Browse Source

damus-c: add bolt11 parser from CLN

We'll need this for our lightning invoice view

Signed-off-by: William Casarin <jb55@jb55.com>
profile-edit
William Casarin 2 years ago
parent
commit
dbe1260b54
  1. 20
      damus-c/alignof.h
  2. 566
      damus-c/amount.c
  3. 203
      damus-c/amount.h
  4. 26
      damus-c/array_size.h
  5. 210
      damus-c/bech32.c
  6. 134
      damus-c/bech32.h
  7. 127
      damus-c/bech32_util.c
  8. 28
      damus-c/bech32_util.h
  9. 676
      damus-c/bolt11.c
  10. 104
      damus-c/bolt11.h
  11. 40
      damus-c/build_assert.h
  12. 64
      damus-c/check_type.h
  13. 317
      damus-c/compiler.h
  14. 18
      damus-c/config.h
  15. 145
      damus-c/container_of.h
  16. 191
      damus-c/cppmagic.h
  17. 363
      damus-c/endian.h
  18. 48
      damus-c/hash_u5.c
  19. 20
      damus-c/hash_u5.h
  20. 66
      damus-c/hex.c
  21. 73
      damus-c/hex.h
  22. 111
      damus-c/likely.h
  23. 43
      damus-c/list.c
  24. 842
      damus-c/list.h
  25. 128
      damus-c/mem.c
  26. 295
      damus-c/mem.h
  27. 64
      damus-c/node_id.c
  28. 38
      damus-c/node_id.h
  29. 43
      damus-c/overflows.h
  30. 308
      damus-c/sha256.c
  31. 147
      damus-c/sha256.h
  32. 35
      damus-c/short_types.h
  33. 228
      damus-c/str.h
  34. 30
      damus-c/str_debug.h
  35. 46
      damus-c/structeq.h
  36. 126
      damus-c/take.c
  37. 136
      damus-c/take.h
  38. 972
      damus-c/tal.c
  39. 553
      damus-c/tal.h
  40. 315
      damus-c/talstr.c
  41. 225
      damus-c/talstr.h
  42. 134
      damus-c/typesafe_cb.h
  43. 19
      damus-c/utf8.c
  44. 3
      damus-c/utf8.h

20
damus-c/alignof.h

@ -0,0 +1,20 @@
/* CC0 (Public domain) - see LICENSE file for details */
#ifndef CCAN_ALIGNOF_H
#define CCAN_ALIGNOF_H
#include "config.h"
/**
* ALIGNOF - get the alignment of a type
* @t: the type to test
*
* This returns a safe alignment for the given type.
*/
#if HAVE_ALIGNOF
/* A GCC extension. */
#define ALIGNOF(t) __alignof__(t)
#else
/* Alignment by measuring structure padding. */
#define ALIGNOF(t) ((char *)(&((struct { char c; t _h; } *)0)->_h) - (char *)0)
#endif
#endif /* CCAN_ALIGNOF_H */

566
damus-c/amount.c

@ -0,0 +1,566 @@
#include "config.h"
#include <assert.h>
#include "mem.h"
#include "talstr.h"
#include "amount.h"
#include "overflows.h"
#include <inttypes.h>
bool amount_sat_to_msat(struct amount_msat *msat,
struct amount_sat sat)
{
if (mul_overflows_u64(sat.satoshis, MSAT_PER_SAT))
return false;
msat->millisatoshis = sat.satoshis * MSAT_PER_SAT;
return true;
}
bool amount_msat_to_sat(struct amount_sat *sat,
struct amount_msat msat)
{
if (msat.millisatoshis % MSAT_PER_SAT)
return false;
sat->satoshis = msat.millisatoshis / MSAT_PER_SAT;
return true;
}
/* You can always truncate millisatoshis->satoshis. */
struct amount_sat amount_msat_to_sat_round_down(struct amount_msat msat)
{
struct amount_sat sat;
sat.satoshis = msat.millisatoshis / MSAT_PER_SAT;
return sat;
}
/* Different formatting by amounts: btc, sat and msat */
const char *fmt_amount_msat_btc(const tal_t *ctx,
struct amount_msat msat,
bool append_unit)
{
if (msat.millisatoshis == 0)
return tal_fmt(ctx, append_unit ? "0btc" : "0");
return tal_fmt(ctx, "%"PRIu64".%011"PRIu64"%s",
msat.millisatoshis / MSAT_PER_BTC,
msat.millisatoshis % MSAT_PER_BTC,
append_unit ? "btc" : "");
}
const char *fmt_amount_msat(const tal_t *ctx, struct amount_msat msat)
{
return tal_fmt(ctx, "%"PRIu64"msat", msat.millisatoshis);
}
const char *fmt_amount_sat_btc(const tal_t *ctx,
struct amount_sat sat,
bool append_unit)
{
if (sat.satoshis == 0)
return tal_fmt(ctx, append_unit ? "0btc" : "0");
return tal_fmt(ctx, "%"PRIu64".%08"PRIu64"%s",
sat.satoshis / SAT_PER_BTC,
sat.satoshis % SAT_PER_BTC,
append_unit ? "btc" : "");
}
const char *fmt_amount_sat(const tal_t *ctx, struct amount_sat sat)
{
return tal_fmt(ctx, "%"PRIu64"sat", sat.satoshis);
}
static bool breakup(const char *str, size_t slen,
/* Length of first numeric part. */
size_t *whole_number_len,
/* Pointer to post-decimal part, or NULL */
const char **post_decimal_ptr,
size_t *post_decimal_len,
/* Pointer to suffix, or NULL */
const char **suffix_ptr,
size_t *suffix_len)
{
size_t i;
*whole_number_len = 0;
*post_decimal_len = 0;
*post_decimal_ptr = NULL;
*suffix_ptr = NULL;
*suffix_len = 0;
for (i = 0;; i++) {
/* The string may be null-terminated. */
if (i >= slen || str[i] == '\0')
return i != 0;
if (cisdigit(str[i]))
(*whole_number_len)++;
else
break;
}
if (str[i] == '.') {
i++;
*post_decimal_ptr = str + i;
for (;; i++) {
/* True if > 0 decimals. */
if (i >= slen || str[i] == '\0')
return str + i != *post_decimal_ptr;
if (cisdigit(str[i]))
(*post_decimal_len)++;
else
break;
}
}
*suffix_ptr = str + i;
*suffix_len = slen - i;
return true;
}
static bool from_number(u64 *res, const char *s, size_t len, int tens_factor)
{
if (len == 0)
return false;
*res = 0;
for (size_t i = 0; i < len; i++) {
if (mul_overflows_u64(*res, 10))
return false;
*res *= 10;
assert(cisdigit(s[i]));
if (add_overflows_u64(*res, s[i] - '0'))
return false;
*res += s[i] - '0';
}
while (tens_factor > 0) {
if (mul_overflows_u64(*res, 10))
return false;
*res *= 10;
tens_factor--;
}
return true;
}
static bool from_numbers(u64 *res,
const char *s1, size_t len1, int tens_factor,
const char *s2, size_t len2)
{
u64 p1, p2;
if (len2 > tens_factor)
return false;
if (!from_number(&p1, s1, len1, tens_factor)
|| !from_number(&p2, s2, len2, tens_factor - len2))
return false;
if (add_overflows_u64(p1, p2))
return false;
*res = p1 + p2;
return true;
}
/* Valid strings:
* [0-9]+ => millisatoshi.
* [0-9]+msat => millisatoshi.
* [0-9]+sat => *1000 -> millisatoshi.
* [0-9]+.[0-9]{1,11}btc => millisatoshi.
*/
bool parse_amount_msat(struct amount_msat *msat, const char *s, size_t slen)
{
size_t whole_number_len, post_decimal_len, suffix_len;
const char *post_decimal_ptr, *suffix_ptr;
if (!breakup(s, slen, &whole_number_len,
&post_decimal_ptr, &post_decimal_len,
&suffix_ptr, &suffix_len))
return false;
if (!post_decimal_ptr && !suffix_ptr)
return from_number(&msat->millisatoshis, s, whole_number_len, 0);
if (!post_decimal_ptr && memstarts_str(suffix_ptr, suffix_len, "msat"))
return from_number(&msat->millisatoshis, s, whole_number_len, 0);
if (!post_decimal_ptr && memstarts_str(suffix_ptr, suffix_len, "sat"))
return from_number(&msat->millisatoshis, s, whole_number_len, 3);
if (memstarts_str(suffix_ptr, suffix_len, "btc")) {
if (post_decimal_len > 0)
return from_numbers(&msat->millisatoshis,
s, whole_number_len, 11,
post_decimal_ptr, post_decimal_len);
return from_number(&msat->millisatoshis, s, whole_number_len, 11);
}
return false;
}
/* Valid strings:
* [0-9]+ => satoshi.
* [0-9]+sat => satoshi.
* [0-9]+000msat => satoshi.
* 0msat => 0 satoshi
* [0-9]+.[0-9]{1,8}btc => satoshi.
*/
bool parse_amount_sat(struct amount_sat *sat, const char *s, size_t slen)
{
size_t whole_number_len, post_decimal_len, suffix_len;
const char *post_decimal_ptr, *suffix_ptr;
if (!breakup(s, slen, &whole_number_len,
&post_decimal_ptr, &post_decimal_len,
&suffix_ptr, &suffix_len))
return false;
if (!post_decimal_ptr && !suffix_ptr)
return from_number(&sat->satoshis, s, whole_number_len, 0);
if (!post_decimal_ptr && memstarts_str(suffix_ptr, suffix_len, "sat"))
return from_number(&sat->satoshis, s, whole_number_len, 0);
if (!post_decimal_ptr && memstarts_str(suffix_ptr, suffix_len, "msat")) {
if (!memends(s, whole_number_len, "000", strlen("000"))) {
if (memstarts_str(s, whole_number_len, "0"))
return from_number(&sat->satoshis, s,
whole_number_len, 0);
return false;
}
return from_number(&sat->satoshis, s, whole_number_len - 3, 0);
}
if (memstarts_str(suffix_ptr, suffix_len, "btc")) {
if (post_decimal_len > 0)
return from_numbers(&sat->satoshis,
s, whole_number_len, 8,
post_decimal_ptr, post_decimal_len);
return from_number(&sat->satoshis, s, whole_number_len, 8);
}
return false;
}
WARN_UNUSED_RESULT bool amount_msat_add(struct amount_msat *val,
struct amount_msat a,
struct amount_msat b)
{
if (add_overflows_u64(a.millisatoshis, b.millisatoshis))
return false;
val->millisatoshis = a.millisatoshis + b.millisatoshis;
return true;
}
WARN_UNUSED_RESULT bool amount_msat_sub(struct amount_msat *val,
struct amount_msat a,
struct amount_msat b)
{
if (a.millisatoshis < b.millisatoshis)
return false;
val->millisatoshis = a.millisatoshis - b.millisatoshis;
return true;
}
WARN_UNUSED_RESULT bool amount_sat_add(struct amount_sat *val,
struct amount_sat a,
struct amount_sat b)
{
if (add_overflows_u64(a.satoshis, b.satoshis))
return false;
val->satoshis = a.satoshis + b.satoshis;
return true;
}
WARN_UNUSED_RESULT bool amount_sat_sub(struct amount_sat *val,
struct amount_sat a,
struct amount_sat b)
{
if (a.satoshis < b.satoshis)
return false;
val->satoshis = a.satoshis - b.satoshis;
return true;
}
WARN_UNUSED_RESULT bool amount_msat_sub_sat(struct amount_msat *val,
struct amount_msat a,
struct amount_sat b)
{
struct amount_msat msatb;
if (!amount_sat_to_msat(&msatb, b))
return false;
return amount_msat_sub(val, a, msatb);
}
WARN_UNUSED_RESULT bool amount_sat_sub_msat(struct amount_msat *val,
struct amount_sat a,
struct amount_msat b)
{
struct amount_msat msata;
if (!amount_sat_to_msat(&msata, a))
return false;
return amount_msat_sub(val, msata, b);
}
WARN_UNUSED_RESULT bool amount_msat_add_sat(struct amount_msat *val,
struct amount_msat a,
struct amount_sat b)
{
struct amount_msat msatb;
if (!amount_sat_to_msat(&msatb, b))
return false;
return amount_msat_add(val, a, msatb);
}
WARN_UNUSED_RESULT bool amount_msat_scale(struct amount_msat *val,
struct amount_msat msat,
double scale)
{
double scaled = msat.millisatoshis * scale;
/* If mantissa is < 64 bits, a naive "if (scaled >
* UINT64_MAX)" doesn't work. Stick to powers of 2. */
if (scaled >= (double)((u64)1 << 63) * 2)
return false;
val->millisatoshis = scaled;
return true;
}
WARN_UNUSED_RESULT bool amount_sat_scale(struct amount_sat *val,
struct amount_sat sat,
double scale)
{
double scaled = sat.satoshis * scale;
/* If mantissa is < 64 bits, a naive "if (scaled >
* UINT64_MAX)" doesn't work. Stick to powers of 2. */
if (scaled >= (double)((u64)1 << 63) * 2)
return false;
val->satoshis = scaled;
return true;
}
bool amount_sat_eq(struct amount_sat a, struct amount_sat b)
{
return a.satoshis == b.satoshis;
}
bool amount_sat_zero(struct amount_sat a)
{
return a.satoshis == 0;
}
bool amount_msat_zero(struct amount_msat a)
{
return a.millisatoshis == 0;
}
bool amount_msat_eq(struct amount_msat a, struct amount_msat b)
{
return a.millisatoshis == b.millisatoshis;
}
bool amount_sat_greater(struct amount_sat a, struct amount_sat b)
{
return a.satoshis > b.satoshis;
}
bool amount_msat_greater(struct amount_msat a, struct amount_msat b)
{
return a.millisatoshis > b.millisatoshis;
}
bool amount_sat_greater_eq(struct amount_sat a, struct amount_sat b)
{
return a.satoshis >= b.satoshis;
}
bool amount_msat_greater_eq(struct amount_msat a, struct amount_msat b)
{
return a.millisatoshis >= b.millisatoshis;
}
bool amount_sat_less(struct amount_sat a, struct amount_sat b)
{
return a.satoshis < b.satoshis;
}
bool amount_msat_less(struct amount_msat a, struct amount_msat b)
{
return a.millisatoshis < b.millisatoshis;
}
bool amount_sat_less_eq(struct amount_sat a, struct amount_sat b)
{
return a.satoshis <= b.satoshis;
}
bool amount_msat_less_eq(struct amount_msat a, struct amount_msat b)
{
return a.millisatoshis <= b.millisatoshis;
}
bool amount_msat_greater_sat(struct amount_msat msat, struct amount_sat sat)
{
struct amount_msat msat_from_sat;
if (!amount_sat_to_msat(&msat_from_sat, sat))
return false;
return msat.millisatoshis > msat_from_sat.millisatoshis;
}
bool amount_msat_greater_eq_sat(struct amount_msat msat, struct amount_sat sat)
{
struct amount_msat msat_from_sat;
if (!amount_sat_to_msat(&msat_from_sat, sat))
return false;
return msat.millisatoshis >= msat_from_sat.millisatoshis;
}
bool amount_msat_less_sat(struct amount_msat msat, struct amount_sat sat)
{
struct amount_msat msat_from_sat;
if (!amount_sat_to_msat(&msat_from_sat, sat))
return false;
return msat.millisatoshis < msat_from_sat.millisatoshis;
}
bool amount_msat_less_eq_sat(struct amount_msat msat, struct amount_sat sat)
{
struct amount_msat msat_from_sat;
if (!amount_sat_to_msat(&msat_from_sat, sat))
return false;
return msat.millisatoshis <= msat_from_sat.millisatoshis;
}
bool amount_msat_eq_sat(struct amount_msat msat, struct amount_sat sat)
{
struct amount_msat msat_from_sat;
if (!amount_sat_to_msat(&msat_from_sat, sat))
return false;
return msat.millisatoshis == msat_from_sat.millisatoshis;
}
bool amount_msat_to_u32(struct amount_msat msat, u32 *millisatoshis)
{
if (amount_msat_greater_eq(msat, AMOUNT_MSAT(0x100000000)))
return false;
*millisatoshis = msat.millisatoshis;
return true;
}
struct amount_msat amount_msat(u64 millisatoshis)
{
struct amount_msat msat;
msat.millisatoshis = millisatoshis;
return msat;
}
struct amount_sat amount_sat(u64 satoshis)
{
struct amount_sat sat;
sat.satoshis = satoshis;
return sat;
}
double amount_msat_ratio(struct amount_msat a, struct amount_msat b)
{
return (double)a.millisatoshis / b.millisatoshis;
}
struct amount_msat amount_msat_div(struct amount_msat msat, u64 div)
{
msat.millisatoshis /= div;
return msat;
}
struct amount_sat amount_sat_div(struct amount_sat sat, u64 div)
{
sat.satoshis /= div;
return sat;
}
bool amount_msat_fee(struct amount_msat *fee,
struct amount_msat amt,
u32 fee_base_msat,
u32 fee_proportional_millionths)
{
struct amount_msat fee_base, fee_prop;
/* BOLT #7:
*
* - SHOULD accept HTLCs that pay a fee equal to or greater than:
* - fee_base_msat + ( amount_to_forward * fee_proportional_millionths / 1000000 )
*/
fee_base.millisatoshis = fee_base_msat;
if (mul_overflows_u64(amt.millisatoshis, fee_proportional_millionths))
return false;
fee_prop.millisatoshis = amt.millisatoshis * fee_proportional_millionths
/ 1000000;
return amount_msat_add(fee, fee_base, fee_prop);
}
bool amount_msat_add_fee(struct amount_msat *amt,
u32 fee_base_msat,
u32 fee_proportional_millionths)
{
struct amount_msat fee;
if (!amount_msat_fee(&fee, *amt,
fee_base_msat, fee_proportional_millionths))
return false;
return amount_msat_add(amt, *amt, fee);
}
struct amount_sat amount_tx_fee(u32 fee_per_kw, size_t weight)
{
struct amount_sat fee;
/* If this overflows, weight must be > 2^32, which is not a real tx */
assert(!mul_overflows_u64(fee_per_kw, weight));
fee.satoshis = (u64)fee_per_kw * weight / 1000;
return fee;
}
/*
struct amount_msat fromwire_amount_msat(const u8 **cursor, size_t *max)
{
struct amount_msat msat;
msat.millisatoshis = fromwire_u64(cursor, max);
return msat;
}
struct amount_sat fromwire_amount_sat(const u8 **cursor, size_t *max)
{
struct amount_sat sat;
sat.satoshis = fromwire_u64(cursor, max);
return sat;
}
void towire_amount_msat(u8 **pptr, const struct amount_msat msat)
{
towire_u64(pptr, msat.millisatoshis);
}
void towire_amount_sat(u8 **pptr, const struct amount_sat sat)
{
towire_u64(pptr, sat.satoshis);
}
*/

203
damus-c/amount.h

@ -0,0 +1,203 @@
#ifndef LIGHTNING_COMMON_AMOUNT_H
#define LIGHTNING_COMMON_AMOUNT_H
#include "config.h"
#include "short_types.h"
#include "tal.h"
#define MSAT_PER_SAT ((u64)1000)
#define SAT_PER_BTC ((u64)100000000)
#define MSAT_PER_BTC (MSAT_PER_SAT * SAT_PER_BTC)
/* Use these to wrap amounts, for typesafety. Please use ops where possible,
* rather than accessing the members directly. */
struct amount_sat {
/* Amount in satoshis. */
u64 satoshis;
};
struct amount_msat {
/* Amount in millisatoshis. */
u64 millisatoshis;
};
struct amount_asset {
u64 value;
u8 asset[33]; /* 1 version byte + 32 byte asset_tag */
};
/* For constants only: others must be built from primitives! */
#if HAVE_BUILTIN_CONSTANT_P
#define AMOUNT_MUST_BE_CONST(c) BUILD_ASSERT_OR_ZERO(IS_COMPILE_CONSTANT(c))
#else
#define AMOUNT_MUST_BE_CONST(c) 0
#endif
/* GCC 4.8.5 (Centos 7.6!) thinks struct casts are not constants, so we
* need to not use a cast for static initializations. */
#define AMOUNT_MSAT_INIT(msat) \
{ .millisatoshis = (msat) }
#define AMOUNT_SAT_INIT(sat) \
{ .satoshis = (sat) }
#define AMOUNT_MSAT(constant) \
((struct amount_msat){(constant) + AMOUNT_MUST_BE_CONST(constant)})
#define AMOUNT_SAT(constant) \
((struct amount_sat){(constant) + AMOUNT_MUST_BE_CONST(constant)})
/* We do sometimes need to import from raw types, eg. wally or wire fmt */
struct amount_msat amount_msat(u64 millisatoshis);
struct amount_sat amount_sat(u64 satoshis);
/* You may not always be able to convert satoshis->millisatoshis. */
WARN_UNUSED_RESULT bool amount_sat_to_msat(struct amount_msat *msat,
struct amount_sat sat);
/* You may not always be able to convert millisatoshis->satoshis without rounding. */
WARN_UNUSED_RESULT bool amount_msat_to_sat(struct amount_sat *sat,
struct amount_msat msat);
/* You can always truncate millisatoshis->satoshis. */
struct amount_sat amount_msat_to_sat_round_down(struct amount_msat msat);
/* Simple operations: val = a + b, val = a - b. */
WARN_UNUSED_RESULT bool amount_msat_add(struct amount_msat *val,
struct amount_msat a,
struct amount_msat b);
WARN_UNUSED_RESULT bool amount_msat_sub(struct amount_msat *val,
struct amount_msat a,
struct amount_msat b);
WARN_UNUSED_RESULT bool amount_sat_add(struct amount_sat *val,
struct amount_sat a,
struct amount_sat b);
WARN_UNUSED_RESULT bool amount_sat_sub(struct amount_sat *val,
struct amount_sat a,
struct amount_sat b);
WARN_UNUSED_RESULT bool amount_msat_sub_sat(struct amount_msat *val,
struct amount_msat a,
struct amount_sat b);
WARN_UNUSED_RESULT bool amount_msat_add_sat(struct amount_msat *val,
struct amount_msat a,
struct amount_sat b);
WARN_UNUSED_RESULT bool amount_sat_sub_msat(struct amount_msat *val,
struct amount_sat a,
struct amount_msat b);
WARN_UNUSED_RESULT bool amount_msat_scale(struct amount_msat *val,
struct amount_msat msat,
double scale);
WARN_UNUSED_RESULT bool amount_sat_scale(struct amount_sat *val,
struct amount_sat sat,
double scale);
struct amount_msat amount_msat_div(struct amount_msat msat, u64 div);
struct amount_sat amount_sat_div(struct amount_sat sat, u64 div);
/* Is a == b? */
bool amount_sat_eq(struct amount_sat a, struct amount_sat b);
bool amount_msat_eq(struct amount_msat a, struct amount_msat b);
/* Is a zero? */
bool amount_sat_zero(struct amount_sat a);
bool amount_msat_zero(struct amount_msat a);
/* Is a > b? */
bool amount_sat_greater(struct amount_sat a, struct amount_sat b);
bool amount_msat_greater(struct amount_msat a, struct amount_msat b);
/* Is a >= b */
bool amount_sat_greater_eq(struct amount_sat a, struct amount_sat b);
bool amount_msat_greater_eq(struct amount_msat a, struct amount_msat b);
/* Is a < b? */
bool amount_sat_less(struct amount_sat a, struct amount_sat b);
bool amount_msat_less(struct amount_msat a, struct amount_msat b);
/* Is a <= b? */
bool amount_sat_less_eq(struct amount_sat a, struct amount_sat b);
bool amount_msat_less_eq(struct amount_msat a, struct amount_msat b);
/* Is msat > sat? */
bool amount_msat_greater_sat(struct amount_msat msat, struct amount_sat sat);
/* Is msat >= sat? */
bool amount_msat_greater_eq_sat(struct amount_msat msat, struct amount_sat sat);
/* Is msat < sat? */
bool amount_msat_less_sat(struct amount_msat msat, struct amount_sat sat);
/* Is msat <= sat? */
bool amount_msat_less_eq_sat(struct amount_msat msat, struct amount_sat sat);
/* Is msat == sat? */
bool amount_msat_eq_sat(struct amount_msat msat, struct amount_sat sat);
/* a / b */
double amount_msat_ratio(struct amount_msat a, struct amount_msat b);
/* Check whether this asset is actually the main / fee-paying asset of the
* current chain. */
bool amount_asset_is_main(struct amount_asset *asset);
/* Convert an amount_sat to an amount_asset */
struct amount_asset amount_sat_to_asset(struct amount_sat *sat, const u8 *asset);
/* amount_asset_extract_value -Prefix the amount_asset's value
* to have the 'explicit' marker. Returns NULL if the
* asset was originally blinded.
* FIXME: pass through blinded amounts */
u8 *amount_asset_extract_value(const tal_t *ctx, struct amount_asset *asset);
/* Convert from a generic asset to the fee-paying asset if possible. */
struct amount_sat amount_asset_to_sat(struct amount_asset *asset);
/* Returns true if msat fits in a u32 value. */
WARN_UNUSED_RESULT bool amount_msat_to_u32(struct amount_msat msat,
u32 *millisatoshis);
/* Common operation: what is the HTLC fee for given feerate? Can overflow! */
WARN_UNUSED_RESULT bool amount_msat_fee(struct amount_msat *fee,
struct amount_msat amt,
u32 fee_base_msat,
u32 fee_proportional_millionths);
/* Same, but add into amt. */
WARN_UNUSED_RESULT bool amount_msat_add_fee(struct amount_msat *amt,
u32 fee_base_msat,
u32 fee_proportional_millionths);
/* What is the fee for this tx weight? */
struct amount_sat amount_tx_fee(u32 fee_per_kw, size_t weight);
/* Different formatting by amounts: btc, sat and msat */
/* => 1.23456789012btc (11 decimals!) */
const char *fmt_amount_msat_btc(const tal_t *ctx,
struct amount_msat msat,
bool append_unit);
/* => 1234msat */
const char *fmt_amount_msat(const tal_t *ctx, struct amount_msat msat);
/* => 1.23456789btc (8 decimals!) */
const char *fmt_amount_sat_btc(const tal_t *ctx,
struct amount_sat sat,
bool append_unit);
/* => 1234sat */
const char *fmt_amount_sat(const tal_t *ctx, struct amount_sat sat);
/* Valid strings:
* [0-9]+ => millisatoshi.
* [0-9]+msat => millisatoshi.
* [0-9]+sat => *1000 -> millisatopshi.
* [0-9]+.[0-9]{1,11}btc => millisatoshi.
*/
bool parse_amount_msat(struct amount_msat *msat, const char *s, size_t slen);
/* Valid strings:
* [0-9]+ => satoshi.
* [0-9]+sat => satoshi.
* [0-9]+000msat => satoshi.
* [0-9]+.[0-9]{1,8}btc => satoshi.
*/
bool parse_amount_sat(struct amount_sat *sat, const char *s, size_t slen);
/* Marshal/unmarshal functions */
struct amount_msat fromwire_amount_msat(const u8 **cursor, size_t *max);
struct amount_sat fromwire_amount_sat(const u8 **cursor, size_t *max);
void towire_amount_msat(u8 **pptr, const struct amount_msat msat);
void towire_amount_sat(u8 **pptr, const struct amount_sat sat);
#endif /* LIGHTNING_COMMON_AMOUNT_H */

26
damus-c/array_size.h

@ -0,0 +1,26 @@
/* CC0 (Public domain) - see LICENSE file for details */
#ifndef CCAN_ARRAY_SIZE_H
#define CCAN_ARRAY_SIZE_H
#include "config.h"
#include "build_assert.h"
/**
* ARRAY_SIZE - get the number of elements in a visible array
* @arr: the array whose size you want.
*
* This does not work on pointers, or arrays declared as [], or
* function parameters. With correct compiler support, such usage
* will cause a build error (see build_assert).
*/
#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + _array_size_chk(arr))
#if HAVE_BUILTIN_TYPES_COMPATIBLE_P && HAVE_TYPEOF
/* Two gcc extensions.
* &a[0] degrades to a pointer: a different type from an array */
#define _array_size_chk(arr) \
BUILD_ASSERT_OR_ZERO(!__builtin_types_compatible_p(typeof(arr), \
typeof(&(arr)[0])))
#else
#define _array_size_chk(arr) 0
#endif
#endif /* CCAN_ALIGNOF_H */

210
damus-c/bech32.c

@ -0,0 +1,210 @@
/* Stolen from https://github.com/sipa/bech32/blob/master/ref/c/segwit_addr.c,
* with only the two ' > 90' checks hoisted, and more internals exposed */
/* Copyright (c) 2017, 2021 Pieter Wuille
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "config.h"
#include <assert.h>
#include "bech32.h"
#include <string.h>
static uint32_t bech32_polymod_step(uint32_t pre) {
uint8_t b = pre >> 25;
return ((pre & 0x1FFFFFF) << 5) ^
(-((b >> 0) & 1) & 0x3b6a57b2UL) ^
(-((b >> 1) & 1) & 0x26508e6dUL) ^
(-((b >> 2) & 1) & 0x1ea119faUL) ^
(-((b >> 3) & 1) & 0x3d4233ddUL) ^
(-((b >> 4) & 1) & 0x2a1462b3UL);
}
static uint32_t bech32_final_constant(bech32_encoding enc) {
if (enc == BECH32_ENCODING_BECH32) return 1;
if (enc == BECH32_ENCODING_BECH32M) return 0x2bc830a3;
assert(0);
}
const char bech32_charset[] = "qpzry9x8gf2tvdw0s3jn54khce6mua7l";
const int8_t bech32_charset_rev[128] = {
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
15, -1, 10, 17, 21, 20, 26, 30, 7, 5, -1, -1, -1, -1, -1, -1,
-1, 29, -1, 24, 13, 25, 9, 8, 23, -1, 18, 22, 31, 27, 19, -1,
1, 0, 3, 16, 11, 28, 12, 14, 6, 4, 2, -1, -1, -1, -1, -1,
-1, 29, -1, 24, 13, 25, 9, 8, 23, -1, 18, 22, 31, 27, 19, -1,
1, 0, 3, 16, 11, 28, 12, 14, 6, 4, 2, -1, -1, -1, -1, -1
};
int bech32_encode(char *output, const char *hrp, const uint8_t *data, size_t data_len, size_t max_input_len, bech32_encoding enc) {
uint32_t chk = 1;
size_t i = 0;
while (hrp[i] != 0) {
int ch = hrp[i];
if (ch < 33 || ch > 126) {
return 0;
}
if (ch >= 'A' && ch <= 'Z') return 0;
chk = bech32_polymod_step(chk) ^ (ch >> 5);
++i;
}
if (i + 7 + data_len > max_input_len) return 0;
chk = bech32_polymod_step(chk);
while (*hrp != 0) {
chk = bech32_polymod_step(chk) ^ (*hrp & 0x1f);
*(output++) = *(hrp++);
}
*(output++) = '1';
for (i = 0; i < data_len; ++i) {
if (*data >> 5) return 0;
chk = bech32_polymod_step(chk) ^ (*data);
*(output++) = bech32_charset[*(data++)];
}
for (i = 0; i < 6; ++i) {
chk = bech32_polymod_step(chk);
}
chk ^= bech32_final_constant(enc);
for (i = 0; i < 6; ++i) {
*(output++) = bech32_charset[(chk >> ((5 - i) * 5)) & 0x1f];
}
*output = 0;
return 1;
}
bech32_encoding bech32_decode(char* hrp, uint8_t *data, size_t *data_len, const char *input, size_t max_input_len) {
uint32_t chk = 1;
size_t i;
size_t input_len = strlen(input);
size_t hrp_len;
int have_lower = 0, have_upper = 0;
if (input_len < 8 || input_len > max_input_len) {
return BECH32_ENCODING_NONE;
}
*data_len = 0;
while (*data_len < input_len && input[(input_len - 1) - *data_len] != '1') {
++(*data_len);
}
hrp_len = input_len - (1 + *data_len);
if (1 + *data_len >= input_len || *data_len < 6) {
return BECH32_ENCODING_NONE;
}
*(data_len) -= 6;
for (i = 0; i < hrp_len; ++i) {
int ch = input[i];
if (ch < 33 || ch > 126) {
return BECH32_ENCODING_NONE;
}
if (ch >= 'a' && ch <= 'z') {
have_lower = 1;
} else if (ch >= 'A' && ch <= 'Z') {
have_upper = 1;
ch = (ch - 'A') + 'a';
}
hrp[i] = ch;
chk = bech32_polymod_step(chk) ^ (ch >> 5);
}
hrp[i] = 0;
chk = bech32_polymod_step(chk);
for (i = 0; i < hrp_len; ++i) {
chk = bech32_polymod_step(chk) ^ (input[i] & 0x1f);
}
++i;
while (i < input_len) {
int v = (input[i] & 0x80) ? -1 : bech32_charset_rev[(int)input[i]];
if (input[i] >= 'a' && input[i] <= 'z') have_lower = 1;
if (input[i] >= 'A' && input[i] <= 'Z') have_upper = 1;
if (v == -1) {
return BECH32_ENCODING_NONE;
}
chk = bech32_polymod_step(chk) ^ v;
if (i + 6 < input_len) {
data[i - (1 + hrp_len)] = v;
}
++i;
}
if (have_lower && have_upper) {
return BECH32_ENCODING_NONE;
}
if (chk == bech32_final_constant(BECH32_ENCODING_BECH32)) {
return BECH32_ENCODING_BECH32;
} else if (chk == bech32_final_constant(BECH32_ENCODING_BECH32M)) {
return BECH32_ENCODING_BECH32M;
} else {
return BECH32_ENCODING_NONE;
}
}
int bech32_convert_bits(uint8_t* out, size_t* outlen, int outbits, const uint8_t* in, size_t inlen, int inbits, int pad) {
uint32_t val = 0;
int bits = 0;
uint32_t maxv = (((uint32_t)1) << outbits) - 1;
while (inlen--) {
val = (val << inbits) | *(in++);
bits += inbits;
while (bits >= outbits) {
bits -= outbits;
out[(*outlen)++] = (val >> bits) & maxv;
}
}
if (pad) {
if (bits) {
out[(*outlen)++] = (val << (outbits - bits)) & maxv;
}
} else if (((val << (outbits - bits)) & maxv) || bits >= inbits) {
return 0;
}
return 1;
}
int segwit_addr_encode(char *output, const char *hrp, int witver, const uint8_t *witprog, size_t witprog_len) {
uint8_t data[65];
size_t datalen = 0;
bech32_encoding enc = BECH32_ENCODING_BECH32;
if (witver > 16) return 0;
if (witver == 0 && witprog_len != 20 && witprog_len != 32) return 0;
if (witprog_len < 2 || witprog_len > 40) return 0;
if (witver > 0) enc = BECH32_ENCODING_BECH32M;
data[0] = witver;
bech32_convert_bits(data + 1, &datalen, 5, witprog, witprog_len, 8, 1);
++datalen;
return bech32_encode(output, hrp, data, datalen, 90, enc);
}
int segwit_addr_decode(int* witver, uint8_t* witdata, size_t* witdata_len, const char* hrp, const char* addr) {
uint8_t data[84];
char hrp_actual[84];
size_t data_len;
bech32_encoding enc = bech32_decode(hrp_actual, data, &data_len, addr, 90);
if (enc == BECH32_ENCODING_NONE) return 0;
if (data_len == 0 || data_len > 65) return 0;
if (strncmp(hrp, hrp_actual, 84) != 0) return 0;
if (data[0] > 16) return 0;
if (data[0] == 0 && enc != BECH32_ENCODING_BECH32) return 0;
if (data[0] > 0 && enc != BECH32_ENCODING_BECH32M) return 0;
*witdata_len = 0;
if (!bech32_convert_bits(witdata, witdata_len, 8, data + 1, data_len - 1, 5, 0)) return 0;
if (*witdata_len < 2 || *witdata_len > 40) return 0;
if (data[0] == 0 && *witdata_len != 20 && *witdata_len != 32) return 0;
*witver = data[0];
return 1;
}

134
damus-c/bech32.h

@ -0,0 +1,134 @@
/* Stolen from https://github.com/sipa/bech32/blob/master/ref/c/segwit_addr.h,
* with only the two ' > 90' checks hoisted */
/* Copyright (c) 2017, 2021 Pieter Wuille
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef LIGHTNING_COMMON_BECH32_H
#define LIGHTNING_COMMON_BECH32_H
#include "config.h"
#include <stdint.h>
#include <stdlib.h>
/** Encode a SegWit address
*
* Out: output: Pointer to a buffer of size 73 + strlen(hrp) that will be
* updated to contain the null-terminated address.
* In: hrp: Pointer to the null-terminated human readable part to use
* (chain/network specific).
* ver: Version of the witness program (between 0 and 16 inclusive).
* prog: Data bytes for the witness program (between 2 and 40 bytes).
* prog_len: Number of data bytes in prog.
* Returns 1 if successful.
*/
int segwit_addr_encode(
char *output,
const char *hrp,
int ver,
const uint8_t *prog,
size_t prog_len
);
/** Decode a SegWit address
*
* Out: ver: Pointer to an int that will be updated to contain the witness
* program version (between 0 and 16 inclusive).
* prog: Pointer to a buffer of size 40 that will be updated to
* contain the witness program bytes.
* prog_len: Pointer to a size_t that will be updated to contain the length
* of bytes in prog.
* hrp: Pointer to the null-terminated human readable part that is
* expected (chain/network specific).
* addr: Pointer to the null-terminated address.
* Returns 1 if successful.
*/
int segwit_addr_decode(
int* ver,
uint8_t* prog,
size_t* prog_len,
const char* hrp,
const char* addr
);
/** Supported encodings. */
typedef enum {
BECH32_ENCODING_NONE,
BECH32_ENCODING_BECH32,
BECH32_ENCODING_BECH32M
} bech32_encoding;
/** Encode a Bech32 or Bech32m string
*
* Out: output: Pointer to a buffer of size strlen(hrp) + data_len + 8 that
* will be updated to contain the null-terminated Bech32 string.
* In: hrp : Pointer to the null-terminated human readable part.
* data : Pointer to an array of 5-bit values.
* data_len: Length of the data array.
* max_input_len: Maximum valid length of input (90 for segwit usage).
* enc: Which encoding to use (BECH32_ENCODING_BECH32{,M}).
* Returns 1 if successful.
*/
int bech32_encode(
char *output,
const char *hrp,
const uint8_t *data,
size_t data_len,
size_t max_input_len,
bech32_encoding enc
);
/** Decode a Bech32 or Bech32m string
*
* Out: hrp: Pointer to a buffer of size strlen(input) - 6. Will be
* updated to contain the null-terminated human readable part.
* data: Pointer to a buffer of size strlen(input) - 8 that will
* hold the encoded 5-bit data values.
* data_len: Pointer to a size_t that will be updated to be the number
* of entries in data.
* In: input: Pointer to a null-terminated Bech32 string.
* max_input_len: Maximum valid length of input (90 for segwit usage).
* Returns BECH32_ENCODING_BECH32{,M} to indicate decoding was successful
* with the specified encoding standard. BECH32_ENCODING_NONE is returned if
* decoding failed.
*/
bech32_encoding bech32_decode(
char *hrp,
uint8_t *data,
size_t *data_len,
const char *input,
size_t max_input_len
);
/* Helper from bech32: translates inbits-bit bytes to outbits-bit bytes.
* @outlen is incremented as bytes are added.
* @pad is true if we're to pad, otherwise truncate last byte if necessary
*/
int bech32_convert_bits(uint8_t* out, size_t* outlen, int outbits,
const uint8_t* in, size_t inlen, int inbits,
int pad);
/* The charset, and reverse mapping */
extern const char bech32_charset[32];
extern const int8_t bech32_charset_rev[128];
#endif /* LIGHTNING_COMMON_BECH32_H */

127
damus-c/bech32_util.c

@ -0,0 +1,127 @@
#include "config.h"
#include "bech32.h"
#include "bech32_util.h"
#include "hash_u5.h"
#include "talstr.h"
#include "tal.h"
#include "short_types.h"
#include <stdbool.h>
static u8 get_bit(const u8 *src, size_t bitoff)
{
return ((src[bitoff / 8] >> (7 - (bitoff % 8))) & 1);
}
void bech32_push_bits(u5 **data, const void *src, size_t nbits)
{
size_t i, b;
size_t data_len = tal_count(*data);
for (i = 0; i < nbits; i += b) {
tal_resize(data, data_len+1);
(*data)[data_len] = 0;
for (b = 0; b < 5; b++) {
(*data)[data_len] <<= 1;
/* If we need bits we don't have, zero */
if (i+b < nbits)
(*data)[data_len] |= get_bit(src, i+b);
}
data_len++;
}
}
static u8 get_u5_bit(const u5 *src, size_t bitoff)
{
return ((src[bitoff / 5] >> (4 - (bitoff % 5))) & 1);
}
void bech32_pull_bits(u8 **data, const u5 *src, size_t nbits)
{
size_t i;
size_t data_len = tal_count(*data);
/* We discard trailing bits. */
for (i = 0; i + 8 <= nbits; i += 8) {
tal_resize(data, data_len+1);
(*data)[data_len] = 0;
for (size_t b = 0; b < 8; b++) {
(*data)[data_len] <<= 1;
(*data)[data_len] |= get_u5_bit(src, i+b);
}
data_len++;
}
}
/* Returns a char, tracks case. */
static int fixup_char(int c, bool *upper, bool *lower)
{
if (c >= 'A' && c <= 'Z') {
*upper = true;
return c + ('a' - 'A');
} else if (c >= 'a' && c <= 'z') {
*lower = true;
}
return c;
}
bool from_bech32_charset(const tal_t *ctx,
const char *bech32,
size_t bech32_len,
char **hrp, u8 **data)
{
u5 *u5data;
const char *sep;
bool upper = false, lower = false;
size_t datalen;
sep = memchr(bech32, '1', bech32_len);
if (!sep)
return false;
*hrp = tal_strndup(ctx, bech32, sep - bech32);
for (size_t i = 0; i < strlen(*hrp); i++)
(*hrp)[i] = fixup_char((*hrp)[i], &upper, &lower);
datalen = bech32_len - (sep + 1 - bech32);
u5data = tal_arr(NULL, u5, datalen);
for (size_t i = 0; i < datalen; i++) {
int c = sep[1+i];
if (c < 0 || c > 128)
goto fail;
c = fixup_char(c, &upper, &lower);
if (bech32_charset_rev[c] == -1)
goto fail;
u5data[i] = bech32_charset_rev[c];
}
/* Check case consistency */
if (upper && lower)
goto fail;
*data = tal_arr(ctx, u8, 0);
bech32_pull_bits(data, u5data, tal_bytelen(u5data) * 5);
tal_free(u5data);
return true;
fail:
*hrp = tal_free(*hrp);
tal_free(u5data);
return false;
}
char *to_bech32_charset(const tal_t *ctx,
const char *hrp, const u8 *data)
{
u5 *u5data = tal_arr(NULL, u5, 0);
char *ret;
bech32_push_bits(&u5data, data, tal_bytelen(data) * 8);
ret = tal_dup_arr(ctx, char, hrp, strlen(hrp),
1 + tal_bytelen(u5data) + 1);
ret[strlen(hrp)] = '1';
for (size_t i = 0; i < tal_bytelen(u5data); i++)
ret[strlen(hrp) + 1 + i] = bech32_charset[u5data[i]];
ret[strlen(hrp) + 1 + tal_bytelen(u5data)] = '\0';
tal_free(u5data);
return ret;
}

28
damus-c/bech32_util.h

@ -0,0 +1,28 @@
#ifndef LIGHTNING_COMMON_BECH32_UTIL_H
#define LIGHTNING_COMMON_BECH32_UTIL_H
#include "config.h"
#include "tal.h"
#include "hash_u5.h"
/**
* Push the bytes in src in 5 bit format onto the end of data.
*/
void bech32_push_bits(u5 **data, const void *src, size_t nbits);
/**
* Push the bytes in src in 8 bit format onto the end of data.
*/
void bech32_pull_bits(u8 **data, const u5 *src, size_t nbits);
/**
* Checksumless bech32 routines.
*/
bool from_bech32_charset(const tal_t *ctx,
const char *bech32, size_t bech32_len,
char **hrp, u8 **data);
char *to_bech32_charset(const tal_t *ctx,
const char *hrp, const u8 *data);
#endif /* LIGHTNING_COMMON_BECH32_UTIL_H */

676
damus-c/bolt11.c

@ -0,0 +1,676 @@
//
// bolt11.c
// damus
//
// Created by William Casarin on 2022-10-18.
//
#include "bolt11.h"
//#include "address.h"
//#include "script.h"
#include "bech32.h"
#include "utf8.h"
#include "compiler.h"
#include "endian.h"
#include "list.h"
#include "talstr.h"
#include "tal.h"
#include "node_id.h"
#include "bech32_util.h"
#include "bolt11.h"
#include "amount.h"
#include "array_size.h"
#include "structeq.h"
//#include "features.h"
#include <errno.h>
#include <inttypes.h>
#include <assert.h>
#define MSAT_PER_SAT ((u64)1000)
#define SAT_PER_BTC ((u64)100000000)
#define MSAT_PER_BTC (MSAT_PER_SAT * SAT_PER_BTC)
struct multiplier {
const char letter;
/* We can't represent p postfix to msat, so we multiply this by 10 */
u64 m10;
};
/* BOLT #11:
*
* The following `multiplier` letters are defined:
*
* * `m` (milli): multiply by 0.001
* * `u` (micro): multiply by 0.000001
* * `n` (nano): multiply by 0.000000001
* * `p` (pico): multiply by 0.000000000001
*/
static struct multiplier multipliers[] = {
{ 'm', 10 * MSAT_PER_BTC / 1000 },
{ 'u', 10 * MSAT_PER_BTC / 1000000 },
{ 'n', 10 * MSAT_PER_BTC / 1000000000 },
{ 'p', 10 * MSAT_PER_BTC / 1000000000000ULL }
};
/* If pad is false, we discard any bits which don't fit in the last byte.
* Otherwise we add an extra byte */
static bool pull_bits(struct hash_u5 *hu5,
u5 **data, size_t *data_len, void *dst, size_t nbits,
bool pad)
{
size_t n5 = nbits / 5;
size_t len = 0;
if (nbits % 5)
n5++;
if (*data_len < n5)
return false;
if (!bech32_convert_bits(dst, &len, 8, *data, n5, 5, pad))
return false;
if (hu5)
hash_u5(hu5, *data, n5);
*data += n5;
*data_len -= n5;
return true;
}
/* For pulling fields where we should have checked it will succeed already. */
#ifndef NDEBUG
#define pull_bits_certain(hu5, data, data_len, dst, nbits, pad) \
assert(pull_bits((hu5), (data), (data_len), (dst), (nbits), (pad)))
#else
#define pull_bits_certain pull_bits
#endif
/* Helper for pulling a variable-length big-endian int. */
static bool pull_uint(struct hash_u5 *hu5,
u5 **data, size_t *data_len,
u64 *val, size_t databits)
{
be64 be_val;
/* Too big. */
if (databits > sizeof(be_val) * CHAR_BIT)
return false;
if (!pull_bits(hu5, data, data_len, &be_val, databits, true))
return false;
*val = be64_to_cpu(be_val) >> (sizeof(be_val) * CHAR_BIT - databits);
return true;
}
static size_t num_u8(size_t num_u5)
{
return (num_u5 * 5 + 4) / 8;
}
/* Frees bolt11, returns NULL. */
static struct bolt11 *decode_fail(struct bolt11 *b11, char **fail,
const char *fmt, ...)
PRINTF_FMT(3,4);
static struct bolt11 *decode_fail(struct bolt11 *b11, char **fail,
const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
*fail = tal_vfmt(tal_parent(b11), fmt, ap);
va_end(ap);
return tal_free(b11);
}
/*
* These handle specific fields in the payment request; returning the problem
* if any, or NULL.
*/
static char *unknown_field(struct bolt11 *b11,
struct hash_u5 *hu5,
u5 **data, size_t *data_len,
u5 type, size_t length)
{
struct bolt11_field *extra = tal(b11, struct bolt11_field);
u8 u8data[num_u8(length)];
extra->tag = type;
extra->data = tal_dup_arr(extra, u5, *data, length, 0);
list_add_tail(&b11->extra_fields, &extra->list);
pull_bits_certain(hu5, data, data_len, u8data, length * 5, true);
return NULL;
}
/* BOLT #11:
*
* `p` (1): `data_length` 52. 256-bit SHA256 payment_hash. Preimage of this
* provides proof of payment
*/
static void decode_p(struct bolt11 *b11,
struct hash_u5 *hu5,
u5 **data, size_t *data_len,
size_t data_length, bool *have_p)
{
/* BOLT #11:
*
* A payer... SHOULD use the first `p` field that it did NOT
* skip as the payment hash.
*/
if (*have_p) {
unknown_field(b11, hu5, data, data_len, 'p', data_length);
return;
}
/* BOLT #11:
*
* A reader... MUST skip over unknown fields, OR an `f` field
* with unknown `version`, OR `p`, `h`, `s` or `n` fields that do
* NOT have `data_length`s of 52, 52, 52 or 53, respectively.
*/
if (data_length != 52) {
unknown_field(b11, hu5, data, data_len, 'p', data_length);
return;
}
pull_bits_certain(hu5, data, data_len, &b11->payment_hash, 256, false);
*have_p = true;
}
static char *utf8_str(const tal_t *ctx, const u8 *buf TAKES, size_t buflen)
{
char *ret;
if (!utf8_check(buf, buflen)) {
if (taken(buf))
tal_free(buf);
return NULL;
}
/* Add one for nul term */
ret = tal_dup_arr(ctx, char, (const char *)buf, buflen, 1);
ret[buflen] = '\0';
return ret;
}
/* BOLT #11:
*
* `d` (13): `data_length` variable. Short description of purpose of payment
* (UTF-8), e.g. '1 cup of coffee' or ' 1'
*/
static char *decode_d(struct bolt11 *b11,
struct hash_u5 *hu5,
u5 **data, size_t *data_len,
size_t data_length, bool *have_d)
{
u8 *desc;
if (*have_d)
return unknown_field(b11, hu5, data, data_len, 'd', data_length);
desc = tal_arr(NULL, u8, data_length * 5 / 8);
pull_bits_certain(hu5, data, data_len, desc, data_length*5, false);
*have_d = true;
b11->description = utf8_str(b11, take(desc), tal_bytelen(desc));
if (b11->description)
return NULL;
return tal_fmt(b11, "d: invalid utf8");
}
/* BOLT #11:
*
* `h` (23): `data_length` 52. 256-bit description of purpose of payment
* (SHA256). This is used to commit to an associated description that is over
* 639 bytes, but the transport mechanism for the description in that case is
* transport specific and not defined here.
*/
static void decode_h(struct bolt11 *b11,
struct hash_u5 *hu5,
u5 **data, size_t *data_len,
size_t data_length, bool *have_h)
{
if (*have_h) {
unknown_field(b11, hu5, data, data_len, 'h', data_length);
return;
}
/* BOLT #11:
*
* A reader... MUST skip over unknown fields, OR an `f` field
* with unknown `version`, OR `p`, `h`, `s` or `n` fields that do
* NOT have `data_length`s of 52, 52, 52 or 53, respectively. */
if (data_length != 52) {
unknown_field(b11, hu5, data, data_len, 'h', data_length);
return;
}
b11->description_hash = tal(b11, struct sha256);
pull_bits_certain(hu5, data, data_len, b11->description_hash, 256,
false);
*have_h = true;
}
/* BOLT #11:
*
* `x` (6): `data_length` variable. `expiry` time in seconds
* (big-endian). Default is 3600 (1 hour) if not specified.
*/
#define DEFAULT_X 3600
static char *decode_x(struct bolt11 *b11,
struct hash_u5 *hu5,
u5 **data, size_t *data_len,
size_t data_length, bool *have_x)
{
if (*have_x)
return unknown_field(b11, hu5, data, data_len, 'x',
data_length);
/* FIXME: Put upper limit in bolt 11 */
if (!pull_uint(hu5, data, data_len, &b11->expiry, data_length * 5))
return tal_fmt(b11, "x: length %zu chars is excessive",
*data_len);
*have_x = true;
return NULL;
}
/* BOLT #11:
*
* `c` (24): `data_length` variable. `min_final_cltv_expiry` to use for the
* last HTLC in the route. Default is 18 if not specified.
*/
static char *decode_c(struct bolt11 *b11,
struct hash_u5 *hu5,
u5 **data, size_t *data_len,
size_t data_length, bool *have_c)
{
u64 c;
if (*have_c)
return unknown_field(b11, hu5, data, data_len, 'c',
data_length);
/* FIXME: Put upper limit in bolt 11 */
if (!pull_uint(hu5, data, data_len, &c, data_length * 5))
return tal_fmt(b11, "c: length %zu chars is excessive",
*data_len);
b11->min_final_cltv_expiry = c;
/* Can overflow, since c is 64 bits but value must be < 32 bits */
if (b11->min_final_cltv_expiry != c)
return tal_fmt(b11, "c: %"PRIu64" is too large", c);
*have_c = true;
return NULL;
}
static char *decode_n(struct bolt11 *b11,
struct hash_u5 *hu5,
u5 **data, size_t *data_len,
size_t data_length, bool *have_n)
{
if (*have_n)
return unknown_field(b11, hu5, data, data_len, 'n',
data_length);
/* BOLT #11:
*
* A reader... MUST skip over unknown fields, OR an `f` field
* with unknown `version`, OR `p`, `h`, `s` or `n` fields that do
* NOT have `data_length`s of 52, 52, 52 or 53, respectively. */
if (data_length != 53)
return unknown_field(b11, hu5, data, data_len, 'n',
data_length);
pull_bits_certain(hu5, data, data_len, &b11->receiver_id.k,
data_length * 5, false);
/*
if (!node_id_valid(&b11->receiver_id))
return tal_fmt(b11, "n: invalid pubkey %s",
node_id_to_hexstr(b11, &b11->receiver_id));
*/
*have_n = true;
return NULL;
}
/* BOLT #11:
*
* `m` (27): `data_length` variable. Additional metadata to attach to
* the payment. Note that the size of this field is limited by the
* maximum hop payload size. Long metadata fields reduce the maximum
* route length.
*/
static char *decode_m(struct bolt11 *b11,
struct hash_u5 *hu5,
u5 **data, size_t *data_len,
size_t data_length,
bool *have_m)
{
size_t mlen = (data_length * 5) / 8;
if (*have_m)
return unknown_field(b11, hu5, data, data_len, 'm',
data_length);
b11->metadata = tal_arr(b11, u8, mlen);
pull_bits_certain(hu5, data, data_len, b11->metadata,
data_length * 5, false);
*have_m = true;
return NULL;
}
struct bolt11 *new_bolt11(const tal_t *ctx)
{
struct bolt11 *b11 = tal(ctx, struct bolt11);
list_head_init(&b11->extra_fields);
b11->description = NULL;
b11->description_hash = NULL;
b11->fallbacks = NULL;
b11->msat = NULL;
b11->expiry = DEFAULT_X;
b11->features = tal_arr(b11, u8, 0);
/* BOLT #11:
* - if the `c` field (`min_final_cltv_expiry`) is not provided:
* - MUST use an expiry delta of at least 18 when making the payment
*/
b11->min_final_cltv_expiry = 18;
//b11->payment_secret = NULL;
b11->metadata = NULL;
//if (msat)
//b11->msat = tal_dup(b11, struct amount_msat, msat);
return b11;
}
/* Define sha256_eq. */
//STRUCTEQ_DEF(sha256, 0, u);
/* Extracts signature but does not check it. */
struct bolt11 *bolt11_decode_nosig(const tal_t *ctx, const char *str, u5 **sig, char **fail)
{
char *hrp, *amountstr, *prefix;
u5 *data;
size_t data_len;
struct bolt11 *b11 = new_bolt11(ctx);
struct hash_u5 hu5;
bool have_p = false, have_d = false, have_h = false, have_n = false,
have_x = false, have_c = false, have_m = false;
/* BOLT #11:
*
* If a URI scheme is desired, the current recommendation is to either
* use 'lightning:' as a prefix before the BOLT-11 encoding
*/
if (strstarts(str, "lightning:") || strstarts(str, "LIGHTNING:"))
str += strlen("lightning:");
if (strlen(str) < 8)
return decode_fail(b11, fail, "Bad bech32 string");
hrp = tal_arr(b11, char, strlen(str) - 6);
data = tal_arr(b11, u5, strlen(str) - 8);
if (bech32_decode(hrp, data, &data_len, str, (size_t)-1)
!= BECH32_ENCODING_BECH32)
return decode_fail(b11, fail, "Bad bech32 string");
/* For signature checking at the end. */
hash_u5_init(&hu5, hrp);
/* BOLT #11:
*
* The human-readable part of a Lightning invoice consists of two sections:
* 1. `prefix`: `ln` + BIP-0173 currency prefix (e.g. `lnbc` for Bitcoin mainnet,
* `lntb` for Bitcoin testnet, `lntbs` for Bitcoin signet, and `lnbcrt` for Bitcoin regtest)
* 1. `amount`: optional number in that currency, followed by an optional
* `multiplier` letter. The unit encoded here is the 'social' convention of a payment unit -- in the case of Bitcoin the unit is 'bitcoin' NOT satoshis.
*/
prefix = tal_strndup(b11, hrp, strcspn(hrp, "0123456789"));
/* BOLT #11:
*
* A reader...if it does NOT understand the `prefix`... MUST fail the payment.
*/
if (!strstarts(prefix, "ln"))
return decode_fail(b11, fail,
"Prefix '%s' does not start with ln", prefix);
/* BOLT #11:
*
* - if the `amount` is empty:
* */
amountstr = tal_strdup(b11, hrp + strlen(prefix));
if (streq(amountstr, "")) {
/* BOLT #11:
*
* - SHOULD indicate to the payer that amount is unspecified.
*/
b11->msat = NULL;
} else {
u64 m10 = 10 * MSAT_PER_BTC; /* Pico satoshis in a Bitcoin */
u64 amount;
char *end;
/* Gather and trim multiplier */
end = amountstr + strlen(amountstr)-1;
for (size_t i = 0; i < ARRAY_SIZE(multipliers); i++) {
if (*end == multipliers[i].letter) {
m10 = multipliers[i].m10;
*end = '\0';
break;
}
}
/* BOLT #11:
*
* if `amount` contains a non-digit OR is followed by
* anything except a `multiplier` (see table above)... MUST fail the
* payment.
**/
amount = strtoull(amountstr, &end, 10);
if (amount == ULLONG_MAX && errno == ERANGE)
return decode_fail(b11, fail,
"Invalid amount '%s'", amountstr);
if (!*amountstr || *end)
return decode_fail(b11, fail,
"Invalid amount postfix '%s'", end);
/* BOLT #11:
*
* if the `multiplier` is present... MUST multiply
* `amount` by the `multiplier` value to derive the
* amount required for payment.
*/
b11->msat = tal(b11, struct amount_msat);
/* BOLT #11:
*
* - if multiplier is `p` and the last decimal of `amount` is
* not 0:
* - MUST fail the payment.
*/
if (amount * m10 % 10 != 0)
return decode_fail(b11, fail,
"Invalid sub-millisatoshi amount"
" '%sp'", amountstr);
*b11->msat = amount_msat(amount * m10 / 10);
}
/* BOLT #11:
*
* The data part of a Lightning invoice consists of multiple sections:
*
* 1. `timestamp`: seconds-since-1970 (35 bits, big-endian)
* 1. zero or more tagged parts
* 1. `signature`: Bitcoin-style signature of above (520 bits)
*/
if (!pull_uint(&hu5, &data, &data_len, &b11->timestamp, 35))
return decode_fail(b11, fail, "Can't get 35-bit timestamp");
while (data_len > 520 / 5) {
const char *problem = NULL;
u64 type, data_length;
/* BOLT #11:
*
* Each Tagged Field is of the form:
*
* 1. `type` (5 bits)
* 1. `data_length` (10 bits, big-endian)
* 1. `data` (`data_length` x 5 bits)
*/
if (!pull_uint(&hu5, &data, &data_len, &type, 5)
|| !pull_uint(&hu5, &data, &data_len, &data_length, 10))
return decode_fail(b11, fail,
"Can't get tag and length");
/* Can't exceed total data remaining. */
if (data_length > data_len)
return decode_fail(b11, fail, "%c: truncated",
bech32_charset[type]);
switch (bech32_charset[type]) {
case 'p':
decode_p(b11, &hu5, &data, &data_len, data_length,
&have_p);
break;
case 'd':
problem = decode_d(b11, &hu5, &data, &data_len,
data_length, &have_d);
break;
case 'h':
decode_h(b11, &hu5, &data, &data_len, data_length,
&have_h);
break;
case 'n':
problem = decode_n(b11, &hu5, &data,
&data_len, data_length,
have_n);
break;
case 'x':
problem = decode_x(b11, &hu5, &data,
&data_len, data_length,
&have_x);
break;
case 'c':
problem = decode_c(b11, &hu5, &data,
&data_len, data_length,
&have_c);
break;
/*
case 'f':
problem = decode_f(b11, &hu5, &data,
&data_len, data_length);
break;
case 'r':
problem = decode_r(b11, &hu5, &data, &data_len,
data_length);
break;
case '9':
problem = decode_9(b11, our_features, &hu5,
&data, &data_len,
data_length);
break;
case 's':
problem = decode_s(b11, &hu5, &data, &data_len,
data_length, &have_s);
break;
*/
case 'm':
problem = decode_m(b11, &hu5, &data, &data_len,
data_length, &have_m);
break;
default:
unknown_field(b11, &hu5, &data, &data_len,
bech32_charset[type], data_length);
}
if (problem)
return decode_fail(b11, fail, "%s", problem);
}
if (!have_p)
return decode_fail(b11, fail, "No valid 'p' field found");
*sig = tal_dup_arr(ctx, u5, data, data_len, 0);
return b11;
}
/* Decodes and checks signature; returns NULL on error. */
struct bolt11 *bolt11_decode(const tal_t *ctx, const char *str, char **fail)
{
u5 *sigdata;
size_t data_len;
u8 sig_and_recid[65];
//secp256k1_ecdsa_recoverable_signature sig;
struct bolt11 *b11;
b11 = bolt11_decode_nosig(ctx, str, &sigdata, fail);
if (!b11)
return NULL;
/* BOLT #11:
*
* A writer...MUST set `signature` to a valid 512-bit
* secp256k1 signature of the SHA2 256-bit hash of the
* human-readable part, represented as UTF-8 bytes,
* concatenated with the data part (excluding the signature)
* with 0 bits appended to pad the data to the next byte
* boundary, with a trailing byte containing the recovery ID
* (0, 1, 2, or 3).
*/
data_len = tal_count(sigdata);
if (!pull_bits(NULL, &sigdata, &data_len, sig_and_recid, 520, false))
return decode_fail(b11, fail, "signature truncated");
assert(data_len == 0);
/*
if (!secp256k1_ecdsa_recoverable_signature_parse_compact
(secp256k1_ctx, &sig, sig_and_recid, sig_and_recid[64]))
return decode_fail(b11, fail, "signature invalid");
secp256k1_ecdsa_recoverable_signature_convert(secp256k1_ctx,
&b11->sig, &sig);
*/
/* BOLT #11:
*
* A reader... MUST check that the `signature` is valid (see
* the `n` tagged field specified below). ... A reader...
* MUST use the `n` field to validate the signature instead of
* performing signature recovery.
*/
/*
if (!have_n) {
struct pubkey k;
if (!secp256k1_ecdsa_recover(secp256k1_ctx,
&k.pubkey,
&sig,
(const u8 *)&hash))
return decode_fail(b11, fail,
"signature recovery failed");
node_id_from_pubkey(&b11->receiver_id, &k);
} else {
struct pubkey k;
if (!pubkey_from_node_id(&k, &b11->receiver_id))
abort();
if (!secp256k1_ecdsa_verify(secp256k1_ctx, &b11->sig,
(const u8 *)&hash,
&k.pubkey))
return decode_fail(b11, fail, "invalid signature");
}
*/
return b11;
}

104
damus-c/bolt11.h

@ -0,0 +1,104 @@
#ifndef LIGHTNING_COMMON_BOLT11_H
#define LIGHTNING_COMMON_BOLT11_H
#include "short_types.h"
#include "hash_u5.h"
#include "list.h"
#include "node_id.h"
//#include <secp256k1_recovery.h>
/* We only have 10 bits for the field length, meaning < 640 bytes */
#define BOLT11_FIELD_BYTE_LIMIT ((1 << 10) * 5 / 8)
/* BOLT #11:
* * `c` (24): `data_length` variable.
* `min_final_cltv_expiry` to use for the last HTLC in the route.
* Default is 18 if not specified.
*/
#define DEFAULT_FINAL_CLTV_DELTA 18
struct feature_set;
struct bolt11_field {
struct list_node list;
char tag;
u5 *data;
};
/* BOLT #11:
* * `pubkey` (264 bits)
* * `short_channel_id` (64 bits)
* * `fee_base_msat` (32 bits, big-endian)
* * `fee_proportional_millionths` (32 bits, big-endian)
* * `cltv_expiry_delta` (16 bits, big-endian)
*/
/*
struct route_info {
struct node_id pubkey;
u16 cltv_expiry_delta;
struct short_channel_id short_channel_id;
u32 fee_base_msat, fee_proportional_millionths;
};
*/
struct bolt11 {
const struct chainparams *chain;
u64 timestamp;
struct amount_msat *msat; /* NULL if not specified. */
struct sha256 payment_hash;
struct node_id receiver_id;
/* description_hash valid if and only if description is NULL. */
const char *description;
struct sha256 *description_hash;
/* How many seconds to pay from @timestamp above. */
u64 expiry;
/* How many blocks final hop requires. */
u32 min_final_cltv_expiry;
/* If non-NULL, indicates fallback addresses to pay to. */
const u8 **fallbacks;
/* If non-NULL: array of route arrays */
//struct route_info **routes;
/* signature of sha256 of entire thing. */
//secp256k1_ecdsa_signature sig;
/* payment secret, if any. */
//struct secret *payment_secret;
/* Features bitmap, if any. */
u8 *features;
/* Optional metadata to send with payment. */
u8 *metadata;
struct list_head extra_fields;
};
/* Decodes and checks signature; returns NULL on error; description is
* (optional) out-of-band description of payment, for `h` field.
* fset is NULL to accept any features (usually not desirable!).
*
* if @must_be_chain is not NULL, fails unless it's this chain.
*/
struct bolt11 *bolt11_decode(const tal_t *ctx, const char *str, char **fail);
/* Extracts signature but does not check it. */
struct bolt11 *bolt11_decode_nosig(const tal_t *ctx, const char *str, u5 **sigdata, char **fail);
/* Initialize an empty bolt11 struct with optional amount */
struct bolt11 *new_bolt11(const tal_t *ctx);
#if DEVELOPER
/* Flag for tests to suppress `min_final_cltv_expiry` field generation, to match test vectors */
extern bool dev_bolt11_no_c_generation;
#endif
#endif /* LIGHTNING_COMMON_BOLT11_H */

40
damus-c/build_assert.h

@ -0,0 +1,40 @@
/* CC0 (Public domain) - see LICENSE file for details */
#ifndef CCAN_BUILD_ASSERT_H
#define CCAN_BUILD_ASSERT_H
/**
* BUILD_ASSERT - assert a build-time dependency.
* @cond: the compile-time condition which must be true.
*
* Your compile will fail if the condition isn't true, or can't be evaluated
* by the compiler. This can only be used within a function.
*
* Example:
* #include <stddef.h>
* ...
* static char *foo_to_char(struct foo *foo)
* {
* // This code needs string to be at start of foo.
* BUILD_ASSERT(offsetof(struct foo, string) == 0);
* return (char *)foo;
* }
*/
#define BUILD_ASSERT(cond) \
do { (void) sizeof(char [1 - 2*!(cond)]); } while(0)
/**
* BUILD_ASSERT_OR_ZERO - assert a build-time dependency, as an expression.
* @cond: the compile-time condition which must be true.
*
* Your compile will fail if the condition isn't true, or can't be evaluated
* by the compiler. This can be used in an expression: its value is "0".
*
* Example:
* #define foo_to_char(foo) \
* ((char *)(foo) \
* + BUILD_ASSERT_OR_ZERO(offsetof(struct foo, string) == 0))
*/
#define BUILD_ASSERT_OR_ZERO(cond) \
(sizeof(char [1 - 2*!(cond)]) - 1)
#endif /* CCAN_BUILD_ASSERT_H */

64
damus-c/check_type.h

@ -0,0 +1,64 @@
/* CC0 (Public domain) - see LICENSE file for details */
#ifndef CCAN_CHECK_TYPE_H
#define CCAN_CHECK_TYPE_H
#include "config.h"
/**
* check_type - issue a warning or build failure if type is not correct.
* @expr: the expression whose type we should check (not evaluated).
* @type: the exact type we expect the expression to be.
*
* This macro is usually used within other macros to try to ensure that a macro
* argument is of the expected type. No type promotion of the expression is
* done: an unsigned int is not the same as an int!
*
* check_type() always evaluates to 0.
*
* If your compiler does not support typeof, then the best we can do is fail
* to compile if the sizes of the types are unequal (a less complete check).
*
* Example:
* // They should always pass a 64-bit value to _set_some_value!
* #define set_some_value(expr) \
* _set_some_value((check_type((expr), uint64_t), (expr)))
*/
/**
* check_types_match - issue a warning or build failure if types are not same.
* @expr1: the first expression (not evaluated).
* @expr2: the second expression (not evaluated).
*
* This macro is usually used within other macros to try to ensure that
* arguments are of identical types. No type promotion of the expressions is
* done: an unsigned int is not the same as an int!
*
* check_types_match() always evaluates to 0.
*
* If your compiler does not support typeof, then the best we can do is fail
* to compile if the sizes of the types are unequal (a less complete check).
*
* Example:
* // Do subtraction to get to enclosing type, but make sure that
* // pointer is of correct type for that member.
* #define container_of(mbr_ptr, encl_type, mbr) \
* (check_types_match((mbr_ptr), &((encl_type *)0)->mbr), \
* ((encl_type *) \
* ((char *)(mbr_ptr) - offsetof(encl_type, mbr))))
*/
#if HAVE_TYPEOF
#define check_type(expr, type) \
((typeof(expr) *)0 != (type *)0)
#define check_types_match(expr1, expr2) \
((typeof(expr1) *)0 != (typeof(expr2) *)0)
#else
#include <ccan/build_assert/build_assert.h>
/* Without typeof, we can only test the sizes. */
#define check_type(expr, type) \
BUILD_ASSERT_OR_ZERO(sizeof(expr) == sizeof(type))
#define check_types_match(expr1, expr2) \
BUILD_ASSERT_OR_ZERO(sizeof(expr1) == sizeof(expr2))
#endif /* HAVE_TYPEOF */
#endif /* CCAN_CHECK_TYPE_H */

317
damus-c/compiler.h

@ -0,0 +1,317 @@
/* CC0 (Public domain) - see LICENSE file for details */
#ifndef CCAN_COMPILER_H
#define CCAN_COMPILER_H
#include "config.h"
#ifndef COLD
#if HAVE_ATTRIBUTE_COLD
/**
* COLD - a function is unlikely to be called.
*
* Used to mark an unlikely code path and optimize appropriately.
* It is usually used on logging or error routines.
*
* Example:
* static void COLD moan(const char *reason)
* {
* fprintf(stderr, "Error: %s (%s)\n", reason, strerror(errno));
* }
*/
#define COLD __attribute__((__cold__))
#else
#define COLD
#endif
#endif
#ifndef NORETURN
#if HAVE_ATTRIBUTE_NORETURN
/**
* NORETURN - a function does not return
*
* Used to mark a function which exits; useful for suppressing warnings.
*
* Example:
* static void NORETURN fail(const char *reason)
* {
* fprintf(stderr, "Error: %s (%s)\n", reason, strerror(errno));
* exit(1);
* }
*/
#define NORETURN __attribute__((__noreturn__))
#else
#define NORETURN
#endif
#endif
#ifndef PRINTF_FMT
#if HAVE_ATTRIBUTE_PRINTF
/**
* PRINTF_FMT - a function takes printf-style arguments
* @nfmt: the 1-based number of the function's format argument.
* @narg: the 1-based number of the function's first variable argument.
*
* This allows the compiler to check your parameters as it does for printf().
*
* Example:
* void PRINTF_FMT(2,3) my_printf(const char *prefix, const char *fmt, ...);
*/
#define PRINTF_FMT(nfmt, narg) \
__attribute__((format(__printf__, nfmt, narg)))
#else
#define PRINTF_FMT(nfmt, narg)
#endif
#endif
#ifndef CONST_FUNCTION
#if HAVE_ATTRIBUTE_CONST
/**
* CONST_FUNCTION - a function's return depends only on its argument
*
* This allows the compiler to assume that the function will return the exact
* same value for the exact same arguments. This implies that the function
* must not use global variables, or dereference pointer arguments.
*/
#define CONST_FUNCTION __attribute__((__const__))
#else
#define CONST_FUNCTION
#endif
#ifndef PURE_FUNCTION
#if HAVE_ATTRIBUTE_PURE
/**
* PURE_FUNCTION - a function is pure
*
* A pure function is one that has no side effects other than it's return value
* and uses no inputs other than it's arguments and global variables.
*/
#define PURE_FUNCTION __attribute__((__pure__))
#else
#define PURE_FUNCTION
#endif
#endif
#endif
#if HAVE_ATTRIBUTE_UNUSED
#ifndef UNNEEDED
/**
* UNNEEDED - a variable/function may not be needed
*
* This suppresses warnings about unused variables or functions, but tells
* the compiler that if it is unused it need not emit it into the source code.
*
* Example:
* // With some preprocessor options, this is unnecessary.
* static UNNEEDED int counter;
*
* // With some preprocessor options, this is unnecessary.
* static UNNEEDED void add_to_counter(int add)
* {
* counter += add;
* }
*/
#define UNNEEDED __attribute__((__unused__))
#endif
#ifndef NEEDED
#if HAVE_ATTRIBUTE_USED
/**
* NEEDED - a variable/function is needed
*
* This suppresses warnings about unused variables or functions, but tells
* the compiler that it must exist even if it (seems) unused.
*
* Example:
* // Even if this is unused, these are vital for debugging.
* static NEEDED int counter;
* static NEEDED void dump_counter(void)
* {
* printf("Counter is %i\n", counter);
* }
*/
#define NEEDED __attribute__((__used__))
#else
/* Before used, unused functions and vars were always emitted. */
#define NEEDED __attribute__((__unused__))
#endif
#endif
#ifndef UNUSED
/**
* UNUSED - a parameter is unused
*
* Some compilers (eg. gcc with -W or -Wunused) warn about unused
* function parameters. This suppresses such warnings and indicates
* to the reader that it's deliberate.
*
* Example:
* // This is used as a callback, so needs to have this prototype.
* static int some_callback(void *unused UNUSED)
* {
* return 0;
* }
*/
#define UNUSED __attribute__((__unused__))
#endif
#else
#ifndef UNNEEDED
#define UNNEEDED
#endif
#ifndef NEEDED
#define NEEDED
#endif
#ifndef UNUSED
#define UNUSED
#endif
#endif
#ifndef IS_COMPILE_CONSTANT
#if HAVE_BUILTIN_CONSTANT_P
/**
* IS_COMPILE_CONSTANT - does the compiler know the value of this expression?
* @expr: the expression to evaluate
*
* When an expression manipulation is complicated, it is usually better to
* implement it in a function. However, if the expression being manipulated is
* known at compile time, it is better to have the compiler see the entire
* expression so it can simply substitute the result.
*
* This can be done using the IS_COMPILE_CONSTANT() macro.
*
* Example:
* enum greek { ALPHA, BETA, GAMMA, DELTA, EPSILON };
*
* // Out-of-line version.
* const char *greek_name(enum greek greek);
*
* // Inline version.
* static inline const char *_greek_name(enum greek greek)
* {
* switch (greek) {
* case ALPHA: return "alpha";
* case BETA: return "beta";
* case GAMMA: return "gamma";
* case DELTA: return "delta";
* case EPSILON: return "epsilon";
* default: return "**INVALID**";
* }
* }
*
* // Use inline if compiler knows answer. Otherwise call function
* // to avoid copies of the same code everywhere.
* #define greek_name(g) \
* (IS_COMPILE_CONSTANT(greek) ? _greek_name(g) : greek_name(g))
*/
#define IS_COMPILE_CONSTANT(expr) __builtin_constant_p(expr)
#else
/* If we don't know, assume it's not. */
#define IS_COMPILE_CONSTANT(expr) 0
#endif
#endif
#ifndef WARN_UNUSED_RESULT
#if HAVE_WARN_UNUSED_RESULT
/**
* WARN_UNUSED_RESULT - warn if a function return value is unused.
*
* Used to mark a function where it is extremely unlikely that the caller
* can ignore the result, eg realloc().
*
* Example:
* // buf param may be freed by this; need return value!
* static char *WARN_UNUSED_RESULT enlarge(char *buf, unsigned *size)
* {
* return realloc(buf, (*size) *= 2);
* }
*/
#define WARN_UNUSED_RESULT __attribute__((__warn_unused_result__))
#else
#define WARN_UNUSED_RESULT
#endif
#endif
#if HAVE_ATTRIBUTE_DEPRECATED
/**
* WARN_DEPRECATED - warn that a function/type/variable is deprecated when used.
*
* Used to mark a function, type or variable should not be used.
*
* Example:
* WARN_DEPRECATED char *oldfunc(char *buf);
*/
#define WARN_DEPRECATED __attribute__((__deprecated__))
#else
#define WARN_DEPRECATED
#endif
#if HAVE_ATTRIBUTE_NONNULL
/**
* NO_NULL_ARGS - specify that no arguments to this function can be NULL.
*
* The compiler will warn if any pointer args are NULL.
*
* Example:
* NO_NULL_ARGS char *my_copy(char *buf);
*/
#define NO_NULL_ARGS __attribute__((__nonnull__))
/**
* NON_NULL_ARGS - specify that some arguments to this function can't be NULL.
* @...: 1-based argument numbers for which args can't be NULL.
*
* The compiler will warn if any of the specified pointer args are NULL.
*
* Example:
* char *my_copy2(char *buf, char *maybenull) NON_NULL_ARGS(1);
*/
#define NON_NULL_ARGS(...) __attribute__((__nonnull__(__VA_ARGS__)))
#else
#define NO_NULL_ARGS
#define NON_NULL_ARGS(...)
#endif
#if HAVE_ATTRIBUTE_RETURNS_NONNULL
/**
* RETURNS_NONNULL - specify that this function cannot return NULL.
*
* Mainly an optimization opportunity, but can also suppress warnings.
*
* Example:
* RETURNS_NONNULL char *my_copy(char *buf);
*/
#define RETURNS_NONNULL __attribute__((__returns_nonnull__))
#else
#define RETURNS_NONNULL
#endif
#if HAVE_ATTRIBUTE_SENTINEL
/**
* LAST_ARG_NULL - specify the last argument of a variadic function must be NULL.
*
* The compiler will warn if the last argument isn't NULL.
*
* Example:
* char *join_string(char *buf, ...) LAST_ARG_NULL;
*/
#define LAST_ARG_NULL __attribute__((__sentinel__))
#else
#define LAST_ARG_NULL
#endif
#if HAVE_BUILTIN_CPU_SUPPORTS
/**
* cpu_supports - test if current CPU supports the named feature.
*
* This takes a literal string, and currently only works on glibc platforms.
*
* Example:
* if (cpu_supports("mmx"))
* printf("MMX support engaged!\n");
*/
#define cpu_supports(x) __builtin_cpu_supports(x)
#else
#define cpu_supports(x) 0
#endif /* HAVE_BUILTIN_CPU_SUPPORTS */
#endif /* CCAN_COMPILER_H */

18
damus-c/config.h

@ -0,0 +1,18 @@
/* Generated by CCAN configurator */
#ifndef CCAN_CONFIG_H
#define CCAN_CONFIG_H
#ifndef _GNU_SOURCE
#define _GNU_SOURCE /* Always use GNU extensions. */
#endif
#define CCAN_COMPILER "cc"
#define CCAN_CFLAGS "-g3 -ggdb -Wall -Wundef -Wmissing-prototypes -Wmissing-declarations -Wstrict-prototypes -Wold-style-definition"
#define CCAN_OUTPUT_EXE_CFLAG "-o"
#define HAVE_CCAN 1
#define HAVE_UNALIGNED_ACCESS 1
#define HAVE_TYPEOF 1
#define HAVE_BIG_ENDIAN 0
#define HAVE_BYTESWAP_H 0
#define HAVE_BSWAP_64 0
#define HAVE_LITTLE_ENDIAN 1
#endif /* CCAN_CONFIG_H */

145
damus-c/container_of.h

@ -0,0 +1,145 @@
/* CC0 (Public domain) - see LICENSE file for details */
#ifndef CCAN_CONTAINER_OF_H
#define CCAN_CONTAINER_OF_H
#include <stddef.h>
#include "config.h"
#include "check_type.h"
/**
* container_of - get pointer to enclosing structure
* @member_ptr: pointer to the structure member
* @containing_type: the type this member is within
* @member: the name of this member within the structure.
*
* Given a pointer to a member of a structure, this macro does pointer
* subtraction to return the pointer to the enclosing type.
*
* Example:
* struct foo {
* int fielda, fieldb;
* // ...
* };
* struct info {
* int some_other_field;
* struct foo my_foo;
* };
*
* static struct info *foo_to_info(struct foo *foo)
* {
* return container_of(foo, struct info, my_foo);
* }
*/
#define container_of(member_ptr, containing_type, member) \
((containing_type *) \
((char *)(member_ptr) \
- container_off(containing_type, member)) \
+ check_types_match(*(member_ptr), ((containing_type *)0)->member))
/**
* container_of_or_null - get pointer to enclosing structure, or NULL
* @member_ptr: pointer to the structure member
* @containing_type: the type this member is within
* @member: the name of this member within the structure.
*
* Given a pointer to a member of a structure, this macro does pointer
* subtraction to return the pointer to the enclosing type, unless it
* is given NULL, in which case it also returns NULL.
*
* Example:
* struct foo {
* int fielda, fieldb;
* // ...
* };
* struct info {
* int some_other_field;
* struct foo my_foo;
* };
*
* static struct info *foo_to_info_allowing_null(struct foo *foo)
* {
* return container_of_or_null(foo, struct info, my_foo);
* }
*/
static inline char *container_of_or_null_(void *member_ptr, size_t offset)
{
return member_ptr ? (char *)member_ptr - offset : NULL;
}
#define container_of_or_null(member_ptr, containing_type, member) \
((containing_type *) \
container_of_or_null_(member_ptr, \
container_off(containing_type, member)) \
+ check_types_match(*(member_ptr), ((containing_type *)0)->member))
/**
* container_off - get offset to enclosing structure
* @containing_type: the type this member is within
* @member: the name of this member within the structure.
*
* Given a pointer to a member of a structure, this macro does
* typechecking and figures out the offset to the enclosing type.
*
* Example:
* struct foo {
* int fielda, fieldb;
* // ...
* };
* struct info {
* int some_other_field;
* struct foo my_foo;
* };
*
* static struct info *foo_to_info(struct foo *foo)
* {
* size_t off = container_off(struct info, my_foo);
* return (void *)((char *)foo - off);
* }
*/
#define container_off(containing_type, member) \
offsetof(containing_type, member)
/**
* container_of_var - get pointer to enclosing structure using a variable
* @member_ptr: pointer to the structure member
* @container_var: a pointer of same type as this member's container
* @member: the name of this member within the structure.
*
* Given a pointer to a member of a structure, this macro does pointer
* subtraction to return the pointer to the enclosing type.
*
* Example:
* static struct info *foo_to_i(struct foo *foo)
* {
* struct info *i = container_of_var(foo, i, my_foo);
* return i;
* }
*/
#if HAVE_TYPEOF
#define container_of_var(member_ptr, container_var, member) \
container_of(member_ptr, typeof(*container_var), member)
#else
#define container_of_var(member_ptr, container_var, member) \
((void *)((char *)(member_ptr) - \
container_off_var(container_var, member)))
#endif
/**
* container_off_var - get offset of a field in enclosing structure
* @container_var: a pointer to a container structure
* @member: the name of a member within the structure.
*
* Given (any) pointer to a structure and a its member name, this
* macro does pointer subtraction to return offset of member in a
* structure memory layout.
*
*/
#if HAVE_TYPEOF
#define container_off_var(var, member) \
container_off(typeof(*var), member)
#else
#define container_off_var(var, member) \
((const char *)&(var)->member - (const char *)(var))
#endif
#endif /* CCAN_CONTAINER_OF_H */

191
damus-c/cppmagic.h

@ -0,0 +1,191 @@
/* MIT (BSD) license - see LICENSE file for details */
#ifndef CCAN_CPPMAGIC_H
#define CCAN_CPPMAGIC_H
/**
* CPPMAGIC_NOTHING - expands to nothing
*/
#define CPPMAGIC_NOTHING()
/**
* CPPMAGIC_STRINGIFY - convert arguments to a string literal
*/
#define _CPPMAGIC_STRINGIFY(...) #__VA_ARGS__
#define CPPMAGIC_STRINGIFY(...) _CPPMAGIC_STRINGIFY(__VA_ARGS__)
/**
* CPPMAGIC_GLUE2 - glue arguments together
*
* CPPMAGIC_GLUE2(@a_, @b_)
* expands to the expansion of @a_ followed immediately
* (combining tokens) by the expansion of @b_
*/
#define _CPPMAGIC_GLUE2(a_, b_) a_##b_
#define CPPMAGIC_GLUE2(a_, b_) _CPPMAGIC_GLUE2(a_, b_)
/**
* CPPMAGIC_1ST - return 1st argument
*
* CPPMAGIC_1ST(@a_, ...)
* expands to the expansion of @a_
*/
#define CPPMAGIC_1ST(a_, ...) a_
/**
* CPPMAGIC_2ND - return 2nd argument
*
* CPPMAGIC_2ST(@a_, @b_, ...)
* expands to the expansion of @b_
*/
#define CPPMAGIC_2ND(a_, b_, ...) b_
/**
* CPPMAGIC_ISZERO - is argument '0'
*
* CPPMAGIC_ISZERO(@a)
* expands to '1' if @a is '0', otherwise expands to '0'.
*/
#define _CPPMAGIC_ISPROBE(...) CPPMAGIC_2ND(__VA_ARGS__, 0)
#define _CPPMAGIC_PROBE() $, 1
#define _CPPMAGIC_ISZERO_0 _CPPMAGIC_PROBE()
#define CPPMAGIC_ISZERO(a_) \
_CPPMAGIC_ISPROBE(CPPMAGIC_GLUE2(_CPPMAGIC_ISZERO_, a_))
/**
* CPPMAGIC_NONZERO - is argument not '0'
*
* CPPMAGIC_NONZERO(@a)
* expands to '0' if @a is '0', otherwise expands to '1'.
*/
#define CPPMAGIC_NONZERO(a_) CPPMAGIC_ISZERO(CPPMAGIC_ISZERO(a_))
/**
* CPPMAGIC_NONEMPTY - does the macro have any arguments?
*
* CPPMAGIC_NONEMPTY()
* expands to '0'
* CPPMAGIC_NONEMPTY(@a)
* CPPMAGIC_NONEMPTY(@a, ...)
* expand to '1'
*/
#define _CPPMAGIC_EOA() 0
#define CPPMAGIC_NONEMPTY(...) \
CPPMAGIC_NONZERO(CPPMAGIC_1ST(_CPPMAGIC_EOA __VA_ARGS__)())
/**
* CPPMAGIC_ISEMPTY - does the macro have no arguments?
*
* CPPMAGIC_ISEMPTY()
* expands to '1'
* CPPMAGIC_ISEMPTY(@a)
* CPPMAGIC_ISEMPTY(@a, ...)
* expand to '0'
*/
#define CPPMAGIC_ISEMPTY(...) \
CPPMAGIC_ISZERO(CPPMAGIC_NONEMPTY(__VA_ARGS__))
/*
* CPPMAGIC_IFELSE - preprocessor conditional
*
* CPPMAGIC_IFELSE(@cond)(@if)(@else)
* expands to @else if @cond is '0', otherwise expands to @if
*/
#define _CPPMAGIC_IF_0(...) _CPPMAGIC_IF_0_ELSE
#define _CPPMAGIC_IF_1(...) __VA_ARGS__ _CPPMAGIC_IF_1_ELSE
#define _CPPMAGIC_IF_0_ELSE(...) __VA_ARGS__
#define _CPPMAGIC_IF_1_ELSE(...)
#define _CPPMAGIC_IFELSE(cond_) CPPMAGIC_GLUE2(_CPPMAGIC_IF_, cond_)
#define CPPMAGIC_IFELSE(cond_) \
_CPPMAGIC_IFELSE(CPPMAGIC_NONZERO(cond_))
/**
* CPPMAGIC_EVAL - force multiple expansion passes
*
* Forces macros in the arguments to be expanded repeatedly (up to
* 1024 times) even when CPP would usually stop expanding.
*/
#define CPPMAGIC_EVAL1(...) __VA_ARGS__
#define CPPMAGIC_EVAL2(...) \
CPPMAGIC_EVAL1(CPPMAGIC_EVAL1(__VA_ARGS__))
#define CPPMAGIC_EVAL4(...) \
CPPMAGIC_EVAL2(CPPMAGIC_EVAL2(__VA_ARGS__))
#define CPPMAGIC_EVAL8(...) \
CPPMAGIC_EVAL4(CPPMAGIC_EVAL4(__VA_ARGS__))
#define CPPMAGIC_EVAL16(...) \
CPPMAGIC_EVAL8(CPPMAGIC_EVAL8(__VA_ARGS__))
#define CPPMAGIC_EVAL32(...) \
CPPMAGIC_EVAL16(CPPMAGIC_EVAL16(__VA_ARGS__))
#define CPPMAGIC_EVAL64(...) \
CPPMAGIC_EVAL32(CPPMAGIC_EVAL32(__VA_ARGS__))
#define CPPMAGIC_EVAL128(...) \
CPPMAGIC_EVAL64(CPPMAGIC_EVAL64(__VA_ARGS__))
#define CPPMAGIC_EVAL256(...) \
CPPMAGIC_EVAL128(CPPMAGIC_EVAL128(__VA_ARGS__))
#define CPPMAGIC_EVAL512(...) \
CPPMAGIC_EVAL256(CPPMAGIC_EVAL256(__VA_ARGS__))
#define CPPMAGIC_EVAL1024(...) \
CPPMAGIC_EVAL512(CPPMAGIC_EVAL512(__VA_ARGS__))
#define CPPMAGIC_EVAL(...) CPPMAGIC_EVAL1024(__VA_ARGS__)
/**
* CPPMAGIC_DEFER1, CPPMAGIC_DEFER2 - defer expansion
*/
#define CPPMAGIC_DEFER1(a_) a_ CPPMAGIC_NOTHING()
#define CPPMAGIC_DEFER2(a_) a_ CPPMAGIC_NOTHING CPPMAGIC_NOTHING()()
/**
* CPPMAGIC_MAP - iterate another macro across arguments
* @m: name of a one argument macro
*
* CPPMAGIC_MAP(@m, @a1, @a2, ... @an)
* expands to the expansion of @m(@a1) , @m(@a2) , ... , @m(@an)
*/
#define _CPPMAGIC_MAP_() _CPPMAGIC_MAP
#define _CPPMAGIC_MAP(m_, a_, ...) \
m_(a_) \
CPPMAGIC_IFELSE(CPPMAGIC_NONEMPTY(__VA_ARGS__)) \
(, CPPMAGIC_DEFER2(_CPPMAGIC_MAP_)()(m_, __VA_ARGS__)) \
()
#define CPPMAGIC_MAP(m_, ...) \
CPPMAGIC_IFELSE(CPPMAGIC_NONEMPTY(__VA_ARGS__)) \
(CPPMAGIC_EVAL(_CPPMAGIC_MAP(m_, __VA_ARGS__))) \
()
/**
* CPPMAGIC_2MAP - iterate another macro across pairs of arguments
* @m: name of a two argument macro
*
* CPPMAGIC_2MAP(@m, @a1, @b1, @a2, @b2, ..., @an, @bn)
* expands to the expansion of
* @m(@a1, @b1) , @m(@a2, @b2) , ... , @m(@an, @bn)
*/
#define _CPPMAGIC_2MAP_() _CPPMAGIC_2MAP
#define _CPPMAGIC_2MAP(m_, a_, b_, ...) \
m_(a_, b_) \
CPPMAGIC_IFELSE(CPPMAGIC_NONEMPTY(__VA_ARGS__)) \
(, CPPMAGIC_DEFER2(_CPPMAGIC_2MAP_)()(m_, __VA_ARGS__)) \
()
#define CPPMAGIC_2MAP(m_, ...) \
CPPMAGIC_IFELSE(CPPMAGIC_NONEMPTY(__VA_ARGS__)) \
(CPPMAGIC_EVAL(_CPPMAGIC_2MAP(m_, __VA_ARGS__))) \
()
/**
* CPPMAGIC_JOIN - separate arguments with given delimiter
* @d: delimiter
*
* CPPMAGIC_JOIN(@d, @a1, @a2, ..., @an)
* expands to the expansion of @a1 @d @a2 @d ... @d @an
*/
#define _CPPMAGIC_JOIN_() _CPPMAGIC_JOIN
#define _CPPMAGIC_JOIN(d_, a_, ...) \
a_ \
CPPMAGIC_IFELSE(CPPMAGIC_NONEMPTY(__VA_ARGS__)) \
(d_ CPPMAGIC_DEFER2(_CPPMAGIC_JOIN_)()(d_, __VA_ARGS__)) \
()
#define CPPMAGIC_JOIN(d_, ...) \
CPPMAGIC_IFELSE(CPPMAGIC_NONEMPTY(__VA_ARGS__)) \
(CPPMAGIC_EVAL(_CPPMAGIC_JOIN(d_, __VA_ARGS__))) \
()
#endif /* CCAN_CPPMAGIC_H */

363
damus-c/endian.h

@ -0,0 +1,363 @@
/* CC0 (Public domain) - see LICENSE file for details */
#ifndef CCAN_ENDIAN_H
#define CCAN_ENDIAN_H
#include <stdint.h>
#include "config.h"
/**
* BSWAP_16 - reverse bytes in a constant uint16_t value.
* @val: constant value whose bytes to swap.
*
* Designed to be usable in constant-requiring initializers.
*
* Example:
* struct mystruct {
* char buf[BSWAP_16(0x1234)];
* };
*/
#define BSWAP_16(val) \
((((uint16_t)(val) & 0x00ff) << 8) \
| (((uint16_t)(val) & 0xff00) >> 8))
/**
* BSWAP_32 - reverse bytes in a constant uint32_t value.
* @val: constant value whose bytes to swap.
*
* Designed to be usable in constant-requiring initializers.
*
* Example:
* struct mystruct {
* char buf[BSWAP_32(0xff000000)];
* };
*/
#define BSWAP_32(val) \
((((uint32_t)(val) & 0x000000ff) << 24) \
| (((uint32_t)(val) & 0x0000ff00) << 8) \
| (((uint32_t)(val) & 0x00ff0000) >> 8) \
| (((uint32_t)(val) & 0xff000000) >> 24))
/**
* BSWAP_64 - reverse bytes in a constant uint64_t value.
* @val: constantvalue whose bytes to swap.
*
* Designed to be usable in constant-requiring initializers.
*
* Example:
* struct mystruct {
* char buf[BSWAP_64(0xff00000000000000ULL)];
* };
*/
#define BSWAP_64(val) \
((((uint64_t)(val) & 0x00000000000000ffULL) << 56) \
| (((uint64_t)(val) & 0x000000000000ff00ULL) << 40) \
| (((uint64_t)(val) & 0x0000000000ff0000ULL) << 24) \
| (((uint64_t)(val) & 0x00000000ff000000ULL) << 8) \
| (((uint64_t)(val) & 0x000000ff00000000ULL) >> 8) \
| (((uint64_t)(val) & 0x0000ff0000000000ULL) >> 24) \
| (((uint64_t)(val) & 0x00ff000000000000ULL) >> 40) \
| (((uint64_t)(val) & 0xff00000000000000ULL) >> 56))
#if HAVE_BYTESWAP_H
#include <byteswap.h>
#else
/**
* bswap_16 - reverse bytes in a uint16_t value.
* @val: value whose bytes to swap.
*
* Example:
* // Output contains "1024 is 4 as two bytes reversed"
* printf("1024 is %u as two bytes reversed\n", bswap_16(1024));
*/
static inline uint16_t bswap_16(uint16_t val)
{
return BSWAP_16(val);
}
/**
* bswap_32 - reverse bytes in a uint32_t value.
* @val: value whose bytes to swap.
*
* Example:
* // Output contains "1024 is 262144 as four bytes reversed"
* printf("1024 is %u as four bytes reversed\n", bswap_32(1024));
*/
static inline uint32_t bswap_32(uint32_t val)
{
return BSWAP_32(val);
}
#endif /* !HAVE_BYTESWAP_H */
#if !HAVE_BSWAP_64
/**
* bswap_64 - reverse bytes in a uint64_t value.
* @val: value whose bytes to swap.
*
* Example:
* // Output contains "1024 is 1125899906842624 as eight bytes reversed"
* printf("1024 is %llu as eight bytes reversed\n",
* (unsigned long long)bswap_64(1024));
*/
static inline uint64_t bswap_64(uint64_t val)
{
return BSWAP_64(val);
}
#endif
/* Needed for Glibc like endiness check */
#define __LITTLE_ENDIAN 1234
#define __BIG_ENDIAN 4321
/* Sanity check the defines. We don't handle weird endianness. */
#if !HAVE_LITTLE_ENDIAN && !HAVE_BIG_ENDIAN
#error "Unknown endian"
#elif HAVE_LITTLE_ENDIAN && HAVE_BIG_ENDIAN
#error "Can't compile for both big and little endian."
#elif HAVE_LITTLE_ENDIAN
#ifndef __BYTE_ORDER
#define __BYTE_ORDER __LITTLE_ENDIAN
#elif __BYTE_ORDER != __LITTLE_ENDIAN
#error "__BYTE_ORDER already defined, but not equal to __LITTLE_ENDIAN"
#endif
#elif HAVE_BIG_ENDIAN
#ifndef __BYTE_ORDER
#define __BYTE_ORDER __BIG_ENDIAN
#elif __BYTE_ORDER != __BIG_ENDIAN
#error "__BYTE_ORDER already defined, but not equal to __BIG_ENDIAN"
#endif
#endif
#ifdef __CHECKER__
/* sparse needs forcing to remove bitwise attribute from ccan/short_types */
#define ENDIAN_CAST __attribute__((force))
#define ENDIAN_TYPE __attribute__((bitwise))
#else
#define ENDIAN_CAST
#define ENDIAN_TYPE
#endif
typedef uint64_t ENDIAN_TYPE leint64_t;
typedef uint64_t ENDIAN_TYPE beint64_t;
typedef uint32_t ENDIAN_TYPE leint32_t;
typedef uint32_t ENDIAN_TYPE beint32_t;
typedef uint16_t ENDIAN_TYPE leint16_t;
typedef uint16_t ENDIAN_TYPE beint16_t;
#if HAVE_LITTLE_ENDIAN
/**
* CPU_TO_LE64 - convert a constant uint64_t value to little-endian
* @native: constant to convert
*/
#define CPU_TO_LE64(native) ((ENDIAN_CAST leint64_t)(native))
/**
* CPU_TO_LE32 - convert a constant uint32_t value to little-endian
* @native: constant to convert
*/
#define CPU_TO_LE32(native) ((ENDIAN_CAST leint32_t)(native))
/**
* CPU_TO_LE16 - convert a constant uint16_t value to little-endian
* @native: constant to convert
*/
#define CPU_TO_LE16(native) ((ENDIAN_CAST leint16_t)(native))
/**
* LE64_TO_CPU - convert a little-endian uint64_t constant
* @le_val: little-endian constant to convert
*/
#define LE64_TO_CPU(le_val) ((ENDIAN_CAST uint64_t)(le_val))
/**
* LE32_TO_CPU - convert a little-endian uint32_t constant
* @le_val: little-endian constant to convert
*/
#define LE32_TO_CPU(le_val) ((ENDIAN_CAST uint32_t)(le_val))
/**
* LE16_TO_CPU - convert a little-endian uint16_t constant
* @le_val: little-endian constant to convert
*/
#define LE16_TO_CPU(le_val) ((ENDIAN_CAST uint16_t)(le_val))
#else /* ... HAVE_BIG_ENDIAN */
#define CPU_TO_LE64(native) ((ENDIAN_CAST leint64_t)BSWAP_64(native))
#define CPU_TO_LE32(native) ((ENDIAN_CAST leint32_t)BSWAP_32(native))
#define CPU_TO_LE16(native) ((ENDIAN_CAST leint16_t)BSWAP_16(native))
#define LE64_TO_CPU(le_val) BSWAP_64((ENDIAN_CAST uint64_t)le_val)
#define LE32_TO_CPU(le_val) BSWAP_32((ENDIAN_CAST uint32_t)le_val)
#define LE16_TO_CPU(le_val) BSWAP_16((ENDIAN_CAST uint16_t)le_val)
#endif /* HAVE_BIG_ENDIAN */
#if HAVE_BIG_ENDIAN
/**
* CPU_TO_BE64 - convert a constant uint64_t value to big-endian
* @native: constant to convert
*/
#define CPU_TO_BE64(native) ((ENDIAN_CAST beint64_t)(native))
/**
* CPU_TO_BE32 - convert a constant uint32_t value to big-endian
* @native: constant to convert
*/
#define CPU_TO_BE32(native) ((ENDIAN_CAST beint32_t)(native))
/**
* CPU_TO_BE16 - convert a constant uint16_t value to big-endian
* @native: constant to convert
*/
#define CPU_TO_BE16(native) ((ENDIAN_CAST beint16_t)(native))
/**
* BE64_TO_CPU - convert a big-endian uint64_t constant
* @le_val: big-endian constant to convert
*/
#define BE64_TO_CPU(le_val) ((ENDIAN_CAST uint64_t)(le_val))
/**
* BE32_TO_CPU - convert a big-endian uint32_t constant
* @le_val: big-endian constant to convert
*/
#define BE32_TO_CPU(le_val) ((ENDIAN_CAST uint32_t)(le_val))
/**
* BE16_TO_CPU - convert a big-endian uint16_t constant
* @le_val: big-endian constant to convert
*/
#define BE16_TO_CPU(le_val) ((ENDIAN_CAST uint16_t)(le_val))
#else /* ... HAVE_LITTLE_ENDIAN */
#define CPU_TO_BE64(native) ((ENDIAN_CAST beint64_t)BSWAP_64(native))
#define CPU_TO_BE32(native) ((ENDIAN_CAST beint32_t)BSWAP_32(native))
#define CPU_TO_BE16(native) ((ENDIAN_CAST beint16_t)BSWAP_16(native))
#define BE64_TO_CPU(le_val) BSWAP_64((ENDIAN_CAST uint64_t)le_val)
#define BE32_TO_CPU(le_val) BSWAP_32((ENDIAN_CAST uint32_t)le_val)
#define BE16_TO_CPU(le_val) BSWAP_16((ENDIAN_CAST uint16_t)le_val)
#endif /* HAVE_LITTE_ENDIAN */
/**
* cpu_to_le64 - convert a uint64_t value to little-endian
* @native: value to convert
*/
static inline leint64_t cpu_to_le64(uint64_t native)
{
return CPU_TO_LE64(native);
}
/**
* cpu_to_le32 - convert a uint32_t value to little-endian
* @native: value to convert
*/
static inline leint32_t cpu_to_le32(uint32_t native)
{
return CPU_TO_LE32(native);
}
/**
* cpu_to_le16 - convert a uint16_t value to little-endian
* @native: value to convert
*/
static inline leint16_t cpu_to_le16(uint16_t native)
{
return CPU_TO_LE16(native);
}
/**
* le64_to_cpu - convert a little-endian uint64_t value
* @le_val: little-endian value to convert
*/
static inline uint64_t le64_to_cpu(leint64_t le_val)
{
return LE64_TO_CPU(le_val);
}
/**
* le32_to_cpu - convert a little-endian uint32_t value
* @le_val: little-endian value to convert
*/
static inline uint32_t le32_to_cpu(leint32_t le_val)
{
return LE32_TO_CPU(le_val);
}
/**
* le16_to_cpu - convert a little-endian uint16_t value
* @le_val: little-endian value to convert
*/
static inline uint16_t le16_to_cpu(leint16_t le_val)
{
return LE16_TO_CPU(le_val);
}
/**
* cpu_to_be64 - convert a uint64_t value to big endian.
* @native: value to convert
*/
static inline beint64_t cpu_to_be64(uint64_t native)
{
return CPU_TO_BE64(native);
}
/**
* cpu_to_be32 - convert a uint32_t value to big endian.
* @native: value to convert
*/
static inline beint32_t cpu_to_be32(uint32_t native)
{
return CPU_TO_BE32(native);
}
/**
* cpu_to_be16 - convert a uint16_t value to big endian.
* @native: value to convert
*/
static inline beint16_t cpu_to_be16(uint16_t native)
{
return CPU_TO_BE16(native);
}
/**
* be64_to_cpu - convert a big-endian uint64_t value
* @be_val: big-endian value to convert
*/
static inline uint64_t be64_to_cpu(beint64_t be_val)
{
return BE64_TO_CPU(be_val);
}
/**
* be32_to_cpu - convert a big-endian uint32_t value
* @be_val: big-endian value to convert
*/
static inline uint32_t be32_to_cpu(beint32_t be_val)
{
return BE32_TO_CPU(be_val);
}
/**
* be16_to_cpu - convert a big-endian uint16_t value
* @be_val: big-endian value to convert
*/
static inline uint16_t be16_to_cpu(beint16_t be_val)
{
return BE16_TO_CPU(be_val);
}
/* Whichever they include first, they get these definitions. */
#ifdef CCAN_SHORT_TYPES_H
/**
* be64/be32/be16 - 64/32/16 bit big-endian representation.
*/
typedef beint64_t be64;
typedef beint32_t be32;
typedef beint16_t be16;
/**
* le64/le32/le16 - 64/32/16 bit little-endian representation.
*/
typedef leint64_t le64;
typedef leint32_t le32;
typedef leint16_t le16;
#endif
#endif /* CCAN_ENDIAN_H */

48
damus-c/hash_u5.c

@ -0,0 +1,48 @@
#include "config.h"
#include "endian.h"
#include "hash_u5.h"
#include <string.h>
void hash_u5_init(struct hash_u5 *hu5, const char *hrp)
{
hu5->buf = 0;
hu5->num_bits = 0;
sha256_init(&hu5->hash);
sha256_update(&hu5->hash, hrp, strlen(hrp));
}
void hash_u5(struct hash_u5 *hu5, const u8 *u5, size_t len)
{
size_t bits = len * 5;
while (bits) {
size_t n = 5;
if (bits < n)
n = bits;
hu5->buf <<= n;
hu5->buf |= (*u5 >> (5-n));
bits -= n;
hu5->num_bits += n;
if (n == 5)
u5++;
if (hu5->num_bits >= 32) {
be32 be32 = cpu_to_be32(hu5->buf >> (hu5->num_bits-32));
sha256_update(&hu5->hash, &be32, sizeof(be32));
hu5->num_bits -= 32;
}
}
}
void hash_u5_done(struct hash_u5 *hu5, struct sha256 *res)
{
if (hu5->num_bits) {
be32 be32 = cpu_to_be32(hu5->buf << (32 - hu5->num_bits));
sha256_update(&hu5->hash, &be32, (hu5->num_bits + 7) / 8);
}
sha256_done(&hu5->hash, res);
}

20
damus-c/hash_u5.h

@ -0,0 +1,20 @@
/* bech32 (thus bolt11) deal in 5-bit values */
#ifndef LIGHTNING_COMMON_HASH_U5_H
#define LIGHTNING_COMMON_HASH_U5_H
#include "sha256.h"
#include "short_types.h"
/* Type to annotate a 5 bit value. */
typedef unsigned char u5;
struct hash_u5 {
u64 buf;
unsigned int num_bits;
struct sha256_ctx hash;
};
void hash_u5_init(struct hash_u5 *hu5, const char *hrp);
void hash_u5(struct hash_u5 *hu5, const u5 *u5, size_t len);
void hash_u5_done(struct hash_u5 *hu5, struct sha256 *res);
#endif /* LIGHTNING_COMMON_HASH_U5_H */

66
damus-c/hex.c

@ -0,0 +1,66 @@
/* CC0 license (public domain) - see LICENSE file for details */
#include "hex.h"
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
static bool char_to_hex(unsigned char *val, char c)
{
if (c >= '0' && c <= '9') {
*val = c - '0';
return true;
}
if (c >= 'a' && c <= 'f') {
*val = c - 'a' + 10;
return true;
}
if (c >= 'A' && c <= 'F') {
*val = c - 'A' + 10;
return true;
}
return false;
}
bool hex_decode(const char *str, size_t slen, void *buf, size_t bufsize)
{
unsigned char v1, v2;
unsigned char *p = buf;
while (slen > 1) {
if (!char_to_hex(&v1, str[0]) || !char_to_hex(&v2, str[1]))
return false;
if (!bufsize)
return false;
*(p++) = (v1 << 4) | v2;
str += 2;
slen -= 2;
bufsize--;
}
return slen == 0 && bufsize == 0;
}
static char hexchar(unsigned int val)
{
if (val < 10)
return '0' + val;
if (val < 16)
return 'a' + val - 10;
abort();
}
bool hex_encode(const void *buf, size_t bufsize, char *dest, size_t destsize)
{
size_t i;
if (destsize < hex_str_size(bufsize))
return false;
for (i = 0; i < bufsize; i++) {
unsigned int c = ((const unsigned char *)buf)[i];
*(dest++) = hexchar(c >> 4);
*(dest++) = hexchar(c & 0xF);
}
*dest = '\0';
return true;
}

73
damus-c/hex.h

@ -0,0 +1,73 @@
/* CC0 (Public domain) - see LICENSE file for details */
#ifndef CCAN_HEX_H
#define CCAN_HEX_H
#include "config.h"
#include <stdbool.h>
#include <stdlib.h>
/**
* hex_decode - Unpack a hex string.
* @str: the hexadecimal string
* @slen: the length of @str
* @buf: the buffer to write the data into
* @bufsize: the length of
*
* Returns false if there are any characters which aren't 0-9, a-f or A-F,
* of the string wasn't the right length for @bufsize.
*
* Example:
* unsigned char data[20];
*
* if (!hex_decode(argv[1], strlen(argv[1]), data, 20))
* printf("String is malformed!\n");
*/
bool hex_decode(const char *str, size_t slen, void *buf, size_t bufsize);
/**
* hex_encode - Create a nul-terminated hex string
* @buf: the buffer to read the data from
* @bufsize: the length of @buf
* @dest: the string to fill
* @destsize: the max size of the string
*
* Returns true if the string, including terminator, fit in @destsize;
*
* Example:
* unsigned char buf[] = { 0x1F, 0x2F };
* char str[5];
*
* if (!hex_encode(buf, sizeof(buf), str, sizeof(str)))
* abort();
*/
bool hex_encode(const void *buf, size_t bufsize, char *dest, size_t destsize);
/**
* hex_str_size - Calculate how big a nul-terminated hex string is
* @bytes: bytes of data to represent
*
* Example:
* unsigned char buf[] = { 0x1F, 0x2F };
* char str[hex_str_size(sizeof(buf))];
*
* hex_encode(buf, sizeof(buf), str, sizeof(str));
*/
static inline size_t hex_str_size(size_t bytes)
{
return 2 * bytes + 1;
}
/**
* hex_data_size - Calculate how many bytes of data in a hex string
* @strlen: the length of the string (with or without NUL)
*
* Example:
* const char str[] = "1F2F";
* unsigned char buf[hex_data_size(sizeof(str))];
*
* hex_decode(str, strlen(str), buf, sizeof(buf));
*/
static inline size_t hex_data_size(size_t strlen)
{
return strlen / 2;
}
#endif /* CCAN_HEX_H */

111
damus-c/likely.h

@ -0,0 +1,111 @@
/* CC0 (Public domain) - see LICENSE file for details */
#ifndef CCAN_LIKELY_H
#define CCAN_LIKELY_H
#include "config.h"
#include <stdbool.h>
#ifndef CCAN_LIKELY_DEBUG
#if HAVE_BUILTIN_EXPECT
/**
* likely - indicate that a condition is likely to be true.
* @cond: the condition
*
* This uses a compiler extension where available to indicate a likely
* code path and optimize appropriately; it's also useful for readers
* to quickly identify exceptional paths through functions. The
* threshold for "likely" is usually considered to be between 90 and
* 99%; marginal cases should not be marked either way.
*
* See Also:
* unlikely(), likely_stats()
*
* Example:
* // Returns false if we overflow.
* static inline bool inc_int(unsigned int *val)
* {
* (*val)++;
* if (likely(*val))
* return true;
* return false;
* }
*/
#define likely(cond) __builtin_expect(!!(cond), 1)
/**
* unlikely - indicate that a condition is unlikely to be true.
* @cond: the condition
*
* This uses a compiler extension where available to indicate an unlikely
* code path and optimize appropriately; see likely() above.
*
* See Also:
* likely(), likely_stats(), COLD (compiler.h)
*
* Example:
* // Prints a warning if we overflow.
* static inline void inc_int(unsigned int *val)
* {
* (*val)++;
* if (unlikely(*val == 0))
* fprintf(stderr, "Overflow!");
* }
*/
#define unlikely(cond) __builtin_expect(!!(cond), 0)
#else
#define likely(cond) (!!(cond))
#define unlikely(cond) (!!(cond))
#endif
#else /* CCAN_LIKELY_DEBUG versions */
#include <ccan/str/str.h>
#define likely(cond) \
(_likely_trace(!!(cond), 1, stringify(cond), __FILE__, __LINE__))
#define unlikely(cond) \
(_likely_trace(!!(cond), 0, stringify(cond), __FILE__, __LINE__))
long _likely_trace(bool cond, bool expect,
const char *condstr,
const char *file, unsigned int line);
/**
* likely_stats - return description of abused likely()/unlikely()
* @min_hits: minimum number of hits
* @percent: maximum percentage correct
*
* When CCAN_LIKELY_DEBUG is defined, likely() and unlikely() trace their
* results: this causes a significant slowdown, but allows analysis of
* whether the branches are labelled correctly.
*
* This function returns a malloc'ed description of the least-correct
* usage of likely() or unlikely(). It ignores places which have been
* called less than @min_hits times, and those which were predicted
* correctly more than @percent of the time. It returns NULL when
* nothing meets those criteria.
*
* Note that this call is destructive; the returned offender is
* removed from the trace so that the next call to likely_stats() will
* return the next-worst likely()/unlikely() usage.
*
* Example:
* // Print every place hit more than twice which was wrong > 5%.
* static void report_stats(void)
* {
* #ifdef CCAN_LIKELY_DEBUG
* const char *bad;
*
* while ((bad = likely_stats(2, 95)) != NULL) {
* printf("Suspicious likely: %s", bad);
* free(bad);
* }
* #endif
* }
*/
char *likely_stats(unsigned int min_hits, unsigned int percent);
/**
* likely_stats_reset - free up memory of likely()/unlikely() branches.
*
* This can also plug memory leaks.
*/
void likely_stats_reset(void);
#endif /* CCAN_LIKELY_DEBUG */
#endif /* CCAN_LIKELY_H */

43
damus-c/list.c

@ -0,0 +1,43 @@
/* Licensed under BSD-MIT - see LICENSE file for details */
#include <stdio.h>
#include <stdlib.h>
#include "list.h"
static void *corrupt(const char *abortstr,
const struct list_node *head,
const struct list_node *node,
unsigned int count)
{
if (abortstr) {
fprintf(stderr,
"%s: prev corrupt in node %p (%u) of %p\n",
abortstr, node, count, head);
abort();
}
return NULL;
}
struct list_node *list_check_node(const struct list_node *node,
const char *abortstr)
{
const struct list_node *p, *n;
int count = 0;
for (p = node, n = node->next; n != node; p = n, n = n->next) {
count++;
if (n->prev != p)
return corrupt(abortstr, node, n, count);
}
/* Check prev on head node. */
if (node->prev != p)
return corrupt(abortstr, node, node, 0);
return (struct list_node *)node;
}
struct list_head *list_check(const struct list_head *h, const char *abortstr)
{
if (!list_check_node(&h->n, abortstr))
return NULL;
return (struct list_head *)h;
}

842
damus-c/list.h

@ -0,0 +1,842 @@
/* Licensed under BSD-MIT - see LICENSE file for details */
#ifndef CCAN_LIST_H
#define CCAN_LIST_H
//#define CCAN_LIST_DEBUG 1
#include <stdbool.h>
#include <assert.h>
#include "str.h"
#include "container_of.h"
#include "check_type.h"
/**
* struct list_node - an entry in a doubly-linked list
* @next: next entry (self if empty)
* @prev: previous entry (self if empty)
*
* This is used as an entry in a linked list.
* Example:
* struct child {
* const char *name;
* // Linked list of all us children.
* struct list_node list;
* };
*/
struct list_node
{
struct list_node *next, *prev;
};
/**
* struct list_head - the head of a doubly-linked list
* @h: the list_head (containing next and prev pointers)
*
* This is used as the head of a linked list.
* Example:
* struct parent {
* const char *name;
* struct list_head children;
* unsigned int num_children;
* };
*/
struct list_head
{
struct list_node n;
};
/**
* list_check - check head of a list for consistency
* @h: the list_head
* @abortstr: the location to print on aborting, or NULL.
*
* Because list_nodes have redundant information, consistency checking between
* the back and forward links can be done. This is useful as a debugging check.
* If @abortstr is non-NULL, that will be printed in a diagnostic if the list
* is inconsistent, and the function will abort.
*
* Returns the list head if the list is consistent, NULL if not (it
* can never return NULL if @abortstr is set).
*
* See also: list_check_node()
*
* Example:
* static void dump_parent(struct parent *p)
* {
* struct child *c;
*
* printf("%s (%u children):\n", p->name, p->num_children);
* list_check(&p->children, "bad child list");
* list_for_each(&p->children, c, list)
* printf(" -> %s\n", c->name);
* }
*/
struct list_head *list_check(const struct list_head *h, const char *abortstr);
/**
* list_check_node - check node of a list for consistency
* @n: the list_node
* @abortstr: the location to print on aborting, or NULL.
*
* Check consistency of the list node is in (it must be in one).
*
* See also: list_check()
*
* Example:
* static void dump_child(const struct child *c)
* {
* list_check_node(&c->list, "bad child list");
* printf("%s\n", c->name);
* }
*/
struct list_node *list_check_node(const struct list_node *n,
const char *abortstr);
#define LIST_LOC __FILE__ ":" stringify(__LINE__)
#ifdef CCAN_LIST_DEBUG
#define list_debug(h, loc) list_check((h), loc)
#define list_debug_node(n, loc) list_check_node((n), loc)
#else
#define list_debug(h, loc) ((void)loc, h)
#define list_debug_node(n, loc) ((void)loc, n)
#endif
/**
* LIST_HEAD_INIT - initializer for an empty list_head
* @name: the name of the list.
*
* Explicit initializer for an empty list.
*
* See also:
* LIST_HEAD, list_head_init()
*
* Example:
* static struct list_head my_list = LIST_HEAD_INIT(my_list);
*/
#define LIST_HEAD_INIT(name) { { &(name).n, &(name).n } }
/**
* LIST_HEAD - define and initialize an empty list_head
* @name: the name of the list.
*
* The LIST_HEAD macro defines a list_head and initializes it to an empty
* list. It can be prepended by "static" to define a static list_head.
*
* See also:
* LIST_HEAD_INIT, list_head_init()
*
* Example:
* static LIST_HEAD(my_global_list);
*/
#define LIST_HEAD(name) \
struct list_head name = LIST_HEAD_INIT(name)
/**
* list_head_init - initialize a list_head
* @h: the list_head to set to the empty list
*
* Example:
* ...
* struct parent *parent = malloc(sizeof(*parent));
*
* list_head_init(&parent->children);
* parent->num_children = 0;
*/
static inline void list_head_init(struct list_head *h)
{
h->n.next = h->n.prev = &h->n;
}
/**
* list_node_init - initialize a list_node
* @n: the list_node to link to itself.
*
* You don't need to use this normally! But it lets you list_del(@n)
* safely.
*/
static inline void list_node_init(struct list_node *n)
{
n->next = n->prev = n;
}
/**
* list_add_after - add an entry after an existing node in a linked list
* @h: the list_head to add the node to (for debugging)
* @p: the existing list_node to add the node after
* @n: the new list_node to add to the list.
*
* The existing list_node must already be a member of the list.
* The new list_node does not need to be initialized; it will be overwritten.
*
* Example:
* struct child c1, c2, c3;
* LIST_HEAD(h);
*
* list_add_tail(&h, &c1.list);
* list_add_tail(&h, &c3.list);
* list_add_after(&h, &c1.list, &c2.list);
*/
#define list_add_after(h, p, n) list_add_after_(h, p, n, LIST_LOC)
static inline void list_add_after_(struct list_head *h,
struct list_node *p,
struct list_node *n,
const char *abortstr)
{
n->next = p->next;
n->prev = p;
p->next->prev = n;
p->next = n;
(void)list_debug(h, abortstr);
}
/**
* list_add - add an entry at the start of a linked list.
* @h: the list_head to add the node to
* @n: the list_node to add to the list.
*
* The list_node does not need to be initialized; it will be overwritten.
* Example:
* struct child *child = malloc(sizeof(*child));
*
* child->name = "marvin";
* list_add(&parent->children, &child->list);
* parent->num_children++;
*/
#define list_add(h, n) list_add_(h, n, LIST_LOC)
static inline void list_add_(struct list_head *h,
struct list_node *n,
const char *abortstr)
{
list_add_after_(h, &h->n, n, abortstr);
}
/**
* list_add_before - add an entry before an existing node in a linked list
* @h: the list_head to add the node to (for debugging)
* @p: the existing list_node to add the node before
* @n: the new list_node to add to the list.
*
* The existing list_node must already be a member of the list.
* The new list_node does not need to be initialized; it will be overwritten.
*
* Example:
* list_head_init(&h);
* list_add_tail(&h, &c1.list);
* list_add_tail(&h, &c3.list);
* list_add_before(&h, &c3.list, &c2.list);
*/
#define list_add_before(h, p, n) list_add_before_(h, p, n, LIST_LOC)
static inline void list_add_before_(struct list_head *h,
struct list_node *p,
struct list_node *n,
const char *abortstr)
{
n->next = p;
n->prev = p->prev;
p->prev->next = n;
p->prev = n;
(void)list_debug(h, abortstr);
}
/**
* list_add_tail - add an entry at the end of a linked list.
* @h: the list_head to add the node to
* @n: the list_node to add to the list.
*
* The list_node does not need to be initialized; it will be overwritten.
* Example:
* list_add_tail(&parent->children, &child->list);
* parent->num_children++;
*/
#define list_add_tail(h, n) list_add_tail_(h, n, LIST_LOC)
static inline void list_add_tail_(struct list_head *h,
struct list_node *n,
const char *abortstr)
{
list_add_before_(h, &h->n, n, abortstr);
}
/**
* list_empty - is a list empty?
* @h: the list_head
*
* If the list is empty, returns true.
*
* Example:
* assert(list_empty(&parent->children) == (parent->num_children == 0));
*/
#define list_empty(h) list_empty_(h, LIST_LOC)
static inline bool list_empty_(const struct list_head *h, const char* abortstr)
{
(void)list_debug(h, abortstr);
return h->n.next == &h->n;
}
/**
* list_empty_nodebug - is a list empty (and don't perform debug checks)?
* @h: the list_head
*
* If the list is empty, returns true.
* This differs from list_empty() in that if CCAN_LIST_DEBUG is set it
* will NOT perform debug checks. Only use this function if you REALLY
* know what you're doing.
*
* Example:
* assert(list_empty_nodebug(&parent->children) == (parent->num_children == 0));
*/
#ifndef CCAN_LIST_DEBUG
#define list_empty_nodebug(h) list_empty(h)
#else
static inline bool list_empty_nodebug(const struct list_head *h)
{
return h->n.next == &h->n;
}
#endif
/**
* list_empty_nocheck - is a list empty?
* @h: the list_head
*
* If the list is empty, returns true. This doesn't perform any
* debug check for list consistency, so it can be called without
* locks, racing with the list being modified. This is ok for
* checks where an incorrect result is not an issue (optimized
* bail out path for example).
*/
static inline bool list_empty_nocheck(const struct list_head *h)
{
return h->n.next == &h->n;
}
/**
* list_del - delete an entry from an (unknown) linked list.
* @n: the list_node to delete from the list.
*
* Note that this leaves @n in an undefined state; it can be added to
* another list, but not deleted again.
*
* See also:
* list_del_from(), list_del_init()
*
* Example:
* list_del(&child->list);
* parent->num_children--;
*/
#define list_del(n) list_del_(n, LIST_LOC)
static inline void list_del_(struct list_node *n, const char* abortstr)
{
(void)list_debug_node(n, abortstr);
n->next->prev = n->prev;
n->prev->next = n->next;
#ifdef CCAN_LIST_DEBUG
/* Catch use-after-del. */
n->next = n->prev = NULL;
#endif
}
/**
* list_del_init - delete a node, and reset it so it can be deleted again.
* @n: the list_node to be deleted.
*
* list_del(@n) or list_del_init() again after this will be safe,
* which can be useful in some cases.
*
* See also:
* list_del_from(), list_del()
*
* Example:
* list_del_init(&child->list);
* parent->num_children--;
*/
#define list_del_init(n) list_del_init_(n, LIST_LOC)
static inline void list_del_init_(struct list_node *n, const char *abortstr)
{
list_del_(n, abortstr);
list_node_init(n);
}
/**
* list_del_from - delete an entry from a known linked list.
* @h: the list_head the node is in.
* @n: the list_node to delete from the list.
*
* This explicitly indicates which list a node is expected to be in,
* which is better documentation and can catch more bugs.
*
* See also: list_del()
*
* Example:
* list_del_from(&parent->children, &child->list);
* parent->num_children--;
*/
static inline void list_del_from(struct list_head *h, struct list_node *n)
{
#ifdef CCAN_LIST_DEBUG
{
/* Thorough check: make sure it was in list! */
struct list_node *i;
for (i = h->n.next; i != n; i = i->next)
assert(i != &h->n);
}
#endif /* CCAN_LIST_DEBUG */
/* Quick test that catches a surprising number of bugs. */
assert(!list_empty(h));
list_del(n);
}
/**
* list_swap - swap out an entry from an (unknown) linked list for a new one.
* @o: the list_node to replace from the list.
* @n: the list_node to insert in place of the old one.
*
* Note that this leaves @o in an undefined state; it can be added to
* another list, but not deleted/swapped again.
*
* See also:
* list_del()
*
* Example:
* struct child x1, x2;
* LIST_HEAD(xh);
*
* list_add(&xh, &x1.list);
* list_swap(&x1.list, &x2.list);
*/
#define list_swap(o, n) list_swap_(o, n, LIST_LOC)
static inline void list_swap_(struct list_node *o,
struct list_node *n,
const char* abortstr)
{
(void)list_debug_node(o, abortstr);
*n = *o;
n->next->prev = n;
n->prev->next = n;
#ifdef CCAN_LIST_DEBUG
/* Catch use-after-del. */
o->next = o->prev = NULL;
#endif
}
/**
* list_entry - convert a list_node back into the structure containing it.
* @n: the list_node
* @type: the type of the entry
* @member: the list_node member of the type
*
* Example:
* // First list entry is children.next; convert back to child.
* child = list_entry(parent->children.n.next, struct child, list);
*
* See Also:
* list_top(), list_for_each()
*/
#define list_entry(n, type, member) container_of(n, type, member)
/**
* list_top - get the first entry in a list
* @h: the list_head
* @type: the type of the entry
* @member: the list_node member of the type
*
* If the list is empty, returns NULL.
*
* Example:
* struct child *first;
* first = list_top(&parent->children, struct child, list);
* if (!first)
* printf("Empty list!\n");
*/
#define list_top(h, type, member) \
((type *)list_top_((h), list_off_(type, member)))
static inline const void *list_top_(const struct list_head *h, size_t off)
{
if (list_empty(h))
return NULL;
return (const char *)h->n.next - off;
}
/**
* list_pop - remove the first entry in a list
* @h: the list_head
* @type: the type of the entry
* @member: the list_node member of the type
*
* If the list is empty, returns NULL.
*
* Example:
* struct child *one;
* one = list_pop(&parent->children, struct child, list);
* if (!one)
* printf("Empty list!\n");
*/
#define list_pop(h, type, member) \
((type *)list_pop_((h), list_off_(type, member)))
static inline const void *list_pop_(const struct list_head *h, size_t off)
{
struct list_node *n;
if (list_empty(h))
return NULL;
n = h->n.next;
list_del(n);
return (const char *)n - off;
}
/**
* list_tail - get the last entry in a list
* @h: the list_head
* @type: the type of the entry
* @member: the list_node member of the type
*
* If the list is empty, returns NULL.
*
* Example:
* struct child *last;
* last = list_tail(&parent->children, struct child, list);
* if (!last)
* printf("Empty list!\n");
*/
#define list_tail(h, type, member) \
((type *)list_tail_((h), list_off_(type, member)))
static inline const void *list_tail_(const struct list_head *h, size_t off)
{
if (list_empty(h))
return NULL;
return (const char *)h->n.prev - off;
}
/**
* list_for_each - iterate through a list.
* @h: the list_head (warning: evaluated multiple times!)
* @i: the structure containing the list_node
* @member: the list_node member of the structure
*
* This is a convenient wrapper to iterate @i over the entire list. It's
* a for loop, so you can break and continue as normal.
*
* Example:
* list_for_each(&parent->children, child, list)
* printf("Name: %s\n", child->name);
*/
#define list_for_each(h, i, member) \
list_for_each_off(h, i, list_off_var_(i, member))
/**
* list_for_each_rev - iterate through a list backwards.
* @h: the list_head
* @i: the structure containing the list_node
* @member: the list_node member of the structure
*
* This is a convenient wrapper to iterate @i over the entire list. It's
* a for loop, so you can break and continue as normal.
*
* Example:
* list_for_each_rev(&parent->children, child, list)
* printf("Name: %s\n", child->name);
*/
#define list_for_each_rev(h, i, member) \
list_for_each_rev_off(h, i, list_off_var_(i, member))
/**
* list_for_each_rev_safe - iterate through a list backwards,
* maybe during deletion
* @h: the list_head
* @i: the structure containing the list_node
* @nxt: the structure containing the list_node
* @member: the list_node member of the structure
*
* This is a convenient wrapper to iterate @i over the entire list backwards.
* It's a for loop, so you can break and continue as normal. The extra
* variable * @nxt is used to hold the next element, so you can delete @i
* from the list.
*
* Example:
* struct child *next;
* list_for_each_rev_safe(&parent->children, child, next, list) {
* printf("Name: %s\n", child->name);
* }
*/
#define list_for_each_rev_safe(h, i, nxt, member) \
list_for_each_rev_safe_off(h, i, nxt, list_off_var_(i, member))
/**
* list_for_each_safe - iterate through a list, maybe during deletion
* @h: the list_head
* @i: the structure containing the list_node
* @nxt: the structure containing the list_node
* @member: the list_node member of the structure
*
* This is a convenient wrapper to iterate @i over the entire list. It's
* a for loop, so you can break and continue as normal. The extra variable
* @nxt is used to hold the next element, so you can delete @i from the list.
*
* Example:
* list_for_each_safe(&parent->children, child, next, list) {
* list_del(&child->list);
* parent->num_children--;
* }
*/
#define list_for_each_safe(h, i, nxt, member) \
list_for_each_safe_off(h, i, nxt, list_off_var_(i, member))
/**
* list_next - get the next entry in a list
* @h: the list_head
* @i: a pointer to an entry in the list.
* @member: the list_node member of the structure
*
* If @i was the last entry in the list, returns NULL.
*
* Example:
* struct child *second;
* second = list_next(&parent->children, first, list);
* if (!second)
* printf("No second child!\n");
*/
#define list_next(h, i, member) \
((list_typeof(i))list_entry_or_null(list_debug(h, \
__FILE__ ":" stringify(__LINE__)), \
(i)->member.next, \
list_off_var_((i), member)))
/**
* list_prev - get the previous entry in a list
* @h: the list_head
* @i: a pointer to an entry in the list.
* @member: the list_node member of the structure
*
* If @i was the first entry in the list, returns NULL.
*
* Example:
* first = list_prev(&parent->children, second, list);
* if (!first)
* printf("Can't go back to first child?!\n");
*/
#define list_prev(h, i, member) \
((list_typeof(i))list_entry_or_null(list_debug(h, \
__FILE__ ":" stringify(__LINE__)), \
(i)->member.prev, \
list_off_var_((i), member)))
/**
* list_append_list - empty one list onto the end of another.
* @to: the list to append into
* @from: the list to empty.
*
* This takes the entire contents of @from and moves it to the end of
* @to. After this @from will be empty.
*
* Example:
* struct list_head adopter;
*
* list_append_list(&adopter, &parent->children);
* assert(list_empty(&parent->children));
* parent->num_children = 0;
*/
#define list_append_list(t, f) list_append_list_(t, f, \
__FILE__ ":" stringify(__LINE__))
static inline void list_append_list_(struct list_head *to,
struct list_head *from,
const char *abortstr)
{
struct list_node *from_tail = list_debug(from, abortstr)->n.prev;
struct list_node *to_tail = list_debug(to, abortstr)->n.prev;
/* Sew in head and entire list. */
to->n.prev = from_tail;
from_tail->next = &to->n;
to_tail->next = &from->n;
from->n.prev = to_tail;
/* Now remove head. */
list_del(&from->n);
list_head_init(from);
}
/**
* list_prepend_list - empty one list into the start of another.
* @to: the list to prepend into
* @from: the list to empty.
*
* This takes the entire contents of @from and moves it to the start
* of @to. After this @from will be empty.
*
* Example:
* list_prepend_list(&adopter, &parent->children);
* assert(list_empty(&parent->children));
* parent->num_children = 0;
*/
#define list_prepend_list(t, f) list_prepend_list_(t, f, LIST_LOC)
static inline void list_prepend_list_(struct list_head *to,
struct list_head *from,
const char *abortstr)
{
struct list_node *from_tail = list_debug(from, abortstr)->n.prev;
struct list_node *to_head = list_debug(to, abortstr)->n.next;
/* Sew in head and entire list. */
to->n.next = &from->n;
from->n.prev = &to->n;
to_head->prev = from_tail;
from_tail->next = to_head;
/* Now remove head. */
list_del(&from->n);
list_head_init(from);
}
/* internal macros, do not use directly */
#define list_for_each_off_dir_(h, i, off, dir) \
for (i = list_node_to_off_(list_debug(h, LIST_LOC)->n.dir, \
(off)); \
list_node_from_off_((void *)i, (off)) != &(h)->n; \
i = list_node_to_off_(list_node_from_off_((void *)i, (off))->dir, \
(off)))
#define list_for_each_safe_off_dir_(h, i, nxt, off, dir) \
for (i = list_node_to_off_(list_debug(h, LIST_LOC)->n.dir, \
(off)), \
nxt = list_node_to_off_(list_node_from_off_(i, (off))->dir, \
(off)); \
list_node_from_off_(i, (off)) != &(h)->n; \
i = nxt, \
nxt = list_node_to_off_(list_node_from_off_(i, (off))->dir, \
(off)))
/**
* list_for_each_off - iterate through a list of memory regions.
* @h: the list_head
* @i: the pointer to a memory region which contains list node data.
* @off: offset(relative to @i) at which list node data resides.
*
* This is a low-level wrapper to iterate @i over the entire list, used to
* implement all oher, more high-level, for-each constructs. It's a for loop,
* so you can break and continue as normal.
*
* WARNING! Being the low-level macro that it is, this wrapper doesn't know
* nor care about the type of @i. The only assumption made is that @i points
* to a chunk of memory that at some @offset, relative to @i, contains a
* properly filled `struct list_node' which in turn contains pointers to
* memory chunks and it's turtles all the way down. With all that in mind
* remember that given the wrong pointer/offset couple this macro will
* happily churn all you memory until SEGFAULT stops it, in other words
* caveat emptor.
*
* It is worth mentioning that one of legitimate use-cases for that wrapper
* is operation on opaque types with known offset for `struct list_node'
* member(preferably 0), because it allows you not to disclose the type of
* @i.
*
* Example:
* list_for_each_off(&parent->children, child,
* offsetof(struct child, list))
* printf("Name: %s\n", child->name);
*/
#define list_for_each_off(h, i, off) \
list_for_each_off_dir_((h),(i),(off),next)
/**
* list_for_each_rev_off - iterate through a list of memory regions backwards
* @h: the list_head
* @i: the pointer to a memory region which contains list node data.
* @off: offset(relative to @i) at which list node data resides.
*
* See list_for_each_off for details
*/
#define list_for_each_rev_off(h, i, off) \
list_for_each_off_dir_((h),(i),(off),prev)
/**
* list_for_each_safe_off - iterate through a list of memory regions, maybe
* during deletion
* @h: the list_head
* @i: the pointer to a memory region which contains list node data.
* @nxt: the structure containing the list_node
* @off: offset(relative to @i) at which list node data resides.
*
* For details see `list_for_each_off' and `list_for_each_safe'
* descriptions.
*
* Example:
* list_for_each_safe_off(&parent->children, child,
* next, offsetof(struct child, list))
* printf("Name: %s\n", child->name);
*/
#define list_for_each_safe_off(h, i, nxt, off) \
list_for_each_safe_off_dir_((h),(i),(nxt),(off),next)
/**
* list_for_each_rev_safe_off - iterate backwards through a list of
* memory regions, maybe during deletion
* @h: the list_head
* @i: the pointer to a memory region which contains list node data.
* @nxt: the structure containing the list_node
* @off: offset(relative to @i) at which list node data resides.
*
* For details see `list_for_each_rev_off' and `list_for_each_rev_safe'
* descriptions.
*
* Example:
* list_for_each_rev_safe_off(&parent->children, child,
* next, offsetof(struct child, list))
* printf("Name: %s\n", child->name);
*/
#define list_for_each_rev_safe_off(h, i, nxt, off) \
list_for_each_safe_off_dir_((h),(i),(nxt),(off),prev)
/* Other -off variants. */
#define list_entry_off(n, type, off) \
((type *)list_node_from_off_((n), (off)))
#define list_head_off(h, type, off) \
((type *)list_head_off((h), (off)))
#define list_tail_off(h, type, off) \
((type *)list_tail_((h), (off)))
#define list_add_off(h, n, off) \
list_add((h), list_node_from_off_((n), (off)))
#define list_del_off(n, off) \
list_del(list_node_from_off_((n), (off)))
#define list_del_from_off(h, n, off) \
list_del_from(h, list_node_from_off_((n), (off)))
/* Offset helper functions so we only single-evaluate. */
static inline void *list_node_to_off_(struct list_node *node, size_t off)
{
return (void *)((char *)node - off);
}
static inline struct list_node *list_node_from_off_(void *ptr, size_t off)
{
return (struct list_node *)((char *)ptr + off);
}
/* Get the offset of the member, but make sure it's a list_node. */
#define list_off_(type, member) \
(container_off(type, member) + \
check_type(((type *)0)->member, struct list_node))
#define list_off_var_(var, member) \
(container_off_var(var, member) + \
check_type(var->member, struct list_node))
#if HAVE_TYPEOF
#define list_typeof(var) typeof(var)
#else
#define list_typeof(var) void *
#endif
/* Returns member, or NULL if at end of list. */
static inline void *list_entry_or_null(const struct list_head *h,
const struct list_node *n,
size_t off)
{
if (n == &h->n)
return NULL;
return (char *)n - off;
}
#endif /* CCAN_LIST_H */

128
damus-c/mem.c

@ -0,0 +1,128 @@
/* CC0 (Public domain) - see LICENSE file for details */
#include "config.h"
#include <assert.h>
#include <string.h>
#include "mem.h"
#if !HAVE_MEMMEM
void *memmem(const void *haystack, size_t haystacklen,
const void *needle, size_t needlelen)
{
const char *p;
if (needlelen > haystacklen)
return NULL;
p = haystack;
for (p = haystack;
(p + needlelen) <= ((const char *)haystack + haystacklen);
p++)
if (memcmp(p, needle, needlelen) == 0)
return (void *)p;
return NULL;
}
#endif
#if !HAVE_MEMRCHR
void *memrchr(const void *s, int c, size_t n)
{
unsigned char *p = (unsigned char *)s;
while (n) {
if (p[n-1] == c)
return p + n - 1;
n--;
}
return NULL;
}
#endif
void *mempbrkm(const void *data_, size_t len, const void *accept_, size_t accept_len)
{
const char *data = data_, *accept = accept_;
size_t i, j;
for (i = 0; i < len; i++)
for (j = 0; j < accept_len; j++)
if (accept[j] == data[i])
return (void *)&data[i];
return NULL;
}
void *memcchr(void const *data, int c, size_t data_len)
{
char const *p = data;
size_t i;
for (i = 0; i < data_len; i++)
if (p[i] != c)
return (void *)&p[i];
return NULL;
}
#define MEMSWAP_TMP_SIZE 256
void memswap(void *a, void *b, size_t n)
{
char *ap = a;
char *bp = b;
char tmp[MEMSWAP_TMP_SIZE];
assert(!memoverlaps(a, n, b, n));
while (n) {
size_t m = n > MEMSWAP_TMP_SIZE ? MEMSWAP_TMP_SIZE : n;
memcpy(tmp, bp, m);
memcpy(bp, ap, m);
memcpy(ap, tmp, m);
ap += m;
bp += m;
n -= m;
}
}
bool memeqzero(const void *data, size_t length)
{
const unsigned char *p = data;
size_t len;
/* Check first 16 bytes manually */
for (len = 0; len < 16; len++) {
if (!length)
return true;
if (*p)
return false;
p++;
length--;
}
/* Now we know that's zero, memcmp with self. */
return memcmp(data, p, length) == 0;
}
void memtaint(void *data, size_t len)
{
/* Using 16 bytes is a bit quicker than 4 */
const unsigned tainter[]
= { 0xdeadbeef, 0xdeadbeef, 0xdeadbeef, 0xdeadbeef };
char *p = data;
while (len >= sizeof(tainter)) {
memcpy(p, tainter, sizeof(tainter));
p += sizeof(tainter);
len -= sizeof(tainter);
}
memcpy(p, tainter, len);
#if HAVE_VALGRIND_MEMCHECK_H
VALGRIND_MAKE_MEM_UNDEFINED(data, len);
#endif
}

295
damus-c/mem.h

@ -0,0 +1,295 @@
/* CC0 (Public domain) - see LICENSE file for details */
#ifndef CCAN_MEM_H
#define CCAN_MEM_H
#include "config.h"
#include "compiler.h"
#include <string.h>
#include <stdbool.h>
#if !HAVE_MEMMEM
PURE_FUNCTION
void *memmem(const void *haystack, size_t haystacklen,
const void *needle, size_t needlelen);
#endif
#if !HAVE_MEMRCHR
PURE_FUNCTION
void *memrchr(const void *s, int c, size_t n);
#endif
/**
* mempbrkm - locates the first occurrence in @data of any bytes in @accept
* @data: where we search
* @len: length of data in bytes
* @accept: array of bytes we search for
* @accept_len: # of bytes in accept
*
* Returns a pointer to the byte in @data that matches one of the bytes in
* @accept, or NULL if no such byte is found.
*
* Example:
* char otherbytes[] = "Hello \0world";
* size_t otherbytes_len = sizeof(otherbytes) - 1;
* char *r = mempbrkm(otherbytes, otherbytes_len, "\0b", 2);
* if (r) {
* printf("Found %c\n", *r);
* } else {
* printf("Nada\n");
* }
*
*/
PURE_FUNCTION
void *mempbrkm(const void *data, size_t len, const void *accept, size_t accept_len);
/**
* mempbrk - locates the first occurrence in @data of any bytes in @accept
* @data: where we search
* @len: length of data in bytes
* @accept: NUL terminated string containing the bytes we search for
*
* Returns a pointer to the byte in @data that matches one of the bytes in
* @accept, or NULL if no such byte is found.
*
* Example:
*
* r = mempbrk(otherbytes, otherbytes_len, "abcde");
* if (r) {
* printf("Found %c\n", *r);
* } else {
* printf("Nada\n");
* }
*/
PURE_FUNCTION
static inline char *mempbrk(const void *data, size_t len, const char *accept)
{
return mempbrkm(data, len, accept, strlen(accept));
}
/**
* memcchr - scan memory until a character does _not_ match
* @data: pointer to memory to scan
* @data_len: length of data
* @c: character to scan for
*
* The complement of memchr().
*
* Returns a pointer to the first character which is _not_ @c. If all memory in
* @data is @c, returns NULL.
*
* Example:
* char somebytes[] = "HI By\0e";
* size_t bytes_len = sizeof(somebytes) - 1;
* r = memcchr(somebytes, ' ', bytes_len);
* if (r) {
* printf("Found %c after trimming spaces\n", *r);
* }
*/
PURE_FUNCTION
void *memcchr(void const *data, int c, size_t data_len);
/**
* memeq - Are two byte arrays equal?
* @a: first array
* @al: bytes in first array
* @b: second array
* @bl: bytes in second array
*
* Example:
* if (memeq(somebytes, bytes_len, otherbytes, otherbytes_len)) {
* printf("memory blocks are the same!\n");
* }
*/
PURE_FUNCTION
static inline bool memeq(const void *a, size_t al, const void *b, size_t bl)
{
return al == bl && !memcmp(a, b, bl);
}
/**
* memstarts - determine if @data starts with @prefix
* @data: does this begin with @prefix?
* @data_len: bytes in @data
* @prefix: does @data begin with these bytes?
* @prefix_len: bytes in @prefix
*
* Returns true if @data starts with @prefix, otherwise return false.
*
* Example:
* if (memstarts(somebytes, bytes_len, otherbytes, otherbytes_len)) {
* printf("somebytes starts with otherbytes!\n");
* }
*/
PURE_FUNCTION
static inline bool memstarts(void const *data, size_t data_len,
void const *prefix, size_t prefix_len)
{
if (prefix_len > data_len)
return false;
return memeq(data, prefix_len, prefix, prefix_len);
}
/**
* memeqstr - Is a byte array equal to a NUL terminated string?
* @data: byte array
* @length: length of @data in bytes
* @string: NUL terminated string
*
* The '\0' byte is ignored when checking if @bytes == @string.
*
* Example:
* if (memeqstr(somebytes, bytes_len, "foo")) {
* printf("somebytes == 'foo'!\n");
* }
*/
PURE_FUNCTION
static inline bool memeqstr(const void *data, size_t length, const char *string)
{
return memeq(data, length, string, strlen(string));
}
/**
* memeqzero - Is a byte array all zeroes?
* @data: byte array
* @length: length of @data in bytes
*
* Example:
* if (memeqzero(somebytes, bytes_len)) {
* printf("somebytes == 0!\n");
* }
*/
PURE_FUNCTION
bool memeqzero(const void *data, size_t length);
/**
* memstarts_str - Does this byte array start with a string prefix?
* @a: byte array
* @al: length in bytes
* @s: string prefix
*
* Example:
* if (memstarts_str(somebytes, bytes_len, "It")) {
* printf("somebytes starts with 'It'\n");
* }
*/
PURE_FUNCTION
static inline bool memstarts_str(const void *a, size_t al, const char *s)
{
return memstarts(a, al, s, strlen(s));
}
/**
* memends - Does this byte array end with a given byte-array suffix?
* @s: byte array
* @s_len: length in bytes
* @suffix: byte array suffix
* @suffix_len: length of suffix in bytes
*
* Returns true if @suffix appears as a substring at the end of @s,
* false otherwise.
*/
PURE_FUNCTION
static inline bool memends(const void *s, size_t s_len, const void *suffix, size_t suffix_len)
{
return (s_len >= suffix_len) && (memcmp((const char *)s + s_len - suffix_len,
suffix, suffix_len) == 0);
}
/**
* memends_str - Does this byte array end with a string suffix?
* @a: byte array
* @al: length in bytes
* @s: string suffix
*
* Example:
* if (memends_str(somebytes, bytes_len, "It")) {
* printf("somebytes ends with with 'It'\n");
* }
*/
PURE_FUNCTION
static inline bool memends_str(const void *a, size_t al, const char *s)
{
return memends(a, al, s, strlen(s));
}
/**
* memoverlaps - Do two memory ranges overlap?
* @a: pointer to first memory range
* @al: length of first memory range
* @b: pointer to second memory range
* @al: length of second memory range
*/
CONST_FUNCTION
static inline bool memoverlaps(const void *a_, size_t al,
const void *b_, size_t bl)
{
const char *a = a_;
const char *b = b_;
return (a < (b + bl)) && (b < (a + al));
}
/*
* memswap - Exchange two memory regions
* @a: first region
* @b: second region
* @n: length of the regions
*
* Undefined results if the two memory regions overlap.
*/
void memswap(void *a, void *b, size_t n);
#if HAVE_VALGRIND_MEMCHECK_H
#include <valgrind/memcheck.h>
static inline void *memcheck_(const void *data, size_t len)
{
VALGRIND_CHECK_MEM_IS_DEFINED(data, len);
return (void *)data;
}
#else
static inline void *memcheck_(const void *data, size_t len)
{
(void)len;
return (void *)data;
}
#endif
#if HAVE_TYPEOF
/**
* memcheck - check that a memory region is initialized
* @data: start of region
* @len: length in bytes
*
* When running under valgrind, this causes an error to be printed
* if the entire region is not defined. Otherwise valgrind only
* reports an error when an undefined value is used for a branch, or
* written out.
*
* Example:
* // Search for space, but make sure it's all initialized.
* if (memchr(memcheck(somebytes, bytes_len), ' ', bytes_len)) {
* printf("space was found!\n");
* }
*/
#define memcheck(data, len) ((__typeof__((data)+0))memcheck_((data), (len)))
#else
#define memcheck(data, len) memcheck_((data), (len))
#endif
/**
* memtaint - mark a memory region unused
* @data: start of region
* @len: length in bytes
*
* This writes an "0xdeadbeef" eyecatcher repeatedly to the memory.
* When running under valgrind, it also tells valgrind that the memory is
* uninitialized, triggering valgrind errors if it is used for branches
* or written out (or passed to memcheck!) in future.
*
* Example:
* // We'll reuse this buffer later, but be sure we don't access it.
* memtaint(somebytes, bytes_len);
*/
void memtaint(void *data, size_t len);
#endif /* CCAN_MEM_H */

64
damus-c/node_id.c

@ -0,0 +1,64 @@
#include "config.h"
#include <assert.h>
#include "array_size.h"
#include "mem.h"
#include "hex.h"
#include "talstr.h"
#include "node_id.h"
/* Convert from pubkey to compressed pubkey. */
/*
void node_id_from_pubkey(struct node_id *id, const struct pubkey *key)
{
size_t outlen = ARRAY_SIZE(id->k);
if (!secp256k1_ec_pubkey_serialize(secp256k1_ctx, id->k, &outlen,
&key->pubkey,
SECP256K1_EC_COMPRESSED))
abort();
}
WARN_UNUSED_RESULT
bool pubkey_from_node_id(struct pubkey *key, const struct node_id *id)
{
return secp256k1_ec_pubkey_parse(secp256k1_ctx, &key->pubkey,
memcheck(id->k, sizeof(id->k)),
sizeof(id->k));
}
WARN_UNUSED_RESULT
bool point32_from_node_id(struct point32 *key, const struct node_id *id)
{
struct pubkey k;
if (!pubkey_from_node_id(&k, id))
return false;
return secp256k1_xonly_pubkey_from_pubkey(secp256k1_ctx, &key->pubkey,
NULL, &k.pubkey) == 1;
}
*/
char *tal_hexstr(const tal_t *ctx, const void *data, size_t len)
{
char *str = tal_arr(ctx, char, hex_str_size(len));
hex_encode(data, len, str, hex_str_size(len));
return str;
}
/* Convert to hex string of SEC1 encoding */
char *node_id_to_hexstr(const tal_t *ctx, const struct node_id *id)
{
return tal_hexstr(ctx, id->k, sizeof(id->k));
}
/* Convert from hex string of SEC1 encoding */
bool node_id_from_hexstr(const char *str, size_t slen, struct node_id *id)
{
return hex_decode(str, slen, id->k, sizeof(id->k));
/* && node_id_valid(id);*/
}
int node_id_cmp(const struct node_id *a, const struct node_id *b)
{
return memcmp(a->k, b->k, sizeof(a->k));
}

38
damus-c/node_id.h

@ -0,0 +1,38 @@
/* Encapsulation for pubkeys used as node ids: more compact, more dangerous. */
#ifndef LIGHTNING_COMMON_NODE_ID_H
#define LIGHTNING_COMMON_NODE_ID_H
#include "config.h"
#include "short_types.h"
#include "tal.h"
struct node_id {
u8 k[33];
};
static inline bool node_id_eq(const struct node_id *a,
const struct node_id *b)
{
return memcmp(a->k, b->k, sizeof(a->k)) == 0;
}
/* Is this actually a valid pubkey? Relatively expensive. */
//bool node_id_valid(const struct node_id *id);
/* Convert to hex string of SEC1 encoding. */
char *node_id_to_hexstr(const tal_t *ctx, const struct node_id *id);
/* Convert from hex string of SEC1 encoding: checks validity! */
bool node_id_from_hexstr(const char *str, size_t slen, struct node_id *id);
/* Compare the keys `a` and `b`. Return <0 if `a`<`b`, 0 if equal and >0 otherwise */
int node_id_cmp(const struct node_id *a, const struct node_id *b);
/* If the two nodes[] are id1 and id2, which index would id1 be? */
static inline int node_id_idx(const struct node_id *id1,
const struct node_id *id2)
{
return node_id_cmp(id1, id2) > 0;
}
/* marshal/unmarshal functions */
#endif /* LIGHTNING_COMMON_NODE_ID_H */

43
damus-c/overflows.h

@ -0,0 +1,43 @@
#ifndef LIGHTNING_COMMON_OVERFLOWS_H
#define LIGHTNING_COMMON_OVERFLOWS_H
#include "config.h"
#include "short_types.h"
static inline bool add_overflows_size_t(uint64_t a, uint64_t b)
{
return (size_t)a != a || (size_t)b != b || (a + b) < (size_t)a;
}
static inline bool add_overflows_u64(uint64_t a, uint64_t b)
{
return (a + b) < a;
}
static inline bool mul_overflows_u64(uint64_t a, uint64_t b)
{
uint64_t ret;
if (a == 0)
return false;
ret = a * b;
return (ret / a != b);
}
static inline bool assign_overflow_u8(u8 *dst, uint64_t v)
{
*dst = v;
return *dst == v;
}
static inline bool assign_overflow_u16(u16 *dst, uint64_t v)
{
*dst = v;
return *dst == v;
}
static inline bool assign_overflow_u32(u32 *dst, uint64_t v)
{
*dst = v;
return *dst == v;
}
#endif /* LIGHTNING_COMMON_OVERFLOWS_H */

308
damus-c/sha256.c

@ -0,0 +1,308 @@
/* MIT (BSD) license - see LICENSE file for details */
/* SHA256 core code translated from the Bitcoin project's C++:
*
* src/crypto/sha256.cpp commit 417532c8acb93c36c2b6fd052b7c11b6a2906aa2
* Copyright (c) 2014 The Bitcoin Core developers
* Distributed under the MIT software license, see the accompanying
* file COPYING or http://www.opensource.org/licenses/mit-license.php.
*/
#include "sha256.h"
#include "compiler.h"
#include "endian.h"
#include <stdbool.h>
#include <assert.h>
#include <string.h>
static void invalidate_sha256(struct sha256_ctx *ctx)
{
#ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL
ctx->c.md_len = 0;
#else
ctx->bytes = (size_t)-1;
#endif
}
static void check_sha256(struct sha256_ctx *ctx UNUSED)
{
#ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL
assert(ctx->c.md_len != 0);
#else
assert(ctx->bytes != (size_t)-1);
#endif
}
#ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL
void sha256_init(struct sha256_ctx *ctx)
{
SHA256_Init(&ctx->c);
}
void sha256_update(struct sha256_ctx *ctx, const void *p, size_t size)
{
check_sha256(ctx);
SHA256_Update(&ctx->c, p, size);
}
void sha256_done(struct sha256_ctx *ctx, struct sha256 *res)
{
SHA256_Final(res->u.u8, &ctx->c);
invalidate_sha256(ctx);
}
#else
static uint32_t Ch(uint32_t x, uint32_t y, uint32_t z)
{
return z ^ (x & (y ^ z));
}
static uint32_t Maj(uint32_t x, uint32_t y, uint32_t z)
{
return (x & y) | (z & (x | y));
}
static uint32_t Sigma0(uint32_t x)
{
return (x >> 2 | x << 30) ^ (x >> 13 | x << 19) ^ (x >> 22 | x << 10);
}
static uint32_t Sigma1(uint32_t x)
{
return (x >> 6 | x << 26) ^ (x >> 11 | x << 21) ^ (x >> 25 | x << 7);
}
static uint32_t sigma0(uint32_t x)
{
return (x >> 7 | x << 25) ^ (x >> 18 | x << 14) ^ (x >> 3);
}
static uint32_t sigma1(uint32_t x)
{
return (x >> 17 | x << 15) ^ (x >> 19 | x << 13) ^ (x >> 10);
}
/** One round of SHA-256. */
static void Round(uint32_t a, uint32_t b, uint32_t c, uint32_t *d, uint32_t e, uint32_t f, uint32_t g, uint32_t *h, uint32_t k, uint32_t w)
{
uint32_t t1 = *h + Sigma1(e) + Ch(e, f, g) + k + w;
uint32_t t2 = Sigma0(a) + Maj(a, b, c);
*d += t1;
*h = t1 + t2;
}
/** Perform one SHA-256 transformation, processing a 64-byte chunk. */
static void Transform(uint32_t *s, const uint32_t *chunk)
{
uint32_t a = s[0], b = s[1], c = s[2], d = s[3], e = s[4], f = s[5], g = s[6], h = s[7];
uint32_t w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15;
Round(a, b, c, &d, e, f, g, &h, 0x428a2f98, w0 = be32_to_cpu(chunk[0]));
Round(h, a, b, &c, d, e, f, &g, 0x71374491, w1 = be32_to_cpu(chunk[1]));
Round(g, h, a, &b, c, d, e, &f, 0xb5c0fbcf, w2 = be32_to_cpu(chunk[2]));
Round(f, g, h, &a, b, c, d, &e, 0xe9b5dba5, w3 = be32_to_cpu(chunk[3]));
Round(e, f, g, &h, a, b, c, &d, 0x3956c25b, w4 = be32_to_cpu(chunk[4]));
Round(d, e, f, &g, h, a, b, &c, 0x59f111f1, w5 = be32_to_cpu(chunk[5]));
Round(c, d, e, &f, g, h, a, &b, 0x923f82a4, w6 = be32_to_cpu(chunk[6]));
Round(b, c, d, &e, f, g, h, &a, 0xab1c5ed5, w7 = be32_to_cpu(chunk[7]));
Round(a, b, c, &d, e, f, g, &h, 0xd807aa98, w8 = be32_to_cpu(chunk[8]));
Round(h, a, b, &c, d, e, f, &g, 0x12835b01, w9 = be32_to_cpu(chunk[9]));
Round(g, h, a, &b, c, d, e, &f, 0x243185be, w10 = be32_to_cpu(chunk[10]));
Round(f, g, h, &a, b, c, d, &e, 0x550c7dc3, w11 = be32_to_cpu(chunk[11]));
Round(e, f, g, &h, a, b, c, &d, 0x72be5d74, w12 = be32_to_cpu(chunk[12]));
Round(d, e, f, &g, h, a, b, &c, 0x80deb1fe, w13 = be32_to_cpu(chunk[13]));
Round(c, d, e, &f, g, h, a, &b, 0x9bdc06a7, w14 = be32_to_cpu(chunk[14]));
Round(b, c, d, &e, f, g, h, &a, 0xc19bf174, w15 = be32_to_cpu(chunk[15]));
Round(a, b, c, &d, e, f, g, &h, 0xe49b69c1, w0 += sigma1(w14) + w9 + sigma0(w1));
Round(h, a, b, &c, d, e, f, &g, 0xefbe4786, w1 += sigma1(w15) + w10 + sigma0(w2));
Round(g, h, a, &b, c, d, e, &f, 0x0fc19dc6, w2 += sigma1(w0) + w11 + sigma0(w3));
Round(f, g, h, &a, b, c, d, &e, 0x240ca1cc, w3 += sigma1(w1) + w12 + sigma0(w4));
Round(e, f, g, &h, a, b, c, &d, 0x2de92c6f, w4 += sigma1(w2) + w13 + sigma0(w5));
Round(d, e, f, &g, h, a, b, &c, 0x4a7484aa, w5 += sigma1(w3) + w14 + sigma0(w6));
Round(c, d, e, &f, g, h, a, &b, 0x5cb0a9dc, w6 += sigma1(w4) + w15 + sigma0(w7));
Round(b, c, d, &e, f, g, h, &a, 0x76f988da, w7 += sigma1(w5) + w0 + sigma0(w8));
Round(a, b, c, &d, e, f, g, &h, 0x983e5152, w8 += sigma1(w6) + w1 + sigma0(w9));
Round(h, a, b, &c, d, e, f, &g, 0xa831c66d, w9 += sigma1(w7) + w2 + sigma0(w10));
Round(g, h, a, &b, c, d, e, &f, 0xb00327c8, w10 += sigma1(w8) + w3 + sigma0(w11));
Round(f, g, h, &a, b, c, d, &e, 0xbf597fc7, w11 += sigma1(w9) + w4 + sigma0(w12));
Round(e, f, g, &h, a, b, c, &d, 0xc6e00bf3, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, &g, h, a, b, &c, 0xd5a79147, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, &f, g, h, a, &b, 0x06ca6351, w14 += sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, &e, f, g, h, &a, 0x14292967, w15 += sigma1(w13) + w8 + sigma0(w0));
Round(a, b, c, &d, e, f, g, &h, 0x27b70a85, w0 += sigma1(w14) + w9 + sigma0(w1));
Round(h, a, b, &c, d, e, f, &g, 0x2e1b2138, w1 += sigma1(w15) + w10 + sigma0(w2));
Round(g, h, a, &b, c, d, e, &f, 0x4d2c6dfc, w2 += sigma1(w0) + w11 + sigma0(w3));
Round(f, g, h, &a, b, c, d, &e, 0x53380d13, w3 += sigma1(w1) + w12 + sigma0(w4));
Round(e, f, g, &h, a, b, c, &d, 0x650a7354, w4 += sigma1(w2) + w13 + sigma0(w5));
Round(d, e, f, &g, h, a, b, &c, 0x766a0abb, w5 += sigma1(w3) + w14 + sigma0(w6));
Round(c, d, e, &f, g, h, a, &b, 0x81c2c92e, w6 += sigma1(w4) + w15 + sigma0(w7));
Round(b, c, d, &e, f, g, h, &a, 0x92722c85, w7 += sigma1(w5) + w0 + sigma0(w8));
Round(a, b, c, &d, e, f, g, &h, 0xa2bfe8a1, w8 += sigma1(w6) + w1 + sigma0(w9));
Round(h, a, b, &c, d, e, f, &g, 0xa81a664b, w9 += sigma1(w7) + w2 + sigma0(w10));
Round(g, h, a, &b, c, d, e, &f, 0xc24b8b70, w10 += sigma1(w8) + w3 + sigma0(w11));
Round(f, g, h, &a, b, c, d, &e, 0xc76c51a3, w11 += sigma1(w9) + w4 + sigma0(w12));
Round(e, f, g, &h, a, b, c, &d, 0xd192e819, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, &g, h, a, b, &c, 0xd6990624, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, &f, g, h, a, &b, 0xf40e3585, w14 += sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, &e, f, g, h, &a, 0x106aa070, w15 += sigma1(w13) + w8 + sigma0(w0));
Round(a, b, c, &d, e, f, g, &h, 0x19a4c116, w0 += sigma1(w14) + w9 + sigma0(w1));
Round(h, a, b, &c, d, e, f, &g, 0x1e376c08, w1 += sigma1(w15) + w10 + sigma0(w2));
Round(g, h, a, &b, c, d, e, &f, 0x2748774c, w2 += sigma1(w0) + w11 + sigma0(w3));
Round(f, g, h, &a, b, c, d, &e, 0x34b0bcb5, w3 += sigma1(w1) + w12 + sigma0(w4));
Round(e, f, g, &h, a, b, c, &d, 0x391c0cb3, w4 += sigma1(w2) + w13 + sigma0(w5));
Round(d, e, f, &g, h, a, b, &c, 0x4ed8aa4a, w5 += sigma1(w3) + w14 + sigma0(w6));
Round(c, d, e, &f, g, h, a, &b, 0x5b9cca4f, w6 += sigma1(w4) + w15 + sigma0(w7));
Round(b, c, d, &e, f, g, h, &a, 0x682e6ff3, w7 += sigma1(w5) + w0 + sigma0(w8));
Round(a, b, c, &d, e, f, g, &h, 0x748f82ee, w8 += sigma1(w6) + w1 + sigma0(w9));
Round(h, a, b, &c, d, e, f, &g, 0x78a5636f, w9 += sigma1(w7) + w2 + sigma0(w10));
Round(g, h, a, &b, c, d, e, &f, 0x84c87814, w10 += sigma1(w8) + w3 + sigma0(w11));
Round(f, g, h, &a, b, c, d, &e, 0x8cc70208, w11 += sigma1(w9) + w4 + sigma0(w12));
Round(e, f, g, &h, a, b, c, &d, 0x90befffa, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, &g, h, a, b, &c, 0xa4506ceb, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, &f, g, h, a, &b, 0xbef9a3f7, w14 + sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, &e, f, g, h, &a, 0xc67178f2, w15 + sigma1(w13) + w8 + sigma0(w0));
s[0] += a;
s[1] += b;
s[2] += c;
s[3] += d;
s[4] += e;
s[5] += f;
s[6] += g;
s[7] += h;
}
static bool alignment_ok(const void *p UNUSED, size_t n UNUSED)
{
#if HAVE_UNALIGNED_ACCESS
return true;
#else
return ((size_t)p % n == 0);
#endif
}
static void add(struct sha256_ctx *ctx, const void *p, size_t len)
{
const unsigned char *data = p;
size_t bufsize = ctx->bytes % 64;
if (bufsize + len >= 64) {
/* Fill the buffer, and process it. */
memcpy(ctx->buf.u8 + bufsize, data, 64 - bufsize);
ctx->bytes += 64 - bufsize;
data += 64 - bufsize;
len -= 64 - bufsize;
Transform(ctx->s, ctx->buf.u32);
bufsize = 0;
}
while (len >= 64) {
/* Process full chunks directly from the source. */
if (alignment_ok(data, sizeof(uint32_t)))
Transform(ctx->s, (const uint32_t *)data);
else {
memcpy(ctx->buf.u8, data, sizeof(ctx->buf));
Transform(ctx->s, ctx->buf.u32);
}
ctx->bytes += 64;
data += 64;
len -= 64;
}
if (len) {
/* Fill the buffer with what remains. */
memcpy(ctx->buf.u8 + bufsize, data, len);
ctx->bytes += len;
}
}
void sha256_init(struct sha256_ctx *ctx)
{
struct sha256_ctx init = SHA256_INIT;
*ctx = init;
}
void sha256_update(struct sha256_ctx *ctx, const void *p, size_t size)
{
check_sha256(ctx);
add(ctx, p, size);
}
void sha256_done(struct sha256_ctx *ctx, struct sha256 *res)
{
static const unsigned char pad[64] = {0x80};
uint64_t sizedesc;
size_t i;
sizedesc = cpu_to_be64((uint64_t)ctx->bytes << 3);
/* Add '1' bit to terminate, then all 0 bits, up to next block - 8. */
add(ctx, pad, 1 + ((128 - 8 - (ctx->bytes % 64) - 1) % 64));
/* Add number of bits of data (big endian) */
add(ctx, &sizedesc, 8);
for (i = 0; i < sizeof(ctx->s) / sizeof(ctx->s[0]); i++)
res->u.u32[i] = cpu_to_be32(ctx->s[i]);
invalidate_sha256(ctx);
}
#endif
void sha256(struct sha256 *sha, const void *p, size_t size)
{
struct sha256_ctx ctx;
sha256_init(&ctx);
sha256_update(&ctx, p, size);
sha256_done(&ctx, sha);
}
void sha256_u8(struct sha256_ctx *ctx, uint8_t v)
{
sha256_update(ctx, &v, sizeof(v));
}
void sha256_u16(struct sha256_ctx *ctx, uint16_t v)
{
sha256_update(ctx, &v, sizeof(v));
}
void sha256_u32(struct sha256_ctx *ctx, uint32_t v)
{
sha256_update(ctx, &v, sizeof(v));
}
void sha256_u64(struct sha256_ctx *ctx, uint64_t v)
{
sha256_update(ctx, &v, sizeof(v));
}
/* Add as little-endian */
void sha256_le16(struct sha256_ctx *ctx, uint16_t v)
{
leint16_t lev = cpu_to_le16(v);
sha256_update(ctx, &lev, sizeof(lev));
}
void sha256_le32(struct sha256_ctx *ctx, uint32_t v)
{
leint32_t lev = cpu_to_le32(v);
sha256_update(ctx, &lev, sizeof(lev));
}
void sha256_le64(struct sha256_ctx *ctx, uint64_t v)
{
leint64_t lev = cpu_to_le64(v);
sha256_update(ctx, &lev, sizeof(lev));
}
/* Add as big-endian */
void sha256_be16(struct sha256_ctx *ctx, uint16_t v)
{
beint16_t bev = cpu_to_be16(v);
sha256_update(ctx, &bev, sizeof(bev));
}
void sha256_be32(struct sha256_ctx *ctx, uint32_t v)
{
beint32_t bev = cpu_to_be32(v);
sha256_update(ctx, &bev, sizeof(bev));
}
void sha256_be64(struct sha256_ctx *ctx, uint64_t v)
{
beint64_t bev = cpu_to_be64(v);
sha256_update(ctx, &bev, sizeof(bev));
}

147
damus-c/sha256.h

@ -0,0 +1,147 @@
#ifndef CCAN_CRYPTO_SHA256_H
#define CCAN_CRYPTO_SHA256_H
/* BSD-MIT - see LICENSE file for details */
#include "config.h"
#include <stdint.h>
#include <stdlib.h>
/* Uncomment this to use openssl's SHA256 routines (and link with -lcrypto) */
/*#define CCAN_CRYPTO_SHA256_USE_OPENSSL 1*/
#ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL
#include <openssl/sha.h>
#endif
/**
* struct sha256 - structure representing a completed SHA256.
* @u.u8: an unsigned char array.
* @u.u32: a 32-bit integer array.
*
* Other fields may be added to the union in future.
*/
struct sha256 {
union {
uint32_t u32[8];
unsigned char u8[32];
} u;
};
/**
* sha256 - return sha256 of an object.
* @sha256: the sha256 to fill in
* @p: pointer to memory,
* @size: the number of bytes pointed to by
*
* The bytes pointed to by @p is SHA256 hashed into @sha256. This is
* equivalent to sha256_init(), sha256_update() then sha256_done().
*/
void sha256(struct sha256 *sha, const void *p, size_t size);
/**
* struct sha256_ctx - structure to store running context for sha256
*/
struct sha256_ctx {
#ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL
SHA256_CTX c;
#else
uint32_t s[8];
union {
uint32_t u32[16];
unsigned char u8[64];
} buf;
size_t bytes;
#endif
};
/**
* sha256_init - initialize an SHA256 context.
* @ctx: the sha256_ctx to initialize
*
* This must be called before sha256_update or sha256_done, or
* alternately you can assign SHA256_INIT.
*
* If it was already initialized, this forgets anything which was
* hashed before.
*
* Example:
* static void hash_all(const char **arr, struct sha256 *hash)
* {
* size_t i;
* struct sha256_ctx ctx;
*
* sha256_init(&ctx);
* for (i = 0; arr[i]; i++)
* sha256_update(&ctx, arr[i], strlen(arr[i]));
* sha256_done(&ctx, hash);
* }
*/
void sha256_init(struct sha256_ctx *ctx);
/**
* SHA256_INIT - initializer for an SHA256 context.
*
* This can be used to statically initialize an SHA256 context (instead
* of sha256_init()).
*
* Example:
* static void hash_all(const char **arr, struct sha256 *hash)
* {
* size_t i;
* struct sha256_ctx ctx = SHA256_INIT;
*
* for (i = 0; arr[i]; i++)
* sha256_update(&ctx, arr[i], strlen(arr[i]));
* sha256_done(&ctx, hash);
* }
*/
#ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL
#define SHA256_INIT \
{ { { 0x6a09e667ul, 0xbb67ae85ul, 0x3c6ef372ul, 0xa54ff53aul, \
0x510e527ful, 0x9b05688cul, 0x1f83d9abul, 0x5be0cd19ul }, \
0x0, 0x0, \
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, \
0x0, 0x20 } }
#else
#define SHA256_INIT \
{ { 0x6a09e667ul, 0xbb67ae85ul, 0x3c6ef372ul, 0xa54ff53aul, \
0x510e527ful, 0x9b05688cul, 0x1f83d9abul, 0x5be0cd19ul }, \
{ { 0 } }, 0 }
#endif
/**
* sha256_update - include some memory in the hash.
* @ctx: the sha256_ctx to use
* @p: pointer to memory,
* @size: the number of bytes pointed to by
*
* You can call this multiple times to hash more data, before calling
* sha256_done().
*/
void sha256_update(struct sha256_ctx *ctx, const void *p, size_t size);
/**
* sha256_done - finish SHA256 and return the hash
* @ctx: the sha256_ctx to complete
* @res: the hash to return.
*
* Note that @ctx is *destroyed* by this, and must be reinitialized.
* To avoid that, pass a copy instead.
*/
void sha256_done(struct sha256_ctx *sha256, struct sha256 *res);
/* Add various types to an SHA256 hash */
void sha256_u8(struct sha256_ctx *ctx, uint8_t v);
void sha256_u16(struct sha256_ctx *ctx, uint16_t v);
void sha256_u32(struct sha256_ctx *ctx, uint32_t v);
void sha256_u64(struct sha256_ctx *ctx, uint64_t v);
/* Add as little-endian */
void sha256_le16(struct sha256_ctx *ctx, uint16_t v);
void sha256_le32(struct sha256_ctx *ctx, uint32_t v);
void sha256_le64(struct sha256_ctx *ctx, uint64_t v);
/* Add as big-endian */
void sha256_be16(struct sha256_ctx *ctx, uint16_t v);
void sha256_be32(struct sha256_ctx *ctx, uint32_t v);
void sha256_be64(struct sha256_ctx *ctx, uint64_t v);
#endif /* CCAN_CRYPTO_SHA256_H */

35
damus-c/short_types.h

@ -0,0 +1,35 @@
/* CC0 (Public domain) - see LICENSE file for details */
#ifndef CCAN_SHORT_TYPES_H
#define CCAN_SHORT_TYPES_H
#include <stdint.h>
/**
* u64/s64/u32/s32/u16/s16/u8/s8 - short names for explicitly-sized types.
*/
typedef uint64_t u64;
typedef int64_t s64;
typedef uint32_t u32;
typedef int32_t s32;
typedef uint16_t u16;
typedef int16_t s16;
typedef uint8_t u8;
typedef int8_t s8;
/* Whichever they include first, they get these definitions. */
#ifdef CCAN_ENDIAN_H
/**
* be64/be32/be16 - 64/32/16 bit big-endian representation.
*/
typedef beint64_t be64;
typedef beint32_t be32;
typedef beint16_t be16;
/**
* le64/le32/le16 - 64/32/16 bit little-endian representation.
*/
typedef leint64_t le64;
typedef leint32_t le32;
typedef leint16_t le16;
#endif
#endif /* CCAN_SHORT_TYPES_H */

228
damus-c/str.h

@ -0,0 +1,228 @@
/* CC0 (Public domain) - see LICENSE file for details */
#ifndef CCAN_STR_H
#define CCAN_STR_H
#include "config.h"
#include <string.h>
#include <stdbool.h>
#include <limits.h>
#include <ctype.h>
/**
* streq - Are two strings equal?
* @a: first string
* @b: first string
*
* This macro is arguably more readable than "!strcmp(a, b)".
*
* Example:
* if (streq(somestring, ""))
* printf("String is empty!\n");
*/
#define streq(a,b) (strcmp((a),(b)) == 0)
/**
* strstarts - Does this string start with this prefix?
* @str: string to test
* @prefix: prefix to look for at start of str
*
* Example:
* if (strstarts(somestring, "foo"))
* printf("String %s begins with 'foo'!\n", somestring);
*/
#define strstarts(str,prefix) (strncmp((str),(prefix),strlen(prefix)) == 0)
/**
* strends - Does this string end with this postfix?
* @str: string to test
* @postfix: postfix to look for at end of str
*
* Example:
* if (strends(somestring, "foo"))
* printf("String %s end with 'foo'!\n", somestring);
*/
static inline bool strends(const char *str, const char *postfix)
{
if (strlen(str) < strlen(postfix))
return false;
return streq(str + strlen(str) - strlen(postfix), postfix);
}
/**
* stringify - Turn expression into a string literal
* @expr: any C expression
*
* Example:
* #define PRINT_COND_IF_FALSE(cond) \
* ((cond) || printf("%s is false!", stringify(cond)))
*/
#define stringify(expr) stringify_1(expr)
/* Double-indirection required to stringify expansions */
#define stringify_1(expr) #expr
/**
* strcount - Count number of (non-overlapping) occurrences of a substring.
* @haystack: a C string
* @needle: a substring
*
* Example:
* assert(strcount("aaa aaa", "a") == 6);
* assert(strcount("aaa aaa", "ab") == 0);
* assert(strcount("aaa aaa", "aa") == 2);
*/
size_t strcount(const char *haystack, const char *needle);
/**
* STR_MAX_CHARS - Maximum possible size of numeric string for this type.
* @type_or_expr: a pointer or integer type or expression.
*
* This provides enough space for a nul-terminated string which represents the
* largest possible value for the type or expression.
*
* Note: The implementation adds extra space so hex values or negative
* values will fit (eg. sprintf(... "%p"). )
*
* Example:
* char str[STR_MAX_CHARS(int)];
*
* sprintf(str, "%i", 7);
*/
#define STR_MAX_CHARS(type_or_expr) \
((sizeof(type_or_expr) * CHAR_BIT + 8) / 9 * 3 + 2 \
+ STR_MAX_CHARS_TCHECK_(type_or_expr))
#if HAVE_TYPEOF
/* Only a simple type can have 0 assigned, so test that. */
#define STR_MAX_CHARS_TCHECK_(type_or_expr) \
(sizeof(({ typeof(type_or_expr) x = 0; x; }))*0)
#else
#define STR_MAX_CHARS_TCHECK_(type_or_expr) 0
#endif
/**
* cisalnum - isalnum() which takes a char (and doesn't accept EOF)
* @c: a character
*
* Surprisingly, the standard ctype.h isalnum() takes an int, which
* must have the value of EOF (-1) or an unsigned char. This variant
* takes a real char, and doesn't accept EOF.
*/
static inline bool cisalnum(char c)
{
return isalnum((unsigned char)c);
}
static inline bool cisalpha(char c)
{
return isalpha((unsigned char)c);
}
static inline bool cisascii(char c)
{
return isascii((unsigned char)c);
}
#if HAVE_ISBLANK
static inline bool cisblank(char c)
{
return isblank((unsigned char)c);
}
#endif
static inline bool ciscntrl(char c)
{
return iscntrl((unsigned char)c);
}
static inline bool cisdigit(char c)
{
return isdigit((unsigned char)c);
}
static inline bool cisgraph(char c)
{
return isgraph((unsigned char)c);
}
static inline bool cislower(char c)
{
return islower((unsigned char)c);
}
static inline bool cisprint(char c)
{
return isprint((unsigned char)c);
}
static inline bool cispunct(char c)
{
return ispunct((unsigned char)c);
}
static inline bool cisspace(char c)
{
return isspace((unsigned char)c);
}
static inline bool cisupper(char c)
{
return isupper((unsigned char)c);
}
static inline bool cisxdigit(char c)
{
return isxdigit((unsigned char)c);
}
#include "str_debug.h"
/* These checks force things out of line, hence they are under DEBUG. */
#ifdef CCAN_STR_DEBUG
#include <ccan/build_assert/build_assert.h>
/* These are commonly misused: they take -1 or an *unsigned* char value. */
#undef isalnum
#undef isalpha
#undef isascii
#undef isblank
#undef iscntrl
#undef isdigit
#undef isgraph
#undef islower
#undef isprint
#undef ispunct
#undef isspace
#undef isupper
#undef isxdigit
/* You can use a char if char is unsigned. */
#if HAVE_BUILTIN_TYPES_COMPATIBLE_P && HAVE_TYPEOF
#define str_check_arg_(i) \
((i) + BUILD_ASSERT_OR_ZERO(!__builtin_types_compatible_p(typeof(i), \
char) \
|| (char)255 > 0))
#else
#define str_check_arg_(i) (i)
#endif
#define isalnum(i) str_isalnum(str_check_arg_(i))
#define isalpha(i) str_isalpha(str_check_arg_(i))
#define isascii(i) str_isascii(str_check_arg_(i))
#if HAVE_ISBLANK
#define isblank(i) str_isblank(str_check_arg_(i))
#endif
#define iscntrl(i) str_iscntrl(str_check_arg_(i))
#define isdigit(i) str_isdigit(str_check_arg_(i))
#define isgraph(i) str_isgraph(str_check_arg_(i))
#define islower(i) str_islower(str_check_arg_(i))
#define isprint(i) str_isprint(str_check_arg_(i))
#define ispunct(i) str_ispunct(str_check_arg_(i))
#define isspace(i) str_isspace(str_check_arg_(i))
#define isupper(i) str_isupper(str_check_arg_(i))
#define isxdigit(i) str_isxdigit(str_check_arg_(i))
#if HAVE_TYPEOF
/* With GNU magic, we can make const-respecting standard string functions. */
#undef strstr
#undef strchr
#undef strrchr
/* + 0 is needed to decay array into pointer. */
#define strstr(haystack, needle) \
((typeof((haystack) + 0))str_strstr((haystack), (needle)))
#define strchr(haystack, c) \
((typeof((haystack) + 0))str_strchr((haystack), (c)))
#define strrchr(haystack, c) \
((typeof((haystack) + 0))str_strrchr((haystack), (c)))
#endif
#endif /* CCAN_STR_DEBUG */
#endif /* CCAN_STR_H */

30
damus-c/str_debug.h

@ -0,0 +1,30 @@
/* CC0 (Public domain) - see LICENSE file for details */
#ifndef CCAN_STR_DEBUG_H
#define CCAN_STR_DEBUG_H
/* #define CCAN_STR_DEBUG 1 */
#ifdef CCAN_STR_DEBUG
/* Because we mug the real ones with macros, we need our own wrappers. */
int str_isalnum(int i);
int str_isalpha(int i);
int str_isascii(int i);
#if HAVE_ISBLANK
int str_isblank(int i);
#endif
int str_iscntrl(int i);
int str_isdigit(int i);
int str_isgraph(int i);
int str_islower(int i);
int str_isprint(int i);
int str_ispunct(int i);
int str_isspace(int i);
int str_isupper(int i);
int str_isxdigit(int i);
char *str_strstr(const char *haystack, const char *needle);
char *str_strchr(const char *s, int c);
char *str_strrchr(const char *s, int c);
#endif /* CCAN_STR_DEBUG */
#endif /* CCAN_STR_DEBUG_H */

46
damus-c/structeq.h

@ -0,0 +1,46 @@
/* MIT (BSD) license - see LICENSE file for details */
#ifndef CCAN_STRUCTEQ_H
#define CCAN_STRUCTEQ_H
#include "build_assert.h"
#include "cppmagic.h"
#include <string.h>
#include <stdbool.h>
/**
* STRUCTEQ_DEF - define an ..._eq function to compare two structures.
* @sname: name of the structure, and function (<sname>_eq) to define.
* @padbytes: number of bytes of expected padding, or negative "max".
* @...: name of every member of the structure.
*
* This generates a single memcmp() call in the common case where the
* structure contains no padding. Since it can't tell the difference between
* padding and a missing member, @padbytes can be used to assert that
* there isn't any, or how many we expect. A negative number means
* "up to or equal to that amount of padding", as padding can be
* platform dependent.
*/
#define STRUCTEQ_DEF(sname, padbytes, ...) \
static inline bool CPPMAGIC_GLUE2(sname, _eq)(const struct sname *_a, \
const struct sname *_b) \
{ \
BUILD_ASSERT(((padbytes) < 0 && \
CPPMAGIC_JOIN(+, CPPMAGIC_MAP(STRUCTEQ_MEMBER_SIZE_, \
__VA_ARGS__)) \
- (padbytes) >= sizeof(*_a)) \
|| CPPMAGIC_JOIN(+, CPPMAGIC_MAP(STRUCTEQ_MEMBER_SIZE_, \
__VA_ARGS__)) \
+ (padbytes) == sizeof(*_a)); \
if (CPPMAGIC_JOIN(+, CPPMAGIC_MAP(STRUCTEQ_MEMBER_SIZE_, __VA_ARGS__)) \
== sizeof(*_a)) \
return memcmp(_a, _b, sizeof(*_a)) == 0; \
else \
return CPPMAGIC_JOIN(&&, \
CPPMAGIC_MAP(STRUCTEQ_MEMBER_CMP_, \
__VA_ARGS__)); \
}
/* Helpers */
#define STRUCTEQ_MEMBER_SIZE_(m) sizeof((_a)->m)
#define STRUCTEQ_MEMBER_CMP_(m) memcmp(&_a->m, &_b->m, sizeof(_a->m)) == 0
#endif /* CCAN_STRUCTEQ_H */

126
damus-c/take.c

@ -0,0 +1,126 @@
/* CC0 (Public domain) - see LICENSE file for details */
#include "take.h"
#include "likely.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
static const void **takenarr;
static const char **labelarr;
static size_t max_taken, num_taken;
static size_t allocfail;
static void (*allocfailfn)(const void *p);
void *take_(const void *p, const char *label)
{
/* Overallocate: it's better than risking calloc returning NULL! */
if (unlikely(label && !labelarr))
labelarr = calloc(max_taken+1, sizeof(*labelarr));
if (unlikely(num_taken == max_taken)) {
const void **new;
new = realloc(takenarr, sizeof(*takenarr) * (max_taken+1));
if (unlikely(!new)) {
if (allocfailfn) {
allocfail++;
allocfailfn(p);
return NULL;
}
/* Otherwise we leak p. */
return (void *)p;
}
takenarr = new;
/* Once labelarr is set, we maintain it. */
if (labelarr) {
const char **labelarr_new;
labelarr_new = realloc(labelarr,
sizeof(*labelarr) * (max_taken+1));
if (labelarr_new) {
labelarr = labelarr_new;
} else {
/* num_taken will be out of sync with the size of
* labelarr after realloc failure.
* Just pretend that we never had labelarr allocated. */
free(labelarr);
labelarr = NULL;
}
}
max_taken++;
}
if (unlikely(labelarr))
labelarr[num_taken] = label;
takenarr[num_taken++] = p;
return (void *)p;
}
static size_t find_taken(const void *p)
{
size_t i;
for (i = 0; i < num_taken; i++) {
if (takenarr[i] == p)
return i+1;
}
return 0;
}
bool taken(const void *p)
{
size_t i;
if (!p && unlikely(allocfail)) {
allocfail--;
return true;
}
i = find_taken(p);
if (!i)
return false;
memmove(&takenarr[i-1], &takenarr[i],
(--num_taken - (i - 1))*sizeof(takenarr[0]));
return true;
}
bool is_taken(const void *p)
{
if (!p && unlikely(allocfail))
return true;
return find_taken(p) > 0;
}
const char *taken_any(void)
{
static char pointer_buf[32];
if (num_taken == 0)
return NULL;
/* We're *allowed* to have some with labels, some without. */
if (labelarr) {
size_t i;
for (i = 0; i < num_taken; i++)
if (labelarr[i])
return labelarr[i];
}
sprintf(pointer_buf, "%p", takenarr[0]);
return pointer_buf;
}
void take_cleanup(void)
{
max_taken = num_taken = 0;
free(takenarr);
takenarr = NULL;
free(labelarr);
labelarr = NULL;
}
void take_allocfail(void (*fn)(const void *p))
{
allocfailfn = fn;
}

136
damus-c/take.h

@ -0,0 +1,136 @@
/* CC0 (Public domain) - see LICENSE file for details */
#ifndef CCAN_TAKE_H
#define CCAN_TAKE_H
#include "config.h"
#include <stdbool.h>
#include "str.h"
#ifdef CCAN_TAKE_DEBUG
#define TAKE_LABEL(p) __FILE__ ":" stringify(__LINE__) ":" stringify(p)
#else
#define TAKE_LABEL(p) NULL
#endif
/**
* TAKES - annotate a formal parameter as being take()-able
*
* This doesn't do anything, but useful for documentation.
*
* Example:
* void print_string(const char *str TAKES);
*
*/
#define TAKES
/**
* take - record a pointer to be consumed by the function its handed to.
* @p: the pointer to mark, or NULL.
*
* This marks a pointer object to be freed by the called function,
* which is extremely useful for chaining functions. It works on
* NULL, for pass-through error handling.
*/
#define take(p) (take_typeof(p) take_((p), TAKE_LABEL(p)))
/**
* taken - check (and un-take) a pointer was passed with take()
* @p: the pointer to check.
*
* A function which accepts take() arguments uses this to see if it
* should own the pointer; it will be removed from the take list, so
* this only returns true once.
*
* Example:
* // Silly routine to add 1
* static int *add_one(const int *num TAKES)
* {
* int *ret;
* if (taken(num))
* ret = (int *)num;
* else
* ret = malloc(sizeof(int));
* if (ret)
* *ret = (*num) + 1;
* return ret;
* }
*/
bool taken(const void *p);
/**
* is_taken - check if a pointer was passed with take()
* @p: the pointer to check.
*
* This is like the above, but doesn't remove it from the taken list.
*
* Example:
* // Silly routine to add 1: doesn't handle taken args!
* static int *add_one_notake(const int *num)
* {
* int *ret = malloc(sizeof(int));
* assert(!is_taken(num));
* if (ret)
* *ret = (*num) + 1;
* return ret;
* }
*/
bool is_taken(const void *p);
/**
* taken_any - are there any taken pointers?
*
* Mainly useful for debugging take() leaks. With CCAN_TAKE_DEBUG, returns
* the label where the pointer was passed to take(), otherwise returns
* a static char buffer with the pointer value in it. NULL if none are taken.
*
* Example:
* static void cleanup(void)
* {
* assert(!taken_any());
* }
*/
const char *taken_any(void);
/**
* take_cleanup - remove all taken pointers from list.
*
* This is useful in atexit() handlers for valgrind-style leak detection.
*
* Example:
* static void cleanup2(void)
* {
* take_cleanup();
* }
*/
void take_cleanup(void);
/**
* take_allocfail - set function to call if we can't reallocated taken array.
* @fn: the function.
*
* If this is not set, then if the array reallocation fails, the
* pointer won't be marked taken(). If @fn returns, it is expected to
* free the pointer; we return NULL from take() and the function handles
* it like any allocation failure.
*
* Example:
* static void free_on_fail(const void *p)
* {
* free((void *)p);
* }
*
* static void init(void)
* {
* take_allocfail(free_on_fail);
* }
*/
void take_allocfail(void (*fn)(const void *p));
/* Private functions */
#if HAVE_TYPEOF
#define take_typeof(ptr) (__typeof__(ptr))
#else
#define take_typeof(ptr)
#endif
void *take_(const void *p, const char *label);
#endif /* CCAN_TAKE_H */

972
damus-c/tal.c

@ -0,0 +1,972 @@
/* Licensed under BSD-MIT - see LICENSE file for details */
#include "tal.h"
#include "compiler.h"
#include "list.h"
#include "alignof.h"
#include <assert.h>
#include <stdio.h>
#include <stddef.h>
#include <string.h>
#include <limits.h>
#include <stdint.h>
#include <errno.h>
//#define TAL_DEBUG 1
#define NOTIFY_IS_DESTRUCTOR 512
#define NOTIFY_EXTRA_ARG 1024
/* This makes our parent_child ptr stand out for to_tal_hdr checks */
#define TAL_PTR_OBFUSTICATOR ((intptr_t)0x1984200820142016ULL)
/* 32-bit type field, first byte 0 in either endianness. */
enum prop_type {
CHILDREN = 0x00c1d500,
NAME = 0x00111100,
NOTIFIER = 0x00071f00,
};
struct tal_hdr {
struct list_node list;
struct prop_hdr *prop;
/* XOR with TAL_PTR_OBFUSTICATOR */
intptr_t parent_child;
size_t bytelen;
};
struct prop_hdr {
enum prop_type type;
struct prop_hdr *next;
};
struct children {
struct prop_hdr hdr; /* CHILDREN */
struct tal_hdr *parent;
struct list_head children; /* Head of siblings. */
};
struct name {
struct prop_hdr hdr; /* NAME */
char name[];
};
struct notifier {
struct prop_hdr hdr; /* NOTIFIER */
enum tal_notify_type types;
union notifier_cb {
void (*notifyfn)(tal_t *, enum tal_notify_type, void *);
void (*destroy)(tal_t *); /* If NOTIFY_IS_DESTRUCTOR set */
void (*destroy2)(tal_t *, void *); /* If NOTIFY_EXTRA_ARG */
} u;
};
/* Extra arg */
struct notifier_extra_arg {
struct notifier n;
void *arg;
};
#define EXTRA_ARG(n) (((struct notifier_extra_arg *)(n))->arg)
static struct {
struct tal_hdr hdr;
struct children c;
} null_parent = { { { &null_parent.hdr.list, &null_parent.hdr.list },
&null_parent.c.hdr, TAL_PTR_OBFUSTICATOR, 0 },
{ { CHILDREN, NULL },
&null_parent.hdr,
{ { &null_parent.c.children.n,
&null_parent.c.children.n } }
}
};
static void *(*allocfn)(size_t size) = malloc;
static void *(*resizefn)(void *, size_t size) = realloc;
static void (*freefn)(void *) = free;
static void (*errorfn)(const char *msg) = (void *)abort;
/* Count on non-destrutor notifiers; often stays zero. */
static size_t notifiers = 0;
static inline void COLD call_error(const char *msg)
{
errorfn(msg);
}
static bool get_destroying_bit(intptr_t parent_child)
{
return parent_child & 1;
}
static void set_destroying_bit(intptr_t *parent_child)
{
*parent_child |= 1;
}
static struct children *ignore_destroying_bit(intptr_t parent_child)
{
return (void *)((parent_child ^ TAL_PTR_OBFUSTICATOR) & ~(intptr_t)1);
}
/* This means valgrind can see leaks. */
void tal_cleanup(void)
{
struct tal_hdr *i;
while ((i = list_top(&null_parent.c.children, struct tal_hdr, list))) {
list_del(&i->list);
memset(i, 0, sizeof(*i));
}
/* Cleanup any taken pointers. */
take_cleanup();
}
/* We carefully start all real properties with a zero byte. */
static bool is_literal(const struct prop_hdr *prop)
{
return ((char *)prop)[0] != 0;
}
#ifndef NDEBUG
static const void *bounds_start, *bounds_end;
static void update_bounds(const void *new, size_t size)
{
if (unlikely(!bounds_start)) {
bounds_start = new;
bounds_end = (char *)new + size;
} else if (new < bounds_start)
bounds_start = new;
else if ((char *)new + size > (char *)bounds_end)
bounds_end = (char *)new + size;
}
static bool in_bounds(const void *p)
{
return !p
|| (p >= (void *)&null_parent && p <= (void *)(&null_parent + 1))
|| (p >= bounds_start && p <= bounds_end);
}
#else
static void update_bounds(const void *new, size_t size)
{
}
static bool in_bounds(const void *p)
{
return true;
}
#endif
static void check_bounds(const void *p)
{
if (!in_bounds(p))
call_error("Not a valid header");
}
static struct tal_hdr *to_tal_hdr(const void *ctx)
{
struct tal_hdr *t;
t = (struct tal_hdr *)((char *)ctx - sizeof(struct tal_hdr));
check_bounds(t);
check_bounds(ignore_destroying_bit(t->parent_child));
check_bounds(t->list.next);
check_bounds(t->list.prev);
if (t->prop && !is_literal(t->prop))
check_bounds(t->prop);
return t;
}
static struct tal_hdr *to_tal_hdr_or_null(const void *ctx)
{
if (!ctx)
return &null_parent.hdr;
return to_tal_hdr(ctx);
}
static void *from_tal_hdr(const struct tal_hdr *hdr)
{
return (void *)(hdr + 1);
}
static void *from_tal_hdr_or_null(const struct tal_hdr *hdr)
{
if (hdr == &null_parent.hdr)
return NULL;
return from_tal_hdr(hdr);
}
#ifdef TAL_DEBUG
static struct tal_hdr *debug_tal(struct tal_hdr *tal)
{
tal_check(from_tal_hdr_or_null(tal), "TAL_DEBUG ");
return tal;
}
#else
static struct tal_hdr *debug_tal(struct tal_hdr *tal)
{
return tal;
}
#endif
static void notify(const struct tal_hdr *ctx,
enum tal_notify_type type, const void *info,
int saved_errno)
{
const struct prop_hdr *p;
for (p = ctx->prop; p; p = p->next) {
struct notifier *n;
if (is_literal(p))
break;
if (p->type != NOTIFIER)
continue;
n = (struct notifier *)p;
if (n->types & type) {
errno = saved_errno;
if (n->types & NOTIFY_IS_DESTRUCTOR) {
/* Blatt this notifier in case it tries to
* tal_del_destructor() from inside */
union notifier_cb cb = n->u;
/* It's a union, so this NULLs destroy2 too! */
n->u.destroy = NULL;
if (n->types & NOTIFY_EXTRA_ARG)
cb.destroy2(from_tal_hdr(ctx),
EXTRA_ARG(n));
else
cb.destroy(from_tal_hdr(ctx));
} else
n->u.notifyfn(from_tal_hdr_or_null(ctx), type,
(void *)info);
}
}
}
static void *allocate(size_t size)
{
void *ret = allocfn(size);
if (!ret)
call_error("allocation failed");
else
update_bounds(ret, size);
return ret;
}
static struct prop_hdr **find_property_ptr(const struct tal_hdr *t,
enum prop_type type)
{
struct prop_hdr **p;
for (p = (struct prop_hdr **)&t->prop; *p; p = &(*p)->next) {
if (is_literal(*p)) {
if (type == NAME)
return p;
break;
}
if ((*p)->type == type)
return p;
}
return NULL;
}
static void *find_property(const struct tal_hdr *parent, enum prop_type type)
{
struct prop_hdr **p = find_property_ptr(parent, type);
if (p)
return *p;
return NULL;
}
static void init_property(struct prop_hdr *hdr,
struct tal_hdr *parent,
enum prop_type type)
{
hdr->type = type;
hdr->next = parent->prop;
parent->prop = hdr;
}
static struct notifier *add_notifier_property(struct tal_hdr *t,
enum tal_notify_type types,
void (*fn)(void *,
enum tal_notify_type,
void *),
void *extra_arg)
{
struct notifier *prop;
if (types & NOTIFY_EXTRA_ARG)
prop = allocate(sizeof(struct notifier_extra_arg));
else
prop = allocate(sizeof(struct notifier));
if (prop) {
init_property(&prop->hdr, t, NOTIFIER);
prop->types = types;
prop->u.notifyfn = fn;
if (types & NOTIFY_EXTRA_ARG)
EXTRA_ARG(prop) = extra_arg;
}
return prop;
}
static enum tal_notify_type del_notifier_property(struct tal_hdr *t,
void (*fn)(tal_t *,
enum tal_notify_type,
void *),
bool match_extra_arg,
void *extra_arg)
{
struct prop_hdr **p;
for (p = (struct prop_hdr **)&t->prop; *p; p = &(*p)->next) {
struct notifier *n;
enum tal_notify_type types;
if (is_literal(*p))
break;
if ((*p)->type != NOTIFIER)
continue;
n = (struct notifier *)*p;
if (n->u.notifyfn != fn)
continue;
types = n->types;
if ((types & NOTIFY_EXTRA_ARG)
&& match_extra_arg
&& extra_arg != EXTRA_ARG(n))
continue;
*p = (*p)->next;
freefn(n);
return types & ~(NOTIFY_IS_DESTRUCTOR|NOTIFY_EXTRA_ARG);
}
return 0;
}
static struct name *add_name_property(struct tal_hdr *t, const char *name)
{
struct name *prop;
prop = allocate(sizeof(*prop) + strlen(name) + 1);
if (prop) {
init_property(&prop->hdr, t, NAME);
strcpy(prop->name, name);
}
return prop;
}
static struct children *add_child_property(struct tal_hdr *parent,
struct tal_hdr *child UNNEEDED)
{
struct children *prop = allocate(sizeof(*prop));
if (prop) {
init_property(&prop->hdr, parent, CHILDREN);
prop->parent = parent;
list_head_init(&prop->children);
}
return prop;
}
static bool add_child(struct tal_hdr *parent, struct tal_hdr *child)
{
struct children *children = find_property(parent, CHILDREN);
if (!children) {
children = add_child_property(parent, child);
if (!children)
return false;
}
list_add(&children->children, &child->list);
child->parent_child = (intptr_t)children ^ TAL_PTR_OBFUSTICATOR;
return true;
}
static void del_tree(struct tal_hdr *t, const tal_t *orig, int saved_errno)
{
struct prop_hdr **prop, *p, *next;
assert(!taken(from_tal_hdr(t)));
/* Already being destroyed? Don't loop. */
if (unlikely(get_destroying_bit(t->parent_child)))
return;
set_destroying_bit(&t->parent_child);
/* Call free notifiers. */
notify(t, TAL_NOTIFY_FREE, (tal_t *)orig, saved_errno);
/* Now free children and groups. */
prop = find_property_ptr(t, CHILDREN);
if (prop) {
struct tal_hdr *i;
struct children *c = (struct children *)*prop;
while ((i = list_top(&c->children, struct tal_hdr, list))) {
list_del(&i->list);
del_tree(i, orig, saved_errno);
}
}
/* Finally free our properties. */
for (p = t->prop; p && !is_literal(p); p = next) {
next = p->next;
freefn(p);
}
freefn(t);
}
void *tal_alloc_(const tal_t *ctx, size_t size, bool clear, const char *label)
{
struct tal_hdr *child, *parent = debug_tal(to_tal_hdr_or_null(ctx));
child = allocate(sizeof(struct tal_hdr) + size);
if (!child)
return NULL;
if (clear)
memset(from_tal_hdr(child), 0, size);
child->prop = (void *)label;
child->bytelen = size;
if (!add_child(parent, child)) {
freefn(child);
return NULL;
}
debug_tal(parent);
if (notifiers)
notify(parent, TAL_NOTIFY_ADD_CHILD, from_tal_hdr(child), 0);
return from_tal_hdr(debug_tal(child));
}
static bool adjust_size(size_t *size, size_t count)
{
const size_t extra = sizeof(struct tal_hdr);
/* Multiplication wrap */
if (count && unlikely(*size * count / *size != count))
goto overflow;
*size *= count;
/* Make sure we don't wrap adding header. */
if (*size + extra < extra)
goto overflow;
return true;
overflow:
call_error("allocation size overflow");
return false;
}
void *tal_alloc_arr_(const tal_t *ctx, size_t size, size_t count, bool clear,
const char *label)
{
if (!adjust_size(&size, count))
return NULL;
return tal_alloc_(ctx, size, clear, label);
}
void *tal_free(const tal_t *ctx)
{
if (ctx) {
struct tal_hdr *t;
int saved_errno = errno;
t = debug_tal(to_tal_hdr(ctx));
if (unlikely(get_destroying_bit(t->parent_child)))
return NULL;
if (notifiers)
notify(ignore_destroying_bit(t->parent_child)->parent,
TAL_NOTIFY_DEL_CHILD, ctx, saved_errno);
list_del(&t->list);
del_tree(t, ctx, saved_errno);
errno = saved_errno;
}
return NULL;
}
void *tal_steal_(const tal_t *new_parent, const tal_t *ctx)
{
if (ctx) {
struct tal_hdr *newpar, *t, *old_parent;
newpar = debug_tal(to_tal_hdr_or_null(new_parent));
t = debug_tal(to_tal_hdr(ctx));
/* Unlink it from old parent. */
list_del(&t->list);
old_parent = ignore_destroying_bit(t->parent_child)->parent;
if (unlikely(!add_child(newpar, t))) {
/* We can always add to old parent, because it has a
* children property already. */
if (!add_child(old_parent, t))
abort();
return NULL;
}
debug_tal(newpar);
if (notifiers)
notify(t, TAL_NOTIFY_STEAL, new_parent, 0);
}
return (void *)ctx;
}
bool tal_add_destructor_(const tal_t *ctx, void (*destroy)(void *me))
{
tal_t *t = debug_tal(to_tal_hdr(ctx));
return add_notifier_property(t, TAL_NOTIFY_FREE|NOTIFY_IS_DESTRUCTOR,
(void *)destroy, NULL);
}
bool tal_add_destructor2_(const tal_t *ctx, void (*destroy)(void *me, void *arg),
void *arg)
{
tal_t *t = debug_tal(to_tal_hdr(ctx));
return add_notifier_property(t, TAL_NOTIFY_FREE|NOTIFY_IS_DESTRUCTOR
|NOTIFY_EXTRA_ARG,
(void *)destroy, arg);
}
/* We could support notifiers with an extra arg, but we didn't add to API */
bool tal_add_notifier_(const tal_t *ctx, enum tal_notify_type types,
void (*callback)(tal_t *, enum tal_notify_type, void *))
{
struct tal_hdr *t = debug_tal(to_tal_hdr_or_null(ctx));
struct notifier *n;
assert(types);
assert((types & ~(TAL_NOTIFY_FREE | TAL_NOTIFY_STEAL | TAL_NOTIFY_MOVE
| TAL_NOTIFY_RESIZE | TAL_NOTIFY_RENAME
| TAL_NOTIFY_ADD_CHILD | TAL_NOTIFY_DEL_CHILD
| TAL_NOTIFY_ADD_NOTIFIER
| TAL_NOTIFY_DEL_NOTIFIER)) == 0);
/* Don't call notifier about itself: set types after! */
n = add_notifier_property(t, 0, callback, NULL);
if (unlikely(!n))
return false;
if (notifiers)
notify(t, TAL_NOTIFY_ADD_NOTIFIER, callback, 0);
n->types = types;
if (types != TAL_NOTIFY_FREE)
notifiers++;
return true;
}
bool tal_del_notifier_(const tal_t *ctx,
void (*callback)(tal_t *, enum tal_notify_type, void *),
bool match_extra_arg, void *extra_arg)
{
struct tal_hdr *t = debug_tal(to_tal_hdr_or_null(ctx));
enum tal_notify_type types;
types = del_notifier_property(t, callback, match_extra_arg, extra_arg);
if (types) {
notify(t, TAL_NOTIFY_DEL_NOTIFIER, callback, 0);
if (types != TAL_NOTIFY_FREE)
notifiers--;
return true;
}
return false;
}
bool tal_del_destructor_(const tal_t *ctx, void (*destroy)(void *me))
{
return tal_del_notifier_(ctx, (void *)destroy, false, NULL);
}
bool tal_del_destructor2_(const tal_t *ctx, void (*destroy)(void *me, void *arg),
void *arg)
{
return tal_del_notifier_(ctx, (void *)destroy, true, arg);
}
bool tal_set_name_(tal_t *ctx, const char *name, bool literal)
{
struct tal_hdr *t = debug_tal(to_tal_hdr(ctx));
struct prop_hdr **prop = find_property_ptr(t, NAME);
/* Get rid of any old name */
if (prop) {
struct name *name = (struct name *)*prop;
if (is_literal(&name->hdr))
*prop = NULL;
else {
*prop = name->hdr.next;
freefn(name);
}
}
if (literal && name[0]) {
struct prop_hdr **p;
/* Append literal. */
for (p = &t->prop; *p && !is_literal(*p); p = &(*p)->next);
*p = (struct prop_hdr *)name;
} else if (!add_name_property(t, name))
return false;
debug_tal(t);
if (notifiers)
notify(t, TAL_NOTIFY_RENAME, name, 0);
return true;
}
const char *tal_name(const tal_t *t)
{
struct name *n;
n = find_property(debug_tal(to_tal_hdr(t)), NAME);
if (!n)
return NULL;
if (is_literal(&n->hdr))
return (const char *)n;
return n->name;
}
size_t tal_bytelen(const tal_t *ptr)
{
/* NULL -> null_parent which has bytelen 0 */
struct tal_hdr *t = debug_tal(to_tal_hdr_or_null(ptr));
return t->bytelen;
}
/* Start one past first child: make stopping natural in circ. list. */
static struct tal_hdr *first_child(struct tal_hdr *parent)
{
struct children *child;
child = find_property(parent, CHILDREN);
if (!child)
return NULL;
return list_top(&child->children, struct tal_hdr, list);
}
tal_t *tal_first(const tal_t *root)
{
struct tal_hdr *c, *t = debug_tal(to_tal_hdr_or_null(root));
c = first_child(t);
if (!c)
return NULL;
return from_tal_hdr(c);
}
tal_t *tal_next(const tal_t *prev)
{
struct tal_hdr *next, *prevhdr = debug_tal(to_tal_hdr(prev));
struct list_head *head;
head = &ignore_destroying_bit(prevhdr->parent_child)->children;
next = list_next(head, prevhdr, list);
if (!next)
return NULL;
return from_tal_hdr(next);
}
tal_t *tal_parent(const tal_t *ctx)
{
struct tal_hdr *t;
if (!ctx)
return NULL;
t = debug_tal(to_tal_hdr(ctx));
if (ignore_destroying_bit(t->parent_child)->parent == &null_parent.hdr)
return NULL;
return from_tal_hdr(ignore_destroying_bit(t->parent_child)->parent);
}
bool tal_resize_(tal_t **ctxp, size_t size, size_t count, bool clear)
{
struct tal_hdr *old_t, *t;
struct children *child;
old_t = debug_tal(to_tal_hdr(*ctxp));
if (!adjust_size(&size, count))
return false;
t = resizefn(old_t, sizeof(struct tal_hdr) + size);
if (!t) {
call_error("Reallocation failure");
return false;
}
/* Clear between old end and new end. */
if (clear && size > t->bytelen) {
char *old_end = (char *)(t + 1) + t->bytelen;
memset(old_end, 0, size - t->bytelen);
}
/* Update length. */
t->bytelen = size;
update_bounds(t, sizeof(struct tal_hdr) + size);
/* If it didn't move, we're done! */
if (t != old_t) {
/* Fix up linked list pointers. */
t->list.next->prev = t->list.prev->next = &t->list;
/* Copy take() property. */
if (taken(from_tal_hdr(old_t)))
take(from_tal_hdr(t));
/* Fix up child property's parent pointer. */
child = find_property(t, CHILDREN);
if (child) {
assert(child->parent == old_t);
child->parent = t;
}
*ctxp = from_tal_hdr(debug_tal(t));
if (notifiers)
notify(t, TAL_NOTIFY_MOVE, from_tal_hdr(old_t), 0);
}
if (notifiers)
notify(t, TAL_NOTIFY_RESIZE, (void *)size, 0);
return true;
}
bool tal_expand_(tal_t **ctxp, const void *src, size_t size, size_t count)
{
size_t old_len;
bool ret = false;
old_len = debug_tal(to_tal_hdr(*ctxp))->bytelen;
/* Check for additive overflow */
if (old_len + count * size < old_len) {
call_error("dup size overflow");
goto out;
}
/* Don't point src inside thing we're expanding! */
assert(src < *ctxp
|| (char *)src >= (char *)(*ctxp) + old_len);
if (!tal_resize_(ctxp, size, old_len/size + count, false))
goto out;
memcpy((char *)*ctxp + old_len, src, count * size);
ret = true;
out:
if (taken(src))
tal_free(src);
return ret;
}
void *tal_dup_(const tal_t *ctx, const void *p, size_t size,
size_t n, size_t extra, bool nullok, const char *label)
{
void *ret;
size_t nbytes = size;
if (nullok && p == NULL) {
/* take(NULL) works. */
(void)taken(p);
return NULL;
}
if (!adjust_size(&nbytes, n)) {
if (taken(p))
tal_free(p);
return NULL;
}
/* Beware addition overflow! */
if (n + extra < n) {
call_error("dup size overflow");
if (taken(p))
tal_free(p);
return NULL;
}
if (taken(p)) {
if (unlikely(!p))
return NULL;
if (unlikely(!tal_resize_((void **)&p, size, n + extra, false)))
return tal_free(p);
if (unlikely(!tal_steal(ctx, p)))
return tal_free(p);
return (void *)p;
}
ret = tal_alloc_arr_(ctx, size, n + extra, false, label);
if (ret)
memcpy(ret, p, nbytes);
return ret;
}
void *tal_dup_talarr_(const tal_t *ctx, const tal_t *src TAKES, const char *label)
{
return tal_dup_(ctx, src, 1, tal_bytelen(src), 0, true, label);
}
void tal_set_backend(void *(*alloc_fn)(size_t size),
void *(*resize_fn)(void *, size_t size),
void (*free_fn)(void *),
void (*error_fn)(const char *msg))
{
if (alloc_fn)
allocfn = alloc_fn;
if (resize_fn)
resizefn = resize_fn;
if (free_fn)
freefn = free_fn;
if (error_fn)
errorfn = error_fn;
}
#ifdef CCAN_TAL_DEBUG
static void dump_node(unsigned int indent, const struct tal_hdr *t)
{
unsigned int i;
const struct prop_hdr *p;
for (i = 0; i < indent; i++)
fprintf(stderr, " ");
fprintf(stderr, "%p len=%zu", t, t->bytelen);
for (p = t->prop; p; p = p->next) {
struct children *c;
struct name *n;
struct notifier *no;
if (is_literal(p)) {
fprintf(stderr, " \"%s\"", (const char *)p);
break;
}
switch (p->type) {
case CHILDREN:
c = (struct children *)p;
fprintf(stderr, " CHILDREN(%p):parent=%p,children={%p,%p}",
p, c->parent,
c->children.n.prev, c->children.n.next);
break;
case NAME:
n = (struct name *)p;
fprintf(stderr, " NAME(%p):%s", p, n->name);
break;
case NOTIFIER:
no = (struct notifier *)p;
fprintf(stderr, " NOTIFIER(%p):fn=%p", p, no->u.notifyfn);
break;
default:
fprintf(stderr, " **UNKNOWN(%p):%i**", p, p->type);
}
}
fprintf(stderr, "\n");
}
static void tal_dump_(unsigned int level, const struct tal_hdr *t)
{
struct children *children;
dump_node(level, t);
children = find_property(t, CHILDREN);
if (children) {
struct tal_hdr *i;
list_for_each(&children->children, i, list)
tal_dump_(level + 1, i);
}
}
void tal_dump(void)
{
tal_dump_(0, &null_parent.hdr);
}
#endif /* CCAN_TAL_DEBUG */
#ifndef NDEBUG
static bool check_err(struct tal_hdr *t, const char *errorstr,
const char *errmsg)
{
if (errorstr) {
/* Try not to malloc: it may be corrupted. */
char msg[strlen(errorstr) + 20 + strlen(errmsg) + 1];
sprintf(msg, "%s:%p %s", errorstr, from_tal_hdr(t), errmsg);
call_error(msg);
}
return false;
}
static bool check_node(struct children *parent_child,
struct tal_hdr *t, const char *errorstr)
{
struct prop_hdr *p;
struct name *name = NULL;
struct children *children = NULL;
if (!in_bounds(t))
return check_err(t, errorstr, "invalid pointer");
if (ignore_destroying_bit(t->parent_child) != parent_child)
return check_err(t, errorstr, "incorrect parent");
for (p = t->prop; p; p = p->next) {
if (is_literal(p)) {
if (name)
return check_err(t, errorstr,
"has extra literal");
break;
}
if (!in_bounds(p))
return check_err(t, errorstr,
"has bad property pointer");
switch (p->type) {
case CHILDREN:
if (children)
return check_err(t, errorstr,
"has two child nodes");
children = (struct children *)p;
break;
case NOTIFIER:
break;
case NAME:
if (name)
return check_err(t, errorstr,
"has two names");
name = (struct name *)p;
break;
default:
return check_err(t, errorstr, "has unknown property");
}
}
if (children) {
struct tal_hdr *i;
if (!list_check(&children->children, errorstr))
return false;
list_for_each(&children->children, i, list) {
if (!check_node(children, i, errorstr))
return false;
}
}
return true;
}
bool tal_check(const tal_t *ctx, const char *errorstr)
{
struct tal_hdr *t = to_tal_hdr_or_null(ctx);
return check_node(ignore_destroying_bit(t->parent_child), t, errorstr);
}
#else /* NDEBUG */
bool tal_check(const tal_t *ctx, const char *errorstr)
{
return true;
}
#endif

553
damus-c/tal.h

@ -0,0 +1,553 @@
/* Licensed under BSD-MIT - see LICENSE file for details */
#ifndef CCAN_TAL_H
#define CCAN_TAL_H
#include "config.h"
#include "compiler.h"
#include "likely.h"
#include "typesafe_cb.h"
#include "str.h"
#include "take.h"
#include <stdlib.h>
#include <stdbool.h>
#include <stdarg.h>
/**
* tal_t - convenient alias for void to mark tal pointers.
*
* Since any pointer can be a tal-allocated pointer, it's often
* useful to use this typedef to mark them explicitly.
*/
typedef void tal_t;
/**
* tal - basic allocator function
* @ctx: NULL, or tal allocated object to be parent.
* @type: the type to allocate.
*
* Allocates a specific type, with a given parent context. The name
* of the object is a string of the type, but if CCAN_TAL_DEBUG is
* defined it also contains the file and line which allocated it.
*
* tal_count() of the return will be 1.
*
* Example:
* int *p = tal(NULL, int);
* *p = 1;
*/
#define tal(ctx, type) \
tal_label(ctx, type, TAL_LABEL(type, ""))
/**
* talz - zeroing allocator function
* @ctx: NULL, or tal allocated object to be parent.
* @type: the type to allocate.
*
* Equivalent to tal() followed by memset() to zero.
*
* Example:
* p = talz(NULL, int);
* assert(*p == 0);
*/
#define talz(ctx, type) \
talz_label(ctx, type, TAL_LABEL(type, ""))
/**
* tal_free - free a tal-allocated pointer.
* @p: NULL, or tal allocated object to free.
*
* This calls the destructors for p (if any), then does the same for all its
* children (recursively) before finally freeing the memory. It returns
* NULL, for convenience.
*
* Note: errno is preserved by this call, and also saved and restored
* for any destructors or notifiers.
*
* Example:
* p = tal_free(p);
*/
void *tal_free(const tal_t *p);
/**
* tal_arr - allocate an array of objects.
* @ctx: NULL, or tal allocated object to be parent.
* @type: the type to allocate.
* @count: the number to allocate.
*
* tal_count() of the returned pointer will be @count.
*
* Example:
* p = tal_arr(NULL, int, 2);
* p[0] = 0;
* p[1] = 1;
*/
#define tal_arr(ctx, type, count) \
tal_arr_label(ctx, type, count, TAL_LABEL(type, "[]"))
/**
* tal_arrz - allocate an array of zeroed objects.
* @ctx: NULL, or tal allocated object to be parent.
* @type: the type to allocate.
* @count: the number to allocate.
*
* Equivalent to tal_arr() followed by memset() to zero.
*
* Example:
* p = tal_arrz(NULL, int, 2);
* assert(p[0] == 0 && p[1] == 0);
*/
#define tal_arrz(ctx, type, count) \
tal_arrz_label(ctx, type, count, TAL_LABEL(type, "[]"))
/**
* tal_resize - enlarge or reduce a tal object.
* @p: A pointer to the tal allocated array to resize.
* @count: the number to allocate.
*
* This returns true on success (and may move *@p), or false on failure.
* On success, tal_count() of *@p will be @count.
*
* Note: if *p is take(), it will still be take() upon return, even if it
* has been moved.
*
* Example:
* tal_resize(&p, 100);
*/
#define tal_resize(p, count) \
tal_resize_((void **)(p), sizeof**(p), (count), false)
/**
* tal_resizez - enlarge or reduce a tal object; zero out extra.
* @p: A pointer to the tal allocated array to resize.
* @count: the number to allocate.
*
* This returns true on success (and may move *@p), or false on failure.
*
* Example:
* tal_resizez(&p, 200);
*/
#define tal_resizez(p, count) \
tal_resize_((void **)(p), sizeof**(p), (count), true)
/**
* tal_steal - change the parent of a tal-allocated pointer.
* @ctx: The new parent.
* @ptr: The tal allocated object to move, or NULL.
*
* This may need to perform an allocation, in which case it may fail; thus
* it can return NULL, otherwise returns @ptr. If @ptr is NULL, this function does
* nothing.
*/
#if HAVE_STATEMENT_EXPR
/* Weird macro avoids gcc's 'warning: value computed is not used'. */
#define tal_steal(ctx, ptr) \
({ (tal_typeof(ptr) tal_steal_((ctx),(ptr))); })
#else
#define tal_steal(ctx, ptr) \
(tal_typeof(ptr) tal_steal_((ctx),(ptr)))
#endif
/**
* tal_add_destructor - add a callback function when this context is destroyed.
* @ptr: The tal allocated object.
* @function: the function to call before it's freed.
*
* This is a more convenient form of tal_add_notifier(@ptr,
* TAL_NOTIFY_FREE, ...), in that the function prototype takes only @ptr.
*
* Note that this can only fail if your allocfn fails and your errorfn returns.
*/
#define tal_add_destructor(ptr, function) \
tal_add_destructor_((ptr), typesafe_cb(void, void *, (function), (ptr)))
/**
* tal_del_destructor - remove a destructor callback function.
* @ptr: The tal allocated object.
* @function: the function to call before it's freed.
*
* If @function has not been successfully added as a destructor, this returns
* false. Note that if we're inside the destructor call itself, this will
* return false.
*/
#define tal_del_destructor(ptr, function) \
tal_del_destructor_((ptr), typesafe_cb(void, void *, (function), (ptr)))
/**
* tal_add_destructor2 - add a 2-arg callback function when context is destroyed.
* @ptr: The tal allocated object.
* @function: the function to call before it's freed.
* @arg: the extra argument to the function.
*
* Sometimes an extra argument is required for a destructor; this
* saves the extra argument internally to avoid the caller having to
* do an extra allocation.
*
* Note that this can only fail if your allocfn fails and your errorfn returns.
*/
#define tal_add_destructor2(ptr, function, arg) \
tal_add_destructor2_((ptr), \
typesafe_cb_cast(void (*)(tal_t *, void *), \
void (*)(__typeof__(ptr), \
__typeof__(arg)), \
(function)), \
(arg))
/**
* tal_del_destructor - remove a destructor callback function.
* @ptr: The tal allocated object.
* @function: the function to call before it's freed.
*
* If @function has not been successfully added as a destructor, this returns
* false. Note that if we're inside the destructor call itself, this will
* return false.
*/
#define tal_del_destructor(ptr, function) \
tal_del_destructor_((ptr), typesafe_cb(void, void *, (function), (ptr)))
/**
* tal_del_destructor2 - remove 2-arg callback function.
* @ptr: The tal allocated object.
* @function: the function to call before it's freed.
* @arg: the extra argument to the function.
*
* If @function has not been successfully added as a destructor with
* @arg, this returns false.
*/
#define tal_del_destructor2(ptr, function, arg) \
tal_del_destructor2_((ptr), \
typesafe_cb_cast(void (*)(tal_t *, void *), \
void (*)(__typeof__(ptr), \
__typeof__(arg)), \
(function)), \
(arg))
enum tal_notify_type {
TAL_NOTIFY_FREE = 1,
TAL_NOTIFY_STEAL = 2,
TAL_NOTIFY_MOVE = 4,
TAL_NOTIFY_RESIZE = 8,
TAL_NOTIFY_RENAME = 16,
TAL_NOTIFY_ADD_CHILD = 32,
TAL_NOTIFY_DEL_CHILD = 64,
TAL_NOTIFY_ADD_NOTIFIER = 128,
TAL_NOTIFY_DEL_NOTIFIER = 256
};
/**
* tal_add_notifier - add a callback function when this context changes.
* @ptr: The tal allocated object, or NULL.
* @types: Bitwise OR of the types the callback is interested in.
* @callback: the function to call.
*
* Note that this can only fail if your allocfn fails and your errorfn
* returns. Also note that notifiers are not reliable in the case
* where an allocation fails, as they may be called before any
* allocation is actually done.
*
* TAL_NOTIFY_FREE is called when @ptr is freed, either directly or
* because an ancestor is freed: @info is the argument to tal_free().
* It is exactly equivalent to a destructor, with more information.
* errno is set to the value it was at the call of tal_free().
*
* TAL_NOTIFY_STEAL is called when @ptr's parent changes: @info is the
* new parent.
*
* TAL_NOTIFY_MOVE is called when @ptr is realloced (via tal_resize)
* and moved. In this case, @ptr arg here is the new memory, and
* @info is the old pointer.
*
* TAL_NOTIFY_RESIZE is called when @ptr is realloced via tal_resize:
* @info is the new size, in bytes. If the pointer has moved,
* TAL_NOTIFY_MOVE callbacks are called first.
*
* TAL_NOTIFY_ADD_CHILD/TAL_NOTIFY_DEL_CHILD are called when @ptr is
* the context for a tal() allocating call, or a direct child is
* tal_free()d: @info is the child. Note that TAL_NOTIFY_DEL_CHILD is
* not called when this context is tal_free()d: TAL_NOTIFY_FREE is
* considered sufficient for that case.
*
* TAL_NOTIFY_ADD_NOTIFIER/TAL_NOTIFIER_DEL_NOTIFIER are called when a
* notifier is added or removed (not for this notifier): @info is the
* callback. This is also called for tal_add_destructor and
* tal_del_destructor.
*/
#define tal_add_notifier(ptr, types, callback) \
tal_add_notifier_((ptr), (types), \
typesafe_cb_postargs(void, tal_t *, (callback), \
(ptr), \
enum tal_notify_type, void *))
/**
* tal_del_notifier - remove a notifier callback function.
* @ptr: The tal allocated object.
* @callback: the function to call.
*/
#define tal_del_notifier(ptr, callback) \
tal_del_notifier_((ptr), \
typesafe_cb_postargs(void, void *, (callback), \
(ptr), \
enum tal_notify_type, void *), \
false, NULL)
/**
* tal_set_name - attach a name to a tal pointer.
* @ptr: The tal allocated object.
* @name: The name to use.
*
* The name is copied, unless we're certain it's a string literal.
*/
#define tal_set_name(ptr, name) \
tal_set_name_((ptr), (name), TAL_IS_LITERAL(name))
/**
* tal_name - get the name for a tal pointer.
* @ptr: The tal allocated object.
*
* Returns NULL if no name has been set.
*/
const char *tal_name(const tal_t *ptr);
/**
* tal_count - get the count of objects in a tal object.
* @ptr: The tal allocated object (or NULL)
*
* Returns 0 if @ptr is NULL. Note that if the allocation was done as a
* different type to @ptr, the result may not match the @count argument
* (or implied 1) of that allocation!
*/
#define tal_count(p) (tal_bytelen(p) / sizeof(*p))
/**
* tal_bytelen - get the count of bytes in a tal object.
* @ptr: The tal allocated object (or NULL)
*
* Returns 0 if @ptr is NULL.
*/
size_t tal_bytelen(const tal_t *ptr);
/**
* tal_first - get the first immediate tal object child.
* @root: The tal allocated object to start with, or NULL.
*
* Returns NULL if there are no children.
*/
tal_t *tal_first(const tal_t *root);
/**
* tal_next - get the next immediate tal object child.
* @prev: The return value from tal_first or tal_next.
*
* Returns NULL if there are no more immediate children. This should be safe to
* call on an altering tree unless @prev is no longer valid.
*/
tal_t *tal_next(const tal_t *prev);
/**
* tal_parent - get the parent of a tal object.
* @ctx: The tal allocated object.
*
* Returns the parent, which may be NULL. Returns NULL if @ctx is NULL.
*/
tal_t *tal_parent(const tal_t *ctx);
/**
* tal_dup - duplicate an object.
* @ctx: The tal allocated object to be parent of the result (may be NULL).
* @type: the type (should match type of @p!)
* @p: the object to copy (or reparented if take()). Must not be NULL.
*/
#define tal_dup(ctx, type, p) \
tal_dup_label(ctx, type, p, TAL_LABEL(type, ""), false)
/**
* tal_dup_or_null - duplicate an object, or just pass NULL.
* @ctx: The tal allocated object to be parent of the result (may be NULL).
* @type: the type (should match type of @p!)
* @p: the object to copy (or reparented if take())
*
* if @p is NULL, just return NULL, otherwise to tal_dup().
*/
#define tal_dup_or_null(ctx, type, p) \
tal_dup_label(ctx, type, p, TAL_LABEL(type, ""), true)
/**
* tal_dup_arr - duplicate an array.
* @ctx: The tal allocated object to be parent of the result (may be NULL).
* @type: the type (should match type of @p!)
* @p: the array to copy (or resized & reparented if take())
* @n: the number of sizeof(type) entries to copy.
* @extra: the number of extra sizeof(type) entries to allocate.
*/
#define tal_dup_arr(ctx, type, p, n, extra) \
tal_dup_arr_label(ctx, type, p, n, extra, TAL_LABEL(type, "[]"))
/**
* tal_dup_arr - duplicate a tal array.
* @ctx: The tal allocated object to be parent of the result (may be NULL).
* @type: the type (should match type of @p!)
* @p: the tal array to copy (or resized & reparented if take())
*
* The comon case of duplicating an entire tal array.
*/
#define tal_dup_talarr(ctx, type, p) \
((type *)tal_dup_talarr_((ctx), tal_typechk_(p, type *), \
TAL_LABEL(type, "[]")))
/* Lower-level interfaces, where you want to supply your own label string. */
#define tal_label(ctx, type, label) \
((type *)tal_alloc_((ctx), sizeof(type), false, label))
#define talz_label(ctx, type, label) \
((type *)tal_alloc_((ctx), sizeof(type), true, label))
#define tal_arr_label(ctx, type, count, label) \
((type *)tal_alloc_arr_((ctx), sizeof(type), (count), false, label))
#define tal_arrz_label(ctx, type, count, label) \
((type *)tal_alloc_arr_((ctx), sizeof(type), (count), true, label))
#define tal_dup_label(ctx, type, p, label, nullok) \
((type *)tal_dup_((ctx), tal_typechk_(p, type *), \
sizeof(type), 1, 0, nullok, \
label))
#define tal_dup_arr_label(ctx, type, p, n, extra, label) \
((type *)tal_dup_((ctx), tal_typechk_(p, type *), \
sizeof(type), (n), (extra), false, \
label))
/**
* tal_set_backend - set the allocation or error functions to use
* @alloc_fn: allocator or NULL (default is malloc)
* @resize_fn: re-allocator or NULL (default is realloc)
* @free_fn: free function or NULL (default is free)
* @error_fn: called on errors or NULL (default is abort)
*
* The defaults are set up so tal functions never return NULL, but you
* can override erorr_fn to change that. error_fn can return, and is
* called if alloc_fn or resize_fn fail.
*
* If any parameter is NULL, that function is unchanged.
*/
void tal_set_backend(void *(*alloc_fn)(size_t size),
void *(*resize_fn)(void *, size_t size),
void (*free_fn)(void *),
void (*error_fn)(const char *msg));
/**
* tal_expand - expand a tal array with contents.
* @a1p: a pointer to the tal array to expand.
* @a2: the second array (can be take()).
* @num2: the number of elements in the second array.
*
* Note that *@a1 and @a2 should be the same type. tal_count(@a1) will
* be increased by @num2.
*
* Example:
* int *arr1 = tal_arrz(NULL, int, 2);
* int arr2[2] = { 1, 3 };
*
* tal_expand(&arr1, arr2, 2);
* assert(tal_count(arr1) == 4);
* assert(arr1[2] == 1);
* assert(arr1[3] == 3);
*/
#define tal_expand(a1p, a2, num2) \
tal_expand_((void **)(a1p), (a2), sizeof**(a1p), \
(num2) + 0*sizeof(*(a1p) == (a2)))
/**
* tal_cleanup - remove pointers from NULL node
*
* Internally, tal keeps a list of nodes allocated from @ctx NULL; this
* prevents valgrind from noticing memory leaks. This re-initializes
* that list to empty.
*
* It also calls take_cleanup() for you.
*/
void tal_cleanup(void);
/**
* tal_check - sanity check a tal context and its children.
* @ctx: a tal context, or NULL.
* @errorstr: a string to prepend calls to error_fn, or NULL.
*
* This sanity-checks a tal tree (unless NDEBUG is defined, in which case
* it simply returns true). If errorstr is not null, error_fn is called
* when a problem is found, otherwise it is not.
*
* See also:
* tal_set_backend()
*/
bool tal_check(const tal_t *ctx, const char *errorstr);
#ifdef CCAN_TAL_DEBUG
/**
* tal_dump - dump entire tal tree to stderr.
*
* This is a helper for debugging tal itself, which dumps all the tal internal
* state.
*/
void tal_dump(void);
#endif
/* Internal support functions */
#ifndef TAL_LABEL
#ifdef CCAN_TAL_NO_LABELS
#define TAL_LABEL(type, arr) NULL
#else
#ifdef CCAN_TAL_DEBUG
#define TAL_LABEL(type, arr) \
__FILE__ ":" stringify(__LINE__) ":" stringify(type) arr
#else
#define TAL_LABEL(type, arr) stringify(type) arr
#endif /* CCAN_TAL_DEBUG */
#endif
#endif
#if HAVE_BUILTIN_CONSTANT_P
#define TAL_IS_LITERAL(str) __builtin_constant_p(str)
#else
#define TAL_IS_LITERAL(str) (sizeof(&*(str)) != sizeof(char *))
#endif
bool tal_set_name_(tal_t *ctx, const char *name, bool literal);
#if HAVE_TYPEOF
#define tal_typeof(ptr) (__typeof__(ptr))
#if HAVE_STATEMENT_EXPR
/* Careful: ptr can be const foo *, ptype is foo *. Also, ptr could
* be an array, eg "hello". */
#define tal_typechk_(ptr, ptype) ({ __typeof__((ptr)+0) _p = (ptype)(ptr); _p; })
#else
#define tal_typechk_(ptr, ptype) (ptr)
#endif
#else /* !HAVE_TYPEOF */
#define tal_typeof(ptr)
#define tal_typechk_(ptr, ptype) (ptr)
#endif
void *tal_alloc_(const tal_t *ctx, size_t bytes, bool clear, const char *label);
void *tal_alloc_arr_(const tal_t *ctx, size_t bytes, size_t count, bool clear,
const char *label);
void *tal_dup_(const tal_t *ctx, const void *p TAKES, size_t size,
size_t n, size_t extra, bool nullok, const char *label);
void *tal_dup_talarr_(const tal_t *ctx, const tal_t *src TAKES,
const char *label);
tal_t *tal_steal_(const tal_t *new_parent, const tal_t *t);
bool tal_resize_(tal_t **ctxp, size_t size, size_t count, bool clear);
bool tal_expand_(tal_t **ctxp, const void *src TAKES, size_t size, size_t count);
bool tal_add_destructor_(const tal_t *ctx, void (*destroy)(void *me));
bool tal_add_destructor2_(const tal_t *ctx, void (*destroy)(void *me, void *arg),
void *arg);
bool tal_del_destructor_(const tal_t *ctx, void (*destroy)(void *me));
bool tal_del_destructor2_(const tal_t *ctx, void (*destroy)(void *me, void *arg),
void *arg);
bool tal_add_notifier_(const tal_t *ctx, enum tal_notify_type types,
void (*notify)(tal_t *ctx, enum tal_notify_type,
void *info));
bool tal_del_notifier_(const tal_t *ctx,
void (*notify)(tal_t *ctx, enum tal_notify_type,
void *info),
bool match_extra_arg, void *arg);
#endif /* CCAN_TAL_H */

315
damus-c/talstr.c

@ -0,0 +1,315 @@
/* Licensed under BSD-MIT - see LICENSE file for details */
#include <unistd.h>
#include <stdint.h>
#include <string.h>
#include <limits.h>
#include <stdlib.h>
#include "talstr.h"
#include <sys/types.h>
#include <regex.h>
#include <stdarg.h>
#include <unistd.h>
#include <stdio.h>
#include "str.h"
char *tal_strdup_(const tal_t *ctx, const char *p, const char *label)
{
/* We have to let through NULL for take(). */
return tal_dup_arr_label(ctx, char, p, p ? strlen(p) + 1: 1, 0, label);
}
char *tal_strndup_(const tal_t *ctx, const char *p, size_t n, const char *label)
{
size_t len;
char *ret;
/* We have to let through NULL for take(). */
if (likely(p))
len = strnlen(p, n);
else
len = n;
ret = tal_dup_arr_label(ctx, char, p, len, 1, label);
if (ret)
ret[len] = '\0';
return ret;
}
char *tal_fmt_(const tal_t *ctx, const char *label, const char *fmt, ...)
{
va_list ap;
char *ret;
va_start(ap, fmt);
ret = tal_vfmt_(ctx, fmt, ap, label);
va_end(ap);
return ret;
}
static bool do_vfmt(char **buf, size_t off, const char *fmt, va_list ap)
{
/* A decent guess to start. */
size_t max = strlen(fmt) * 2 + 1;
bool ok;
for (;;) {
va_list ap2;
int ret;
if (!tal_resize(buf, off + max)) {
ok = false;
break;
}
va_copy(ap2, ap);
ret = vsnprintf(*buf + off, max, fmt, ap2);
va_end(ap2);
if (ret < max) {
ok = true;
/* Make sure tal_count() is correct! */
tal_resize(buf, off + ret + 1);
break;
}
max *= 2;
}
if (taken(fmt))
tal_free(fmt);
return ok;
}
char *tal_vfmt_(const tal_t *ctx, const char *fmt, va_list ap, const char *label)
{
char *buf;
if (!fmt && taken(fmt))
return NULL;
/* A decent guess to start. */
buf = tal_arr_label(ctx, char, strlen(fmt) * 2, label);
if (!do_vfmt(&buf, 0, fmt, ap))
buf = tal_free(buf);
return buf;
}
bool tal_append_vfmt(char **baseptr, const char *fmt, va_list ap)
{
if (!fmt && taken(fmt))
return false;
return do_vfmt(baseptr, strlen(*baseptr), fmt, ap);
}
bool tal_append_fmt(char **baseptr, const char *fmt, ...)
{
va_list ap;
bool ret;
va_start(ap, fmt);
ret = tal_append_vfmt(baseptr, fmt, ap);
va_end(ap);
return ret;
}
char *tal_strcat_(const tal_t *ctx, const char *s1, const char *s2,
const char *label)
{
size_t len1, len2;
char *ret;
if (unlikely(!s2) && taken(s2)) {
if (taken(s1))
tal_free(s1);
return NULL;
}
/* We have to let through NULL for take(). */
len1 = s1 ? strlen(s1) : 0;
len2 = strlen(s2);
ret = tal_dup_arr_label(ctx, char, s1, len1, len2 + 1, label);
if (likely(ret))
memcpy(ret + len1, s2, len2 + 1);
if (taken(s2))
tal_free(s2);
return ret;
}
char **tal_strsplit_(const tal_t *ctx,
const char *string, const char *delims, enum strsplit flags,
const char *label)
{
char **parts, *str;
size_t max = 64, num = 0;
parts = tal_arr(ctx, char *, max + 1);
if (unlikely(!parts)) {
if (taken(string))
tal_free(string);
if (taken(delims))
tal_free(delims);
return NULL;
}
str = tal_strdup(parts, string);
if (unlikely(!str))
goto fail;
if (unlikely(!delims) && is_taken(delims))
goto fail;
if (flags == STR_NO_EMPTY)
str += strspn(str, delims);
while (*str != '\0') {
size_t len = strcspn(str, delims), dlen;
parts[num] = str;
dlen = strspn(str + len, delims);
parts[num][len] = '\0';
if (flags == STR_EMPTY_OK && dlen)
dlen = 1;
str += len + dlen;
if (++num == max && !tal_resize(&parts, max*=2 + 1))
goto fail;
}
parts[num] = NULL;
/* Ensure that tal_count() is correct. */
if (unlikely(!tal_resize(&parts, num+1)))
goto fail;
if (taken(delims))
tal_free(delims);
return parts;
fail:
tal_free(parts);
if (taken(delims))
tal_free(delims);
return NULL;
}
char *tal_strjoin_(const tal_t *ctx,
char *strings[], const char *delim, enum strjoin flags,
const char *label)
{
unsigned int i;
char *ret = NULL;
size_t totlen = 0, dlen;
if (unlikely(!strings) && is_taken(strings))
goto fail;
if (unlikely(!delim) && is_taken(delim))
goto fail;
dlen = strlen(delim);
ret = tal_arr_label(ctx, char, dlen*2+1, label);
if (!ret)
goto fail;
ret[0] = '\0';
for (i = 0; strings[i]; i++) {
size_t len = strlen(strings[i]);
if (flags == STR_NO_TRAIL && !strings[i+1])
dlen = 0;
if (!tal_resize(&ret, totlen + len + dlen + 1))
goto fail;
memcpy(ret + totlen, strings[i], len);
totlen += len;
memcpy(ret + totlen, delim, dlen);
totlen += dlen;
}
ret[totlen] = '\0';
/* Make sure tal_count() is correct! */
tal_resize(&ret, totlen+1);
out:
if (taken(strings))
tal_free(strings);
if (taken(delim))
tal_free(delim);
return ret;
fail:
ret = tal_free(ret);
goto out;
}
static size_t count_open_braces(const char *string)
{
#if 1
size_t num = 0, esc = 0;
while (*string) {
if (*string == '\\')
esc++;
else {
/* An odd number of \ means it's escaped. */
if (*string == '(' && (esc & 1) == 0)
num++;
esc = 0;
}
string++;
}
return num;
#else
return strcount(string, "(");
#endif
}
bool tal_strreg_(const tal_t *ctx, const char *string, const char *label,
const char *regex, ...)
{
size_t nmatch = 1 + count_open_braces(regex);
regmatch_t matches[nmatch];
regex_t r;
bool ret = false;
unsigned int i;
va_list ap;
if (unlikely(!regex) && is_taken(regex))
goto fail_no_re;
if (regcomp(&r, regex, REG_EXTENDED) != 0)
goto fail_no_re;
if (unlikely(!string) && is_taken(string))
goto fail;
if (regexec(&r, string, nmatch, matches, 0) != 0)
goto fail;
ret = true;
va_start(ap, regex);
for (i = 1; i < nmatch; i++) {
char **arg = va_arg(ap, char **);
if (arg) {
/* eg. ([a-z])? can give "no match". */
if (matches[i].rm_so == -1)
*arg = NULL;
else {
*arg = tal_strndup_(ctx,
string + matches[i].rm_so,
matches[i].rm_eo
- matches[i].rm_so,
label);
/* FIXME: If we fail, we set some and leak! */
if (!*arg) {
ret = false;
break;
}
}
}
}
va_end(ap);
fail:
regfree(&r);
fail_no_re:
if (taken(regex))
tal_free(regex);
if (taken(string))
tal_free(string);
return ret;
}

225
damus-c/talstr.h

@ -0,0 +1,225 @@
/* Licensed under BSD-MIT - see LICENSE file for details */
#ifndef CCAN_STR_TAL_H
#define CCAN_STR_TAL_H
#ifdef TAL_USE_TALLOC
#include <ccan/tal/talloc/talloc.h>
#else
#include "tal.h"
#endif
#include <string.h>
#include <stdbool.h>
/**
* tal_strdup - duplicate a string
* @ctx: NULL, or tal allocated object to be parent.
* @p: the string to copy (can be take()).
*
* The returned string will have tal_count() == strlen() + 1.
*/
#define tal_strdup(ctx, p) tal_strdup_(ctx, p, TAL_LABEL(char, "[]"))
char *tal_strdup_(const tal_t *ctx, const char *p TAKES, const char *label);
/**
* tal_strndup - duplicate a limited amount of a string.
* @ctx: NULL, or tal allocated object to be parent.
* @p: the string to copy (can be take()).
* @n: the maximum length to copy.
*
* Always gives a nul-terminated string, with strlen() <= @n.
* The returned string will have tal_count() == strlen() + 1.
*/
#define tal_strndup(ctx, p, n) tal_strndup_(ctx, p, n, TAL_LABEL(char, "[]"))
char *tal_strndup_(const tal_t *ctx, const char *p TAKES, size_t n,
const char *label);
/**
* tal_fmt - allocate a formatted string
* @ctx: NULL, or tal allocated object to be parent.
* @fmt: the printf-style format (can be take()).
*
* The returned string will have tal_count() == strlen() + 1.
*/
#define tal_fmt(ctx, ...) \
tal_fmt_(ctx, TAL_LABEL(char, "[]"), __VA_ARGS__)
char *tal_fmt_(const tal_t *ctx, const char *label, const char *fmt TAKES,
...) PRINTF_FMT(3,4);
/**
* tal_vfmt - allocate a formatted string (va_list version)
* @ctx: NULL, or tal allocated object to be parent.
* @fmt: the printf-style format (can be take()).
* @va: the va_list containing the format args.
*
* The returned string will have tal_count() == strlen() + 1.
*/
#define tal_vfmt(ctx, fmt, va) \
tal_vfmt_(ctx, fmt, va, TAL_LABEL(char, "[]"))
char *tal_vfmt_(const tal_t *ctx, const char *fmt TAKES, va_list ap,
const char *label)
PRINTF_FMT(2,0);
/**
* tal_append_fmt - append a formatted string to a talloc string.
* @baseptr: a pointer to the tal string to be appended to.
* @fmt: the printf-style format (can be take()).
*
* Returns false on allocation failure.
* Otherwise tal_count(*@baseptr) == strlen(*@baseptr) + 1.
*/
bool tal_append_fmt(char **baseptr, const char *fmt TAKES, ...) PRINTF_FMT(2,3);
/**
* tal_append_vfmt - append a formatted string to a talloc string (va_list)
* @baseptr: a pointer to the tal string to be appended to.
* @fmt: the printf-style format (can be take()).
* @va: the va_list containing the format args.
*
* Returns false on allocation failure.
* Otherwise tal_count(*@baseptr) == strlen(*@baseptr) + 1.
*/
bool tal_append_vfmt(char **baseptr, const char *fmt TAKES, va_list ap);
/**
* tal_strcat - join two strings together
* @ctx: NULL, or tal allocated object to be parent.
* @s1: the first string (can be take()).
* @s2: the second string (can be take()).
*
* The returned string will have tal_count() == strlen() + 1.
*/
#define tal_strcat(ctx, s1, s2) tal_strcat_(ctx, s1, s2, TAL_LABEL(char, "[]"))
char *tal_strcat_(const tal_t *ctx, const char *s1 TAKES, const char *s2 TAKES,
const char *label);
enum strsplit {
STR_EMPTY_OK,
STR_NO_EMPTY
};
/**
* tal_strsplit - Split string into an array of substrings
* @ctx: the context to tal from (often NULL).
* @string: the string to split (can be take()).
* @delims: delimiters where lines should be split (can be take()).
* @flags: whether to include empty substrings.
*
* This function splits a single string into multiple strings.
*
* If @string is take(), the returned array will point into the
* mangled @string.
*
* Multiple delimiters result in empty substrings. By definition, no
* delimiters will appear in the substrings.
*
* The final char * in the array will be NULL, and tal_count() will
* return the number of elements plus 1 (for that NULL).
*
* Example:
* #include <ccan/tal/str/str.h>
* ...
* static unsigned int count_long_lines(const char *string)
* {
* char **lines;
* unsigned int i, long_lines = 0;
*
* // Can only fail on out-of-memory.
* lines = tal_strsplit(NULL, string, "\n", STR_NO_EMPTY);
* for (i = 0; lines[i] != NULL; i++)
* if (strlen(lines[i]) > 80)
* long_lines++;
* tal_free(lines);
* return long_lines;
* }
*/
#define tal_strsplit(ctx, string, delims, flag) \
tal_strsplit_(ctx, string, delims, flag, TAL_LABEL(char *, "[]"))
char **tal_strsplit_(const tal_t *ctx,
const char *string TAKES,
const char *delims TAKES,
enum strsplit flag,
const char *label);
enum strjoin {
STR_TRAIL,
STR_NO_TRAIL
};
/**
* tal_strjoin - Join an array of substrings into one long string
* @ctx: the context to tal from (often NULL).
* @strings: the NULL-terminated array of strings to join (can be take())
* @delim: the delimiter to insert between the strings (can be take())
* @flags: whether to add a delimieter to the end
*
* This function joins an array of strings into a single string. The
* return value is allocated using tal. Each string in @strings is
* followed by a copy of @delim.
*
* The returned string will have tal_count() == strlen() + 1.
*
* Example:
* // Append the string "--EOL" to each line.
* static char *append_to_all_lines(const char *string)
* {
* char **lines, *ret;
*
* lines = tal_strsplit(NULL, string, "\n", STR_EMPTY_OK);
* ret = tal_strjoin(NULL, lines, "-- EOL\n", STR_TRAIL);
* tal_free(lines);
* return ret;
* }
*/
#define tal_strjoin(ctx, strings, delim, flags) \
tal_strjoin_(ctx, strings, delim, flags, TAL_LABEL(char, "[]"))
char *tal_strjoin_(const void *ctx,
char *strings[] TAKES,
const char *delim TAKES,
enum strjoin flags,
const char *label);
/**
* tal_strreg - match/extract from a string via (extended) regular expressions.
* @ctx: the context to tal from (often NULL)
* @string: the string to try to match (can be take())
* @regex: the regular expression to match (can be take())
* ...: pointers to strings to allocate for subexpressions.
*
* Returns true if we matched, in which case any parenthesized
* expressions in @regex are allocated and placed in the char **
* arguments following @regex. NULL arguments mean the match is not
* saved. The order of the strings is the order
* of opening braces in the expression: in the case of repeated
* expressions (eg "([a-z])*") the last one is saved, in the case of
* non-existent matches (eg "([a-z]*)?") the pointer is set to NULL.
*
* Allocation failures or malformed regular expressions return false.
* The allocated strings will have tal_count() == strlen() + 1.
*
* See Also:
* regcomp(3), regex(3).
*
* Example:
* // Given "My name is Rusty" outputs "Hello Rusty!\n"
* // Given "my first name is Rusty Russell" outputs "Hello Rusty Russell!\n"
* // Given "My name isnt Rusty Russell" outputs "Hello there!\n"
* int main(int argc, char *argv[])
* {
* char *person, *input;
*
* (void)argc;
* // Join args and trim trailing space.
* input = tal_strjoin(NULL, argv+1, " ", STR_NO_TRAIL);
* if (tal_strreg(NULL, input,
* "[Mm]y (first )?name is ([A-Za-z ]+)",
* NULL, &person))
* printf("Hello %s!\n", person);
* else
* printf("Hello there!\n");
* return 0;
* }
*/
#define tal_strreg(ctx, string, ...) \
tal_strreg_(ctx, string, TAL_LABEL(char, "[]"), __VA_ARGS__)
bool tal_strreg_(const void *ctx, const char *string TAKES,
const char *label, const char *regex, ...);
#endif /* CCAN_STR_TAL_H */

134
damus-c/typesafe_cb.h

@ -0,0 +1,134 @@
/* CC0 (Public domain) - see LICENSE file for details */
#ifndef CCAN_TYPESAFE_CB_H
#define CCAN_TYPESAFE_CB_H
#include "config.h"
#if HAVE_TYPEOF && HAVE_BUILTIN_CHOOSE_EXPR && HAVE_BUILTIN_TYPES_COMPATIBLE_P
/**
* typesafe_cb_cast - only cast an expression if it matches a given type
* @desttype: the type to cast to
* @oktype: the type we allow
* @expr: the expression to cast
*
* This macro is used to create functions which allow multiple types.
* The result of this macro is used somewhere that a @desttype type is
* expected: if @expr is exactly of type @oktype, then it will be
* cast to @desttype type, otherwise left alone.
*
* This macro can be used in static initializers.
*
* This is merely useful for warnings: if the compiler does not
* support the primitives required for typesafe_cb_cast(), it becomes an
* unconditional cast, and the @oktype argument is not used. In
* particular, this means that @oktype can be a type which uses the
* "typeof": it will not be evaluated if typeof is not supported.
*
* Example:
* // We can take either an unsigned long or a void *.
* void _set_some_value(void *val);
* #define set_some_value(e) \
* _set_some_value(typesafe_cb_cast(void *, unsigned long, (e)))
*/
#define typesafe_cb_cast(desttype, oktype, expr) \
__builtin_choose_expr( \
__builtin_types_compatible_p(__typeof__(0?(expr):(expr)), \
oktype), \
(desttype)(expr), (expr))
#else
#define typesafe_cb_cast(desttype, oktype, expr) ((desttype)(expr))
#endif
/**
* typesafe_cb_cast3 - only cast an expression if it matches given types
* @desttype: the type to cast to
* @ok1: the first type we allow
* @ok2: the second type we allow
* @ok3: the third type we allow
* @expr: the expression to cast
*
* This is a convenient wrapper for multiple typesafe_cb_cast() calls.
* You can chain them inside each other (ie. use typesafe_cb_cast()
* for expr) if you need more than 3 arguments.
*
* Example:
* // We can take either a long, unsigned long, void * or a const void *.
* void _set_some_value(void *val);
* #define set_some_value(expr) \
* _set_some_value(typesafe_cb_cast3(void *,, \
* long, unsigned long, const void *,\
* (expr)))
*/
#define typesafe_cb_cast3(desttype, ok1, ok2, ok3, expr) \
typesafe_cb_cast(desttype, ok1, \
typesafe_cb_cast(desttype, ok2, \
typesafe_cb_cast(desttype, ok3, \
(expr))))
/**
* typesafe_cb - cast a callback function if it matches the arg
* @rtype: the return type of the callback function
* @atype: the (pointer) type which the callback function expects.
* @fn: the callback function to cast
* @arg: the (pointer) argument to hand to the callback function.
*
* If a callback function takes a single argument, this macro does
* appropriate casts to a function which takes a single atype argument if the
* callback provided matches the @arg.
*
* It is assumed that @arg is of pointer type: usually @arg is passed
* or assigned to a void * elsewhere anyway.
*
* Example:
* void _register_callback(void (*fn)(void *arg), void *arg);
* #define register_callback(fn, arg) \
* _register_callback(typesafe_cb(void, (fn), void*, (arg)), (arg))
*/
#define typesafe_cb(rtype, atype, fn, arg) \
typesafe_cb_cast(rtype (*)(atype), \
rtype (*)(__typeof__(arg)), \
(fn))
/**
* typesafe_cb_preargs - cast a callback function if it matches the arg
* @rtype: the return type of the callback function
* @atype: the (pointer) type which the callback function expects.
* @fn: the callback function to cast
* @arg: the (pointer) argument to hand to the callback function.
*
* This is a version of typesafe_cb() for callbacks that take other arguments
* before the @arg.
*
* Example:
* void _register_callback(void (*fn)(int, void *arg), void *arg);
* #define register_callback(fn, arg) \
* _register_callback(typesafe_cb_preargs(void, void *, \
* (fn), (arg), int), \
* (arg))
*/
#define typesafe_cb_preargs(rtype, atype, fn, arg, ...) \
typesafe_cb_cast(rtype (*)(__VA_ARGS__, atype), \
rtype (*)(__VA_ARGS__, __typeof__(arg)), \
(fn))
/**
* typesafe_cb_postargs - cast a callback function if it matches the arg
* @rtype: the return type of the callback function
* @atype: the (pointer) type which the callback function expects.
* @fn: the callback function to cast
* @arg: the (pointer) argument to hand to the callback function.
*
* This is a version of typesafe_cb() for callbacks that take other arguments
* after the @arg.
*
* Example:
* void _register_callback(void (*fn)(void *arg, int), void *arg);
* #define register_callback(fn, arg) \
* _register_callback(typesafe_cb_postargs(void, (fn), void *, \
* (arg), int), \
* (arg))
*/
#define typesafe_cb_postargs(rtype, atype, fn, arg, ...) \
typesafe_cb_cast(rtype (*)(atype, __VA_ARGS__), \
rtype (*)(__typeof__(arg), __VA_ARGS__), \
(fn))
#endif /* CCAN_CAST_IF_TYPE_H */

19
damus-c/utf8.c

@ -178,3 +178,22 @@ size_t utf8_encode(uint32_t point, char dest[UTF8_MAX_LEN])
return 4; return 4;
} }
/* Check for valid UTF-8 */
bool utf8_check(const void *vbuf, size_t buflen)
{
const unsigned char *buf = vbuf;
struct utf8_state utf8_state = UTF8_STATE_INIT;
bool need_more = false;
for (size_t i = 0; i < buflen; i++) {
if (!utf8_decode(&utf8_state, buf[i])) {
need_more = true;
continue;
}
need_more = false;
if (errno != 0)
return false;
}
return !need_more;
}

3
damus-c/utf8.h

@ -51,4 +51,7 @@ bool utf8_decode(struct utf8_state *utf8_state, char c);
* Sets errno to ERANGE if point was invalid. * Sets errno to ERANGE if point was invalid.
*/ */
size_t utf8_encode(uint32_t point, char dest[UTF8_MAX_LEN]); size_t utf8_encode(uint32_t point, char dest[UTF8_MAX_LEN]);
/* Check for valid UTF-8 */
bool utf8_check(const void *vbuf, size_t buflen);
#endif /* CCAN_UTF8_H */ #endif /* CCAN_UTF8_H */

Loading…
Cancel
Save