Jonathan Underwood
489e96ca91
|
6 years ago | |
---|---|---|
src | 6 years ago | |
test | 6 years ago | |
.gitignore | 8 years ago | |
.travis.yml | 7 years ago | |
CHANGELOG.md | 6 years ago | |
CONTRIBUTING.md | 7 years ago | |
LICENSE | 7 years ago | |
README.md | 7 years ago | |
package.json | 6 years ago |
README.md
BitcoinJS (bitcoinjs-lib)
A javascript Bitcoin library for node.js and browsers.
Released under the terms of the MIT LICENSE.
Should I use this in production?
If you are thinking of using the master branch of this library in production, stop. Master is not stable; it is our development branch, and only tagged releases may be classified as stable.
Can I trust this code?
Don't trust. Verify.
We recommend every user of this library and the bitcoinjs ecosystem audit and verify any underlying code for its validity and suitability.
Mistakes and bugs happen, but with your help in resolving and reporting issues, together we can produce open source software that is:
- Easy to audit and verify,
- Tested, with test coverage >95%,
- Advanced and feature rich,
- Standardized, using standard and Node
Buffer
's throughout, and - Friendly, with a strong and helpful community, ready to answer questions.
Documentation
Presently, we do not have any formal documentation other than our examples, please ask for help if our examples aren't enough to guide you.
Installation
npm install bitcoinjs-lib
Typically we support the Node Maintenance LTS version. If in doubt, see the .travis.yml for what versions are used by our continuous integration tests.
WARNING: We presently don't provide any tooling to verify that the release on npm
matches GitHub. As such, you should verify anything downloaded by npm
against your own verified copy.
Usage
Browser
The recommended method of using bitcoinjs-lib
in your browser is through Browserify.
If you're familiar with how to use browserify, ignore this and carry on, otherwise, it is recommended to read the tutorial at http://browserify.org/.
NOTE: We use Node Maintenance LTS features, if you need strict ES5, use --transform babelify
in conjunction with your browserify
step (using an es2015
preset).
NOTE: If you expect this library to run on an iOS 10 device, ensure that you are using buffer@5.0.5 or greater.
Typescript or VSCode users
Type declarations for Typescript are available for version ^3.0.0
of the library.
npm install @types/bitcoinjs-lib
For VSCode (and other editors), it is advised to install the type declarations, as Intellisense uses that information to help you code (autocompletion, static analysis).
WARNING: These Typescript definitions are not maintained by the maintainers of this repository, and are instead maintained at DefinitelyTyped. Please report any issues or problems there.
Flow
Flow-type definitions for are available in the flow-typed repository for version ^2.0.0
of the library.
You can download them directly, or using the flow-typed CLI:
npm install -g flow-typed
flow-typed install -f 0.27 bitcoinjs-lib@2.2.0
These definitions are maintained by @runn1ng.
Examples
The below examples are implemented as integration tests, they should be very easy to understand. Otherwise, pull requests are appreciated. Some examples interact (via HTTPS) with a 3rd Party Blockchain Provider (3PBP).
- Generate a random address
- Generate an address from a SHA256 hash
- Import an address via WIF
- Generate a 2-of-3 P2SH multisig address
- Generate a SegWit address
- Generate a SegWit P2SH address
- Generate a SegWit 3-of-4 multisig address
- Generate a SegWit 2-of-2 P2SH multisig address
- Support the retrieval of transactions for an address (3rd party blockchain)
- Generate a Testnet address
- Generate a Litecoin address
- Create a 1-to-1 Transaction
- Create a 2-to-2 Transaction
- Create (and broadcast via 3PBP) a typical Transaction
- Create (and broadcast via 3PBP) a Transaction with an OP_RETURN output
- Create (and broadcast via 3PBP) a Transaction with a 2-of-4 P2SH(multisig) input
- Create (and broadcast via 3PBP) a Transaction with a SegWit P2SH(P2WPKH) input
- Create (and broadcast via 3PBP) a Transaction with a SegWit P2WPKH input
- Create (and broadcast via 3PBP) a Transaction with a SegWit P2PK input
- Create (and broadcast via 3PBP) a Transaction with a SegWit 3-of-4 P2SH(P2WSH(multisig)) input
- Verify a Transaction signature
- Import a BIP32 testnet xpriv and export to WIF
- Export a BIP32 xpriv, then import it
- Export a BIP32 xpub
- Create a BIP32, bitcoin, account 0, external address
- Create a BIP44, bitcoin, account 0, external address
- Create a BIP49, bitcoin testnet, account 0, external address
- Use BIP39 to generate BIP32 addresses
- Create (and broadcast via 3PBP) a Transaction where Alice can redeem the output after the expiry (in the past)
- Create (and broadcast via 3PBP) a Transaction where Alice can redeem the output after the expiry (in the future)
- Create (and broadcast via 3PBP) a Transaction where Alice and Bob can redeem the output at any time
- Create (but fail to broadcast via 3PBP) a Transaction where Alice attempts to redeem before the expiry
- Recover a private key from duplicate R values
- Recover a BIP32 parent private key from the parent public key, and a derived, non-hardened child private key
- Generate a single-key stealth address
- Generate a single-key stealth address (randomly)
- Recover parent recipient.d, if a derived private key is leaked (and nonce was revealed)
- Generate a dual-key stealth address
- Generate a dual-key stealth address (randomly)
If you have a use case that you feel could be listed here, please ask for it!
Contributing
See CONTRIBUTING.md.
Running the test suite
npm test
npm run-script coverage
Complementing Libraries
- BIP21 - A BIP21 compatible URL encoding library
- BIP38 - Passphrase-protected private keys
- BIP39 - Mnemonic generation for deterministic keys
- BIP32-Utils - A set of utilities for working with BIP32
- BIP66 - Strict DER signature decoding
- BIP68 - Relative lock-time encoding library
- BIP69 - Lexicographical Indexing of Transaction Inputs and Outputs
- Base58 - Base58 encoding/decoding
- Base58 Check - Base58 check encoding/decoding
- Bech32 - A BIP173 compliant Bech32 encoding library
- coinselect - A fee-optimizing, transaction input selection module for bitcoinjs-lib.
- merkle-lib - A performance conscious library for merkle root and tree calculations.
- minimaldata - A module to check bitcoin policy: SCRIPT_VERIFY_MINIMALDATA