You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

763 lines
26 KiB

#!/usr/bin/env python
#
# Electrum - lightweight Bitcoin client
# Copyright (C) 2011 thomasv@gitorious
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import hashlib, base64, ecdsa, re
def rev_hex(s):
return s.decode('hex')[::-1].encode('hex')
def int_to_hex(i, length=1):
s = hex(i)[2:].rstrip('L')
s = "0"*(2*length - len(s)) + s
return rev_hex(s)
def var_int(i):
# https://en.bitcoin.it/wiki/Protocol_specification#Variable_length_integer
if i<0xfd:
return int_to_hex(i)
elif i<=0xffff:
return "fd"+int_to_hex(i,2)
elif i<=0xffffffff:
return "fe"+int_to_hex(i,4)
else:
return "ff"+int_to_hex(i,8)
def op_push(i):
if i<0x4c:
return int_to_hex(i)
elif i<0xff:
return '4c' + int_to_hex(i)
elif i<0xffff:
return '4d' + int_to_hex(i,2)
else:
return '4e' + int_to_hex(i,4)
Hash = lambda x: hashlib.sha256(hashlib.sha256(x).digest()).digest()
hash_encode = lambda x: x[::-1].encode('hex')
hash_decode = lambda x: x.decode('hex')[::-1]
# pywallet openssl private key implementation
def i2d_ECPrivateKey(pkey, compressed=False):
if compressed:
key = '3081d30201010420' + \
'%064x' % pkey.secret + \
'a081a53081a2020101302c06072a8648ce3d0101022100' + \
'%064x' % _p + \
'3006040100040107042102' + \
'%064x' % _Gx + \
'022100' + \
'%064x' % _r + \
'020101a124032200'
else:
key = '308201130201010420' + \
'%064x' % pkey.secret + \
'a081a53081a2020101302c06072a8648ce3d0101022100' + \
'%064x' % _p + \
'3006040100040107044104' + \
'%064x' % _Gx + \
'%064x' % _Gy + \
'022100' + \
'%064x' % _r + \
'020101a144034200'
return key.decode('hex') + i2o_ECPublicKey(pkey.pubkey, compressed)
def i2o_ECPublicKey(pubkey, compressed=False):
# public keys are 65 bytes long (520 bits)
# 0x04 + 32-byte X-coordinate + 32-byte Y-coordinate
# 0x00 = point at infinity, 0x02 and 0x03 = compressed, 0x04 = uncompressed
# compressed keys: <sign> <x> where <sign> is 0x02 if y is even and 0x03 if y is odd
if compressed:
if pubkey.point.y() & 1:
key = '03' + '%064x' % pubkey.point.x()
else:
key = '02' + '%064x' % pubkey.point.x()
else:
key = '04' + \
'%064x' % pubkey.point.x() + \
'%064x' % pubkey.point.y()
return key.decode('hex')
# end pywallet openssl private key implementation
############ functions from pywallet #####################
def hash_160(public_key):
try:
md = hashlib.new('ripemd160')
md.update(hashlib.sha256(public_key).digest())
return md.digest()
except:
import ripemd
md = ripemd.new(hashlib.sha256(public_key).digest())
return md.digest()
def public_key_to_bc_address(public_key):
h160 = hash_160(public_key)
return hash_160_to_bc_address(h160)
def hash_160_to_bc_address(h160, addrtype = 0):
vh160 = chr(addrtype) + h160
h = Hash(vh160)
addr = vh160 + h[0:4]
return b58encode(addr)
def bc_address_to_hash_160(addr):
bytes = b58decode(addr, 25)
return ord(bytes[0]), bytes[1:21]
def encode_point(pubkey, compressed=False):
order = generator_secp256k1.order()
p = pubkey.pubkey.point
x_str = ecdsa.util.number_to_string(p.x(), order)
y_str = ecdsa.util.number_to_string(p.y(), order)
if compressed:
return chr(2 + (p.y() & 1)) + x_str
else:
return chr(4) + pubkey.to_string() #x_str + y_str
__b58chars = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'
__b58base = len(__b58chars)
def b58encode(v):
""" encode v, which is a string of bytes, to base58."""
long_value = 0L
for (i, c) in enumerate(v[::-1]):
long_value += (256**i) * ord(c)
result = ''
while long_value >= __b58base:
div, mod = divmod(long_value, __b58base)
result = __b58chars[mod] + result
long_value = div
result = __b58chars[long_value] + result
# Bitcoin does a little leading-zero-compression:
# leading 0-bytes in the input become leading-1s
nPad = 0
for c in v:
if c == '\0': nPad += 1
else: break
return (__b58chars[0]*nPad) + result
def b58decode(v, length):
""" decode v into a string of len bytes."""
long_value = 0L
for (i, c) in enumerate(v[::-1]):
long_value += __b58chars.find(c) * (__b58base**i)
result = ''
while long_value >= 256:
div, mod = divmod(long_value, 256)
result = chr(mod) + result
long_value = div
result = chr(long_value) + result
nPad = 0
for c in v:
if c == __b58chars[0]: nPad += 1
else: break
result = chr(0)*nPad + result
if length is not None and len(result) != length:
return None
return result
def EncodeBase58Check(vchIn):
hash = Hash(vchIn)
return b58encode(vchIn + hash[0:4])
def DecodeBase58Check(psz):
vchRet = b58decode(psz, None)
key = vchRet[0:-4]
csum = vchRet[-4:]
hash = Hash(key)
cs32 = hash[0:4]
if cs32 != csum:
return None
else:
return key
def PrivKeyToSecret(privkey):
return privkey[9:9+32]
def SecretToASecret(secret, compressed=False, addrtype=0):
vchIn = chr((addrtype+128)&255) + secret
if compressed: vchIn += '\01'
return EncodeBase58Check(vchIn)
def ASecretToSecret(key, addrtype=0):
vch = DecodeBase58Check(key)
if vch and vch[0] == chr((addrtype+128)&255):
return vch[1:]
else:
return False
def regenerate_key(sec):
b = ASecretToSecret(sec)
if not b:
return False
b = b[0:32]
secret = int('0x' + b.encode('hex'), 16)
return EC_KEY(secret)
def GetPubKey(pubkey, compressed=False):
return i2o_ECPublicKey(pubkey, compressed)
def GetPrivKey(pkey, compressed=False):
return i2d_ECPrivateKey(pkey, compressed)
def GetSecret(pkey):
return ('%064x' % pkey.secret).decode('hex')
def is_compressed(sec):
b = ASecretToSecret(sec)
return len(b) == 33
def address_from_private_key(sec):
# rebuild public key from private key, compressed or uncompressed
pkey = regenerate_key(sec)
assert pkey
# figure out if private key is compressed
compressed = is_compressed(sec)
# rebuild private and public key from regenerated secret
private_key = GetPrivKey(pkey, compressed)
public_key = GetPubKey(pkey.pubkey, compressed)
address = public_key_to_bc_address(public_key)
return address
########### end pywallet functions #######################
# secp256k1, http://www.oid-info.com/get/1.3.132.0.10
_p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2FL
_r = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141L
_b = 0x0000000000000000000000000000000000000000000000000000000000000007L
_a = 0x0000000000000000000000000000000000000000000000000000000000000000L
_Gx = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798L
_Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8L
curve_secp256k1 = ecdsa.ellipticcurve.CurveFp( _p, _a, _b )
generator_secp256k1 = ecdsa.ellipticcurve.Point( curve_secp256k1, _Gx, _Gy, _r )
oid_secp256k1 = (1,3,132,0,10)
SECP256k1 = ecdsa.curves.Curve("SECP256k1", curve_secp256k1, generator_secp256k1, oid_secp256k1 )
from ecdsa.util import string_to_number, number_to_string
def msg_magic(message):
return "\x18Bitcoin Signed Message:\n" + chr( len(message) ) + message
class EC_KEY(object):
def __init__( self, secret ):
self.pubkey = ecdsa.ecdsa.Public_key( generator_secp256k1, generator_secp256k1 * secret )
self.privkey = ecdsa.ecdsa.Private_key( self.pubkey, secret )
self.secret = secret
def sign_message(self, message, compressed, address):
private_key = ecdsa.SigningKey.from_secret_exponent( self.secret, curve = SECP256k1 )
public_key = private_key.get_verifying_key()
signature = private_key.sign_digest( Hash( msg_magic(message) ), sigencode = ecdsa.util.sigencode_string )
assert public_key.verify_digest( signature, Hash( msg_magic(message) ), sigdecode = ecdsa.util.sigdecode_string)
for i in range(4):
sig = base64.b64encode( chr(27 + i + (4 if compressed else 0)) + signature )
try:
self.verify_message( address, sig, message)
return sig
except:
continue
else:
raise BaseException("error: cannot sign message")
@classmethod
def verify_message(self, address, signature, message):
""" See http://www.secg.org/download/aid-780/sec1-v2.pdf for the math """
from ecdsa import numbertheory, ellipticcurve, util
import msqr
curve = curve_secp256k1
G = generator_secp256k1
order = G.order()
# extract r,s from signature
sig = base64.b64decode(signature)
if len(sig) != 65: raise BaseException("Wrong encoding")
r,s = util.sigdecode_string(sig[1:], order)
nV = ord(sig[0])
if nV < 27 or nV >= 35:
raise BaseException("Bad encoding")
if nV >= 31:
compressed = True
nV -= 4
else:
compressed = False
recid = nV - 27
# 1.1
x = r + (recid/2) * order
# 1.3
alpha = ( x * x * x + curve.a() * x + curve.b() ) % curve.p()
beta = msqr.modular_sqrt(alpha, curve.p())
y = beta if (beta - recid) % 2 == 0 else curve.p() - beta
# 1.4 the constructor checks that nR is at infinity
R = ellipticcurve.Point(curve, x, y, order)
# 1.5 compute e from message:
h = Hash( msg_magic(message) )
e = string_to_number(h)
minus_e = -e % order
# 1.6 compute Q = r^-1 (sR - eG)
inv_r = numbertheory.inverse_mod(r,order)
Q = inv_r * ( s * R + minus_e * G )
public_key = ecdsa.VerifyingKey.from_public_point( Q, curve = SECP256k1 )
# check that Q is the public key
public_key.verify_digest( sig[1:], h, sigdecode = ecdsa.util.sigdecode_string)
# check that we get the original signing address
addr = public_key_to_bc_address( encode_point(public_key, compressed) )
if address != addr:
raise BaseException("Bad signature")
###################################### BIP32 ##############################
def bip32_init(seed):
import hmac
I = hmac.new("Bitcoin seed", seed, hashlib.sha512).digest()
print "seed", seed.encode('hex')
master_secret = I[0:32]
master_chain = I[32:]
# public key
curve = SECP256k1
master_private_key = ecdsa.SigningKey.from_string( master_secret, curve = SECP256k1 )
master_public_key = master_private_key.get_verifying_key()
K = master_public_key.to_string()
K_compressed = GetPubKey(master_public_key.pubkey,True)
return master_secret, master_chain, K, K_compressed
def CKD(k, c, n):
import hmac
from ecdsa.util import string_to_number, number_to_string
order = generator_secp256k1.order()
keypair = EC_KEY(string_to_number(k))
K = GetPubKey(keypair.pubkey,True)
I = hmac.new(c, K + rev_hex(int_to_hex(n,4)).decode('hex'), hashlib.sha512).digest()
k_n = number_to_string( (string_to_number(I[0:32]) * string_to_number(k)) % order , order )
c_n = I[32:]
return k_n, c_n
def CKD_prime(K, c, n):
import hmac
from ecdsa.util import string_to_number, number_to_string
order = generator_secp256k1.order()
K_public_key = ecdsa.VerifyingKey.from_string( K, curve = SECP256k1 )
K_compressed = GetPubKey(K_public_key.pubkey,True)
I = hmac.new(c, K_compressed + rev_hex(int_to_hex(n,4)).decode('hex'), hashlib.sha512).digest()
#pubkey = ecdsa.ecdsa.Public_key( generator_secp256k1, string_to_number(I[0:32]) * K_public_key.pubkey.point )
public_key = ecdsa.VerifyingKey.from_public_point( string_to_number(I[0:32]) * K_public_key.pubkey.point, curve = SECP256k1 )
K_n = public_key.to_string()
K_n_compressed = GetPubKey(public_key.pubkey,True)
c_n = I[32:]
return K_n, K_n_compressed, c_n
class DeterministicSequence:
""" Privatekey(type,n) = Master_private_key + H(n|S|type) """
def __init__(self, master_public_key):
self.master_public_key = master_public_key
@classmethod
def from_seed(klass, seed):
curve = SECP256k1
secexp = klass.stretch_key(seed)
master_private_key = ecdsa.SigningKey.from_secret_exponent( secexp, curve = SECP256k1 )
master_public_key = master_private_key.get_verifying_key().to_string().encode('hex')
self = klass(master_public_key)
return self
@classmethod
def stretch_key(self,seed):
oldseed = seed
for i in range(100000):
seed = hashlib.sha256(seed + oldseed).digest()
return string_to_number( seed )
def get_sequence(self,n,for_change):
return string_to_number( Hash( "%d:%d:"%(n,for_change) + self.master_public_key.decode('hex') ) )
def get_pubkey(self, n, for_change):
curve = SECP256k1
z = self.get_sequence(n, for_change)
master_public_key = ecdsa.VerifyingKey.from_string( self.master_public_key.decode('hex'), curve = SECP256k1 )
pubkey_point = master_public_key.pubkey.point + z*curve.generator
public_key2 = ecdsa.VerifyingKey.from_public_point( pubkey_point, curve = SECP256k1 )
return '04' + public_key2.to_string().encode('hex')
def get_private_key(self, n, for_change, seed):
order = generator_secp256k1.order()
secexp = self.stretch_key(seed)
secexp = ( secexp + self.get_sequence(n,for_change) ) % order
pk = number_to_string( secexp, generator_secp256k1.order() )
compressed = False
return SecretToASecret( pk, compressed )
def check_seed(self, seed):
curve = SECP256k1
secexp = self.stretch_key(seed)
master_private_key = ecdsa.SigningKey.from_secret_exponent( secexp, curve = SECP256k1 )
master_public_key = master_private_key.get_verifying_key().to_string().encode('hex')
if master_public_key != self.master_public_key:
print_error('invalid password (mpk)')
raise BaseException('Invalid password')
return True
################################## transactions
def raw_tx( inputs, outputs, for_sig = None ):
s = int_to_hex(1,4) # version
s += var_int( len(inputs) ) # number of inputs
for i in range(len(inputs)):
txin = inputs[i]
s += txin['tx_hash'].decode('hex')[::-1].encode('hex') # prev hash
s += int_to_hex(txin['index'],4) # prev index
if for_sig is None:
pubkeysig = txin.get('pubkeysig')
if pubkeysig:
pubkey, sig = pubkeysig[0]
sig = sig + chr(1) # hashtype
script = op_push( len(sig))
script += sig.encode('hex')
script += op_push( len(pubkey))
script += pubkey.encode('hex')
else:
signatures = txin['signatures']
pubkeys = txin['pubkeys']
script = '00' # op_0
for sig in signatures:
sig = sig + '01'
script += op_push(len(sig)/2)
script += sig
redeem_script = multisig_script(pubkeys,2)
script += op_push(len(redeem_script)/2)
script += redeem_script
elif for_sig==i:
if txin.get('redeemScript'):
script = txin['redeemScript'] # p2sh uses the inner script
else:
script = txin['raw_output_script'] # scriptsig
else:
script=''
s += var_int( len(script)/2 ) # script length
s += script
s += "ffffffff" # sequence
s += var_int( len(outputs) ) # number of outputs
for output in outputs:
addr, amount = output
s += int_to_hex( amount, 8) # amount
addrtype, hash_160 = bc_address_to_hash_160(addr)
if addrtype == 0:
script = '76a9' # op_dup, op_hash_160
script += '14' # push 0x14 bytes
script += hash_160.encode('hex')
script += '88ac' # op_equalverify, op_checksig
elif addrtype == 5:
script = 'a9' # op_hash_160
script += '14' # push 0x14 bytes
script += hash_160.encode('hex')
script += '87' # op_equal
else:
raise
s += var_int( len(script)/2 ) # script length
s += script # script
s += int_to_hex(0,4) # lock time
if for_sig is not None and for_sig != -1:
s += int_to_hex(1, 4) # hash type
return s
def multisig_script(public_keys, num=None):
# supports only "2 of 2", and "2 of 3" transactions
n = len(public_keys)
if num is None:
num = n
assert num <= n and n <= 3 and n >= 2
if num==2:
s = '52'
elif num == 3:
s = '53'
else:
raise
for k in public_keys:
s += var_int(len(k)/2)
s += k
if n==2:
s += '52'
elif n==3:
s += '53'
else:
raise
s += 'ae'
return s
class Transaction:
def __init__(self, raw):
self.raw = raw
self.deserialize()
self.inputs = self.d['inputs']
self.outputs = self.d['outputs']
self.outputs = map(lambda x: (x['address'],x['value']), self.outputs)
@classmethod
def from_io(klass, inputs, outputs):
raw = raw_tx(inputs, outputs, for_sig = -1) # for_sig=-1 means do not sign
self = klass(raw)
self.inputs = inputs
self.outputs = outputs
return self
def __str__(self):
return self.raw
12 years ago
def for_sig(self,i):
return raw_tx(self.inputs, self.outputs, for_sig = i)
def hash(self):
return Hash(self.raw.decode('hex') )[::-1].encode('hex')
def sign(self, private_keys):
import deserialize
for i in range(len(self.inputs)):
txin = self.inputs[i]
tx_for_sig = raw_tx( self.inputs, self.outputs, for_sig = i )
if txin.get('redeemScript'):
# 1 parse the redeem script
num, redeem_pubkeys = deserialize.parse_redeemScript(txin.get('redeemScript'))
self.inputs[i]["pubkeys"] = redeem_pubkeys
# build list of public/private keys
keypairs = {}
for sec in private_keys.values():
compressed = is_compressed(sec)
pkey = regenerate_key(sec)
pubkey = GetPubKey(pkey.pubkey, compressed)
keypairs[ pubkey.encode('hex') ] = sec
# list of already existing signatures
signatures = txin.get("signatures",[])
found = False
complete = True
# check if we have a key corresponding to the redeem script
for pubkey in redeem_pubkeys:
public_key = ecdsa.VerifyingKey.from_string(pubkey[2:].decode('hex'), curve = SECP256k1)
for s in signatures:
try:
public_key.verify_digest( s.decode('hex')[:-1], Hash( tx_for_sig.decode('hex') ), sigdecode = ecdsa.util.sigdecode_der)
break
except ecdsa.keys.BadSignatureError:
continue
else:
if pubkey in keypairs.keys():
# add signature
sec = keypairs[pubkey]
compressed = is_compressed(sec)
pkey = regenerate_key(sec)
secexp = pkey.secret
private_key = ecdsa.SigningKey.from_secret_exponent( secexp, curve = SECP256k1 )
public_key = private_key.get_verifying_key()
sig = private_key.sign_digest( Hash( tx_for_sig.decode('hex') ), sigencode = ecdsa.util.sigencode_der )
assert public_key.verify_digest( sig, Hash( tx_for_sig.decode('hex') ), sigdecode = ecdsa.util.sigdecode_der)
signatures.append( sig.encode('hex') )
found = True
else:
complete = False
if not found:
raise BaseException("public key not found", keypairs.keys(), redeem_pubkeys)
# for p2sh, pubkeysig is a tuple (may be incomplete)
self.inputs[i]["signatures"] = signatures
self.is_complete = complete
else:
sec = private_keys[txin['address']]
compressed = is_compressed(sec)
pkey = regenerate_key(sec)
secexp = pkey.secret
private_key = ecdsa.SigningKey.from_secret_exponent( secexp, curve = SECP256k1 )
public_key = private_key.get_verifying_key()
pkey = EC_KEY(secexp)
pubkey = GetPubKey(pkey.pubkey, compressed)
sig = private_key.sign_digest( Hash( tx_for_sig.decode('hex') ), sigencode = ecdsa.util.sigencode_der )
assert public_key.verify_digest( sig, Hash( tx_for_sig.decode('hex') ), sigdecode = ecdsa.util.sigdecode_der)
self.inputs[i]["pubkeysig"] = [(pubkey, sig)]
self.is_complete = True
self.raw = raw_tx( self.inputs, self.outputs )
def deserialize(self):
import deserialize
vds = deserialize.BCDataStream()
vds.write(self.raw.decode('hex'))
self.d = deserialize.parse_Transaction(vds)
return self.d
def has_address(self, addr):
found = False
for txin in self.inputs:
if addr == txin.get('address'):
found = True
break
for txout in self.outputs:
if addr == txout[0]:
found = True
break
return found
def get_value(self, addresses, prevout_values):
# return the balance for that tx
is_send = False
is_pruned = False
v_in = v_out = v_out_mine = 0
for item in self.inputs:
addr = item.get('address')
if addr in addresses:
is_send = True
key = item['prevout_hash'] + ':%d'%item['prevout_n']
value = prevout_values.get( key )
if value is None:
is_pruned = True
else:
v_in += value
else:
is_pruned = True
for item in self.outputs:
addr, value = item
v_out += value
if addr in addresses:
v_out_mine += value
if not is_pruned:
# all inputs are mine:
fee = v_out - v_in
v = v_out_mine - v_in
else:
# some inputs are mine:
fee = None
if is_send:
v = v_out_mine - v_out
else:
# no input is mine
v = v_out_mine
return is_send, v, fee
def test_bip32():
seed = "ff000000000000000000000000000000".decode('hex')
master_secret, master_chain, master_public_key, master_public_key_compressed = bip32_init(seed)
print "secret key", master_secret.encode('hex')
print "chain code", master_chain.encode('hex')
key_id = hash_160(master_public_key_compressed)
print "keyid", key_id.encode('hex')
print "base58"
print "address", hash_160_to_bc_address(key_id)
print "secret key", SecretToASecret(master_secret, True)
print "-- m/0 --"
k0, c0 = CKD(master_secret, master_chain, 0)
print "secret", k0.encode('hex')
print "chain", c0.encode('hex')
print "secret key", SecretToASecret(k0, True)
K0, K0_compressed, c0 = CKD_prime(master_public_key, master_chain, 0)
print "address", hash_160_to_bc_address(hash_160(K0_compressed))
print "-- m/0/1 --"
K01, K01_compressed, c01 = CKD_prime(K0, c0, 1)
print "address", hash_160_to_bc_address(hash_160(K01_compressed))
print "-- m/0/1/3 --"
K013, K013_compressed, c013 = CKD_prime(K01, c01, 3)
print "address", hash_160_to_bc_address(hash_160(K013_compressed))
print "-- m/0/1/3/7 --"
K0137, K0137_compressed, c0137 = CKD_prime(K013, c013, 7)
print "address", hash_160_to_bc_address(hash_160(K0137_compressed))
if __name__ == '__main__':
test_bip32()