf(r - m - 1)), p); |
|
|
|
g = gs.multiply(gs).mod(p); |
|
|
|
x = x.multiply(gs).mod(p); |
|
|
|
b = b.multiply(g).mod(p); |
|
|
|
r = m; |
|
|
|
} |
|
|
|
}; |
|
|
|
|
|
|
|
/** |
|
|
|
* Compute the Legendre symbol a|p using Euler's criterion. |
|
|
|
* |
|
|
|
* p is a prime, a is relatively prime to p |
|
|
|
* (if p divides a, then a | p = 0) |
|
|
|
* |
|
|
|
* Returns 1 if a has a square root modulo p, -1 otherwise. |
|
|
|
*/ |
|
|
|
BigInteger.prototype.legendre = function (p) { |
|
|
|
var ls = this.modPow(p.subtract(BigInteger.ONE).shiftRight(1), p); |
|
|
|
if (ls.equals(p.subtract(BigInteger.ONE))) { |
|
|
|
return -1; |
|
|
|
} else if (ls.equals(BigInteger.ZERO)) { |
|
|
|
return 0; |
|
|
|
} else { |
|
|
|
return 1; |
|
|
|
} |
|
|
|
}; |
|
|
|
|
|
|
|
ECFieldElementFp.prototype.getByteLength = function () { |
|
|
|
return Math.floor((this.toBigInteger().bitLength() + 7) / 8); |
|
|
|
}; |
|
|
@ -304,6 +192,8 @@ Bitcoin.ECDSA = (function () { |
|
|
|
var ecparams = getSECCurveByName("secp256k1"); |
|
|
|
var rng = new SecureRandom(); |
|
|
|
|
|
|
|
var P_OVER_FOUR = null; |
|
|
|
|
|
|
|
function implShamirsTrick(P, k, Q, l) |
|
|
|
{ |
|
|
|
var m = Math.max(k.bitLength(), l.bitLength()); |
|
|
@ -515,12 +405,17 @@ Bitcoin.ECDSA = (function () { |
|
|
|
var a = curve.getA().toBigInteger(); |
|
|
|
var b = curve.getB().toBigInteger(); |
|
|
|
|
|
|
|
// We precalculate (p + 1) / 4 where p is if the field order
|
|
|
|
if (!P_OVER_FOUR) { |
|
|
|
P_OVER_FOUR = p.add(BigInteger.ONE).divide(BigInteger.valueOf(4)); |
|
|
|
} |
|
|
|
|
|
|
|
// 1.1 Compute x
|
|
|
|
var x = isSecondKey ? r.add(n) : r; |
|
|
|
|
|
|
|
// 1.3 Convert x to point
|
|
|
|
var alpha = x.multiply(x).multiply(x).add(a.multiply(x)).add(b).mod(p); |
|
|
|
var beta = alpha.modSqrt(p); |
|
|
|
var beta = alpha.modPow(P_OVER_FOUR, p); |
|
|
|
|
|
|
|
var xorOdd = beta.isEven() ? (i % 2) : ((i+1) % 2); |
|
|
|
// If beta is even, but y isn't or vice versa, then convert it,
|
|
|
|