|
|
|
#!/usr/bin/env python
|
|
|
|
#
|
|
|
|
# Electrum - lightweight Bitcoin client
|
|
|
|
# Copyright (C) 2011 thomasv@gitorious
|
|
|
|
#
|
|
|
|
# This program is free software: you can redistribute it and/or modify
|
|
|
|
# it under the terms of the GNU General Public License as published by
|
|
|
|
# the Free Software Foundation, either version 3 of the License, or
|
|
|
|
# (at your option) any later version.
|
|
|
|
#
|
|
|
|
# This program is distributed in the hope that it will be useful,
|
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
# GNU General Public License for more details.
|
|
|
|
#
|
|
|
|
# You should have received a copy of the GNU General Public License
|
|
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
|
|
|
|
|
|
|
|
import hashlib, base64, ecdsa, re
|
|
|
|
|
|
|
|
|
|
|
|
def rev_hex(s):
|
|
|
|
return s.decode('hex')[::-1].encode('hex')
|
|
|
|
|
|
|
|
def int_to_hex(i, length=1):
|
|
|
|
s = hex(i)[2:].rstrip('L')
|
|
|
|
s = "0"*(2*length - len(s)) + s
|
|
|
|
return rev_hex(s)
|
|
|
|
|
|
|
|
def var_int(i):
|
|
|
|
# https://en.bitcoin.it/wiki/Protocol_specification#Variable_length_integer
|
|
|
|
if i<0xfd:
|
|
|
|
return int_to_hex(i)
|
|
|
|
elif i<=0xffff:
|
|
|
|
return "fd"+int_to_hex(i,2)
|
|
|
|
elif i<=0xffffffff:
|
|
|
|
return "fe"+int_to_hex(i,4)
|
|
|
|
else:
|
|
|
|
return "ff"+int_to_hex(i,8)
|
|
|
|
|
|
|
|
def op_push(i):
|
|
|
|
if i<0x4c:
|
|
|
|
return int_to_hex(i)
|
|
|
|
elif i<0xff:
|
|
|
|
return '4c' + int_to_hex(i)
|
|
|
|
elif i<0xffff:
|
|
|
|
return '4d' + int_to_hex(i,2)
|
|
|
|
else:
|
|
|
|
return '4e' + int_to_hex(i,4)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hash = lambda x: hashlib.sha256(hashlib.sha256(x).digest()).digest()
|
|
|
|
hash_encode = lambda x: x[::-1].encode('hex')
|
|
|
|
hash_decode = lambda x: x.decode('hex')[::-1]
|
|
|
|
|
|
|
|
|
|
|
|
# pywallet openssl private key implementation
|
|
|
|
|
|
|
|
def i2d_ECPrivateKey(pkey, compressed=False):
|
|
|
|
if compressed:
|
|
|
|
key = '3081d30201010420' + \
|
|
|
|
'%064x' % pkey.secret + \
|
|
|
|
'a081a53081a2020101302c06072a8648ce3d0101022100' + \
|
|
|
|
'%064x' % _p + \
|
|
|
|
'3006040100040107042102' + \
|
|
|
|
'%064x' % _Gx + \
|
|
|
|
'022100' + \
|
|
|
|
'%064x' % _r + \
|
|
|
|
'020101a124032200'
|
|
|
|
else:
|
|
|
|
key = '308201130201010420' + \
|
|
|
|
'%064x' % pkey.secret + \
|
|
|
|
'a081a53081a2020101302c06072a8648ce3d0101022100' + \
|
|
|
|
'%064x' % _p + \
|
|
|
|
'3006040100040107044104' + \
|
|
|
|
'%064x' % _Gx + \
|
|
|
|
'%064x' % _Gy + \
|
|
|
|
'022100' + \
|
|
|
|
'%064x' % _r + \
|
|
|
|
'020101a144034200'
|
|
|
|
|
|
|
|
return key.decode('hex') + i2o_ECPublicKey(pkey.pubkey, compressed)
|
|
|
|
|
|
|
|
def i2o_ECPublicKey(pubkey, compressed=False):
|
|
|
|
# public keys are 65 bytes long (520 bits)
|
|
|
|
# 0x04 + 32-byte X-coordinate + 32-byte Y-coordinate
|
|
|
|
# 0x00 = point at infinity, 0x02 and 0x03 = compressed, 0x04 = uncompressed
|
|
|
|
# compressed keys: <sign> <x> where <sign> is 0x02 if y is even and 0x03 if y is odd
|
|
|
|
if compressed:
|
|
|
|
if pubkey.point.y() & 1:
|
|
|
|
key = '03' + '%064x' % pubkey.point.x()
|
|
|
|
else:
|
|
|
|
key = '02' + '%064x' % pubkey.point.x()
|
|
|
|
else:
|
|
|
|
key = '04' + \
|
|
|
|
'%064x' % pubkey.point.x() + \
|
|
|
|
'%064x' % pubkey.point.y()
|
|
|
|
|
|
|
|
return key.decode('hex')
|
|
|
|
|
|
|
|
# end pywallet openssl private key implementation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
############ functions from pywallet #####################
|
|
|
|
|
|
|
|
def hash_160(public_key):
|
|
|
|
try:
|
|
|
|
md = hashlib.new('ripemd160')
|
|
|
|
md.update(hashlib.sha256(public_key).digest())
|
|
|
|
return md.digest()
|
|
|
|
except:
|
|
|
|
import ripemd
|
|
|
|
md = ripemd.new(hashlib.sha256(public_key).digest())
|
|
|
|
return md.digest()
|
|
|
|
|
|
|
|
|
|
|
|
def public_key_to_bc_address(public_key):
|
|
|
|
h160 = hash_160(public_key)
|
|
|
|
return hash_160_to_bc_address(h160)
|
|
|
|
|
|
|
|
def hash_160_to_bc_address(h160, addrtype = 0):
|
|
|
|
vh160 = chr(addrtype) + h160
|
|
|
|
h = Hash(vh160)
|
|
|
|
addr = vh160 + h[0:4]
|
|
|
|
return b58encode(addr)
|
|
|
|
|
|
|
|
def bc_address_to_hash_160(addr):
|
|
|
|
bytes = b58decode(addr, 25)
|
|
|
|
return ord(bytes[0]), bytes[1:21]
|
|
|
|
|
|
|
|
def encode_point(pubkey, compressed=False):
|
|
|
|
order = generator_secp256k1.order()
|
|
|
|
p = pubkey.pubkey.point
|
|
|
|
x_str = ecdsa.util.number_to_string(p.x(), order)
|
|
|
|
y_str = ecdsa.util.number_to_string(p.y(), order)
|
|
|
|
if compressed:
|
|
|
|
return chr(2 + (p.y() & 1)) + x_str
|
|
|
|
else:
|
|
|
|
return chr(4) + pubkey.to_string() #x_str + y_str
|
|
|
|
|
|
|
|
__b58chars = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'
|
|
|
|
__b58base = len(__b58chars)
|
|
|
|
|
|
|
|
def b58encode(v):
|
|
|
|
""" encode v, which is a string of bytes, to base58."""
|
|
|
|
|
|
|
|
long_value = 0L
|
|
|
|
for (i, c) in enumerate(v[::-1]):
|
|
|
|
long_value += (256**i) * ord(c)
|
|
|
|
|
|
|
|
result = ''
|
|
|
|
while long_value >= __b58base:
|
|
|
|
div, mod = divmod(long_value, __b58base)
|
|
|
|
result = __b58chars[mod] + result
|
|
|
|
long_value = div
|
|
|
|
result = __b58chars[long_value] + result
|
|
|
|
|
|
|
|
# Bitcoin does a little leading-zero-compression:
|
|
|
|
# leading 0-bytes in the input become leading-1s
|
|
|
|
nPad = 0
|
|
|
|
for c in v:
|
|
|
|
if c == '\0': nPad += 1
|
|
|
|
else: break
|
|
|
|
|
|
|
|
return (__b58chars[0]*nPad) + result
|
|
|
|
|
|
|
|
def b58decode(v, length):
|
|
|
|
""" decode v into a string of len bytes."""
|
|
|
|
long_value = 0L
|
|
|
|
for (i, c) in enumerate(v[::-1]):
|
|
|
|
long_value += __b58chars.find(c) * (__b58base**i)
|
|
|
|
|
|
|
|
result = ''
|
|
|
|
while long_value >= 256:
|
|
|
|
div, mod = divmod(long_value, 256)
|
|
|
|
result = chr(mod) + result
|
|
|
|
long_value = div
|
|
|
|
result = chr(long_value) + result
|
|
|
|
|
|
|
|
nPad = 0
|
|
|
|
for c in v:
|
|
|
|
if c == __b58chars[0]: nPad += 1
|
|
|
|
else: break
|
|
|
|
|
|
|
|
result = chr(0)*nPad + result
|
|
|
|
if length is not None and len(result) != length:
|
|
|
|
return None
|
|
|
|
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
|
|
def EncodeBase58Check(vchIn):
|
|
|
|
hash = Hash(vchIn)
|
|
|
|
return b58encode(vchIn + hash[0:4])
|
|
|
|
|
|
|
|
def DecodeBase58Check(psz):
|
|
|
|
vchRet = b58decode(psz, None)
|
|
|
|
key = vchRet[0:-4]
|
|
|
|
csum = vchRet[-4:]
|
|
|
|
hash = Hash(key)
|
|
|
|
cs32 = hash[0:4]
|
|
|
|
if cs32 != csum:
|
|
|
|
return None
|
|
|
|
else:
|
|
|
|
return key
|
|
|
|
|
|
|
|
def PrivKeyToSecret(privkey):
|
|
|
|
return privkey[9:9+32]
|
|
|
|
|
|
|
|
def SecretToASecret(secret, compressed=False, addrtype=0):
|
|
|
|
vchIn = chr((addrtype+128)&255) + secret
|
|
|
|
if compressed: vchIn += '\01'
|
|
|
|
return EncodeBase58Check(vchIn)
|
|
|
|
|
|
|
|
def ASecretToSecret(key, addrtype=0):
|
|
|
|
vch = DecodeBase58Check(key)
|
|
|
|
if vch and vch[0] == chr((addrtype+128)&255):
|
|
|
|
return vch[1:]
|
|
|
|
else:
|
|
|
|
return False
|
|
|
|
|
|
|
|
def regenerate_key(sec):
|
|
|
|
b = ASecretToSecret(sec)
|
|
|
|
if not b:
|
|
|
|
return False
|
|
|
|
b = b[0:32]
|
|
|
|
secret = int('0x' + b.encode('hex'), 16)
|
|
|
|
return EC_KEY(secret)
|
|
|
|
|
|
|
|
def GetPubKey(pubkey, compressed=False):
|
|
|
|
return i2o_ECPublicKey(pubkey, compressed)
|
|
|
|
|
|
|
|
def GetPrivKey(pkey, compressed=False):
|
|
|
|
return i2d_ECPrivateKey(pkey, compressed)
|
|
|
|
|
|
|
|
def GetSecret(pkey):
|
|
|
|
return ('%064x' % pkey.secret).decode('hex')
|
|
|
|
|
|
|
|
def is_compressed(sec):
|
|
|
|
b = ASecretToSecret(sec)
|
|
|
|
return len(b) == 33
|
|
|
|
|
|
|
|
|
|
|
|
def address_from_private_key(sec):
|
|
|
|
# rebuild public key from private key, compressed or uncompressed
|
|
|
|
pkey = regenerate_key(sec)
|
|
|
|
assert pkey
|
|
|
|
|
|
|
|
# figure out if private key is compressed
|
|
|
|
compressed = is_compressed(sec)
|
|
|
|
|
|
|
|
# rebuild private and public key from regenerated secret
|
|
|
|
private_key = GetPrivKey(pkey, compressed)
|
|
|
|
public_key = GetPubKey(pkey.pubkey, compressed)
|
|
|
|
address = public_key_to_bc_address(public_key)
|
|
|
|
return address
|
|
|
|
|
|
|
|
|
|
|
|
########### end pywallet functions #######################
|
|
|
|
|
|
|
|
# secp256k1, http://www.oid-info.com/get/1.3.132.0.10
|
|
|
|
_p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2FL
|
|
|
|
_r = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141L
|
|
|
|
_b = 0x0000000000000000000000000000000000000000000000000000000000000007L
|
|
|
|
_a = 0x0000000000000000000000000000000000000000000000000000000000000000L
|
|
|
|
_Gx = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798L
|
|
|
|
_Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8L
|
|
|
|
curve_secp256k1 = ecdsa.ellipticcurve.CurveFp( _p, _a, _b )
|
|
|
|
generator_secp256k1 = ecdsa.ellipticcurve.Point( curve_secp256k1, _Gx, _Gy, _r )
|
|
|
|
oid_secp256k1 = (1,3,132,0,10)
|
|
|
|
SECP256k1 = ecdsa.curves.Curve("SECP256k1", curve_secp256k1, generator_secp256k1, oid_secp256k1 )
|
|
|
|
|
|
|
|
from ecdsa.util import string_to_number, number_to_string
|
|
|
|
|
|
|
|
def msg_magic(message):
|
|
|
|
return "\x18Bitcoin Signed Message:\n" + chr( len(message) ) + message
|
|
|
|
|
|
|
|
|
|
|
|
class EC_KEY(object):
|
|
|
|
def __init__( self, secret ):
|
|
|
|
self.pubkey = ecdsa.ecdsa.Public_key( generator_secp256k1, generator_secp256k1 * secret )
|
|
|
|
self.privkey = ecdsa.ecdsa.Private_key( self.pubkey, secret )
|
|
|
|
self.secret = secret
|
|
|
|
|
|
|
|
def sign_message(self, message, compressed, address):
|
|
|
|
private_key = ecdsa.SigningKey.from_secret_exponent( self.secret, curve = SECP256k1 )
|
|
|
|
public_key = private_key.get_verifying_key()
|
|
|
|
signature = private_key.sign_digest( Hash( msg_magic(message) ), sigencode = ecdsa.util.sigencode_string )
|
|
|
|
assert public_key.verify_digest( signature, Hash( msg_magic(message) ), sigdecode = ecdsa.util.sigdecode_string)
|
|
|
|
for i in range(4):
|
|
|
|
sig = base64.b64encode( chr(27 + i + (4 if compressed else 0)) + signature )
|
|
|
|
try:
|
|
|
|
self.verify_message( address, sig, message)
|
|
|
|
return sig
|
|
|
|
except:
|
|
|
|
continue
|
|
|
|
else:
|
|
|
|
raise BaseException("error: cannot sign message")
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def verify_message(self, address, signature, message):
|
|
|
|
""" See http://www.secg.org/download/aid-780/sec1-v2.pdf for the math """
|
|
|
|
from ecdsa import numbertheory, ellipticcurve, util
|
|
|
|
import msqr
|
|
|
|
curve = curve_secp256k1
|
|
|
|
G = generator_secp256k1
|
|
|
|
order = G.order()
|
|
|
|
# extract r,s from signature
|
|
|
|
sig = base64.b64decode(signature)
|
|
|
|
if len(sig) != 65: raise BaseException("Wrong encoding")
|
|
|
|
r,s = util.sigdecode_string(sig[1:], order)
|
|
|
|
nV = ord(sig[0])
|
|
|
|
if nV < 27 or nV >= 35:
|
|
|
|
raise BaseException("Bad encoding")
|
|
|
|
if nV >= 31:
|
|
|
|
compressed = True
|
|
|
|
nV -= 4
|
|
|
|
else:
|
|
|
|
compressed = False
|
|
|
|
|
|
|
|
recid = nV - 27
|
|
|
|
# 1.1
|
|
|
|
x = r + (recid/2) * order
|
|
|
|
# 1.3
|
|
|
|
alpha = ( x * x * x + curve.a() * x + curve.b() ) % curve.p()
|
|
|
|
beta = msqr.modular_sqrt(alpha, curve.p())
|
|
|
|
y = beta if (beta - recid) % 2 == 0 else curve.p() - beta
|
|
|
|
# 1.4 the constructor checks that nR is at infinity
|
|
|
|
R = ellipticcurve.Point(curve, x, y, order)
|
|
|
|
# 1.5 compute e from message:
|
|
|
|
h = Hash( msg_magic(message) )
|
|
|
|
e = string_to_number(h)
|
|
|
|
minus_e = -e % order
|
|
|
|
# 1.6 compute Q = r^-1 (sR - eG)
|
|
|
|
inv_r = numbertheory.inverse_mod(r,order)
|
|
|
|
Q = inv_r * ( s * R + minus_e * G )
|
|
|
|
public_key = ecdsa.VerifyingKey.from_public_point( Q, curve = SECP256k1 )
|
|
|
|
# check that Q is the public key
|
|
|
|
public_key.verify_digest( sig[1:], h, sigdecode = ecdsa.util.sigdecode_string)
|
|
|
|
# check that we get the original signing address
|
|
|
|
addr = public_key_to_bc_address( encode_point(public_key, compressed) )
|
|
|
|
if address != addr:
|
|
|
|
raise BaseException("Bad signature")
|
|
|
|
|
|
|
|
|
|
|
|
###################################### BIP32 ##############################
|
|
|
|
|
|
|
|
def bip32_init(seed):
|
|
|
|
import hmac
|
|
|
|
|
|
|
|
I = hmac.new("Bitcoin seed", seed, hashlib.sha512).digest()
|
|
|
|
|
|
|
|
print "seed", seed.encode('hex')
|
|
|
|
master_secret = I[0:32]
|
|
|
|
master_chain = I[32:]
|
|
|
|
|
|
|
|
# public key
|
|
|
|
curve = SECP256k1
|
|
|
|
master_private_key = ecdsa.SigningKey.from_string( master_secret, curve = SECP256k1 )
|
|
|
|
master_public_key = master_private_key.get_verifying_key()
|
|
|
|
K = master_public_key.to_string()
|
|
|
|
K_compressed = GetPubKey(master_public_key.pubkey,True)
|
|
|
|
return master_secret, master_chain, K, K_compressed
|
|
|
|
|
|
|
|
|
|
|
|
def CKD(k, c, n):
|
|
|
|
import hmac
|
|
|
|
from ecdsa.util import string_to_number, number_to_string
|
|
|
|
order = generator_secp256k1.order()
|
|
|
|
keypair = EC_KEY(string_to_number(k))
|
|
|
|
K = GetPubKey(keypair.pubkey,True)
|
|
|
|
I = hmac.new(c, K + rev_hex(int_to_hex(n,4)).decode('hex'), hashlib.sha512).digest()
|
|
|
|
k_n = number_to_string( (string_to_number(I[0:32]) * string_to_number(k)) % order , order )
|
|
|
|
c_n = I[32:]
|
|
|
|
return k_n, c_n
|
|
|
|
|
|
|
|
|
|
|
|
def CKD_prime(K, c, n):
|
|
|
|
import hmac
|
|
|
|
from ecdsa.util import string_to_number, number_to_string
|
|
|
|
order = generator_secp256k1.order()
|
|
|
|
|
|
|
|
K_public_key = ecdsa.VerifyingKey.from_string( K, curve = SECP256k1 )
|
|
|
|
K_compressed = GetPubKey(K_public_key.pubkey,True)
|
|
|
|
|
|
|
|
I = hmac.new(c, K_compressed + rev_hex(int_to_hex(n,4)).decode('hex'), hashlib.sha512).digest()
|
|
|
|
|
|
|
|
#pubkey = ecdsa.ecdsa.Public_key( generator_secp256k1, string_to_number(I[0:32]) * K_public_key.pubkey.point )
|
|
|
|
public_key = ecdsa.VerifyingKey.from_public_point( string_to_number(I[0:32]) * K_public_key.pubkey.point, curve = SECP256k1 )
|
|
|
|
K_n = public_key.to_string()
|
|
|
|
K_n_compressed = GetPubKey(public_key.pubkey,True)
|
|
|
|
c_n = I[32:]
|
|
|
|
|
|
|
|
return K_n, K_n_compressed, c_n
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class DeterministicSequence:
|
|
|
|
""" Privatekey(type,n) = Master_private_key + H(n|S|type) """
|
|
|
|
|
|
|
|
def __init__(self, master_public_key):
|
|
|
|
self.master_public_key = master_public_key
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_seed(klass, seed):
|
|
|
|
curve = SECP256k1
|
|
|
|
secexp = klass.stretch_key(seed)
|
|
|
|
master_private_key = ecdsa.SigningKey.from_secret_exponent( secexp, curve = SECP256k1 )
|
|
|
|
master_public_key = master_private_key.get_verifying_key().to_string().encode('hex')
|
|
|
|
self = klass(master_public_key)
|
|
|
|
return self
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def stretch_key(self,seed):
|
|
|
|
oldseed = seed
|
|
|
|
for i in range(100000):
|
|
|
|
seed = hashlib.sha256(seed + oldseed).digest()
|
|
|
|
return string_to_number( seed )
|
|
|
|
|
|
|
|
def get_sequence(self,n,for_change):
|
|
|
|
return string_to_number( Hash( "%d:%d:"%(n,for_change) + self.master_public_key.decode('hex') ) )
|
|
|
|
|
|
|
|
def get_pubkey(self, n, for_change):
|
|
|
|
curve = SECP256k1
|
|
|
|
z = self.get_sequence(n, for_change)
|
|
|
|
master_public_key = ecdsa.VerifyingKey.from_string( self.master_public_key.decode('hex'), curve = SECP256k1 )
|
|
|
|
pubkey_point = master_public_key.pubkey.point + z*curve.generator
|
|
|
|
public_key2 = ecdsa.VerifyingKey.from_public_point( pubkey_point, curve = SECP256k1 )
|
|
|
|
return '04' + public_key2.to_string().encode('hex')
|
|
|
|
|
|
|
|
def get_private_key(self, n, for_change, seed):
|
|
|
|
order = generator_secp256k1.order()
|
|
|
|
secexp = self.stretch_key(seed)
|
|
|
|
secexp = ( secexp + self.get_sequence(n,for_change) ) % order
|
|
|
|
pk = number_to_string( secexp, generator_secp256k1.order() )
|
|
|
|
compressed = False
|
|
|
|
return SecretToASecret( pk, compressed )
|
|
|
|
|
|
|
|
def check_seed(self, seed):
|
|
|
|
curve = SECP256k1
|
|
|
|
secexp = self.stretch_key(seed)
|
|
|
|
master_private_key = ecdsa.SigningKey.from_secret_exponent( secexp, curve = SECP256k1 )
|
|
|
|
master_public_key = master_private_key.get_verifying_key().to_string().encode('hex')
|
|
|
|
if master_public_key != self.master_public_key:
|
|
|
|
print_error('invalid password (mpk)')
|
|
|
|
raise BaseException('Invalid password')
|
|
|
|
|
|
|
|
return True
|
|
|
|
|
|
|
|
################################## transactions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def raw_tx( inputs, outputs, for_sig = None ):
|
|
|
|
|
|
|
|
s = int_to_hex(1,4) # version
|
|
|
|
s += var_int( len(inputs) ) # number of inputs
|
|
|
|
for i in range(len(inputs)):
|
|
|
|
txin = inputs[i]
|
|
|
|
s += txin['tx_hash'].decode('hex')[::-1].encode('hex') # prev hash
|
|
|
|
s += int_to_hex(txin['index'],4) # prev index
|
|
|
|
|
|
|
|
if for_sig is None:
|
|
|
|
pubkeysig = txin.get('pubkeysig')
|
|
|
|
if pubkeysig:
|
|
|
|
pubkey, sig = pubkeysig[0]
|
|
|
|
sig = sig + chr(1) # hashtype
|
|
|
|
script = op_push( len(sig))
|
|
|
|
script += sig.encode('hex')
|
|
|
|
script += op_push( len(pubkey))
|
|
|
|
script += pubkey.encode('hex')
|
|
|
|
else:
|
|
|
|
signatures = txin['signatures']
|
|
|
|
pubkeys = txin['pubkeys']
|
|
|
|
script = '00' # op_0
|
|
|
|
for sig in signatures:
|
|
|
|
sig = sig + '01'
|
|
|
|
script += op_push(len(sig)/2)
|
|
|
|
script += sig
|
|
|
|
|
|
|
|
redeem_script = multisig_script(pubkeys,2)
|
|
|
|
script += op_push(len(redeem_script)/2)
|
|
|
|
script += redeem_script
|
|
|
|
|
|
|
|
elif for_sig==i:
|
|
|
|
if txin.get('redeemScript'):
|
|
|
|
script = txin['redeemScript'] # p2sh uses the inner script
|
|
|
|
else:
|
|
|
|
script = txin['raw_output_script'] # scriptsig
|
|
|
|
else:
|
|
|
|
script=''
|
|
|
|
s += var_int( len(script)/2 ) # script length
|
|
|
|
s += script
|
|
|
|
s += "ffffffff" # sequence
|
|
|
|
|
|
|
|
s += var_int( len(outputs) ) # number of outputs
|
|
|
|
for output in outputs:
|
|
|
|
addr, amount = output
|
|
|
|
s += int_to_hex( amount, 8) # amount
|
|
|
|
addrtype, hash_160 = bc_address_to_hash_160(addr)
|
|
|
|
if addrtype == 0:
|
|
|
|
script = '76a9' # op_dup, op_hash_160
|
|
|
|
script += '14' # push 0x14 bytes
|
|
|
|
script += hash_160.encode('hex')
|
|
|
|
script += '88ac' # op_equalverify, op_checksig
|
|
|
|
elif addrtype == 5:
|
|
|
|
script = 'a9' # op_hash_160
|
|
|
|
script += '14' # push 0x14 bytes
|
|
|
|
script += hash_160.encode('hex')
|
|
|
|
script += '87' # op_equal
|
|
|
|
else:
|
|
|
|
raise
|
|
|
|
|
|
|
|
s += var_int( len(script)/2 ) # script length
|
|
|
|
s += script # script
|
|
|
|
s += int_to_hex(0,4) # lock time
|
|
|
|
if for_sig is not None and for_sig != -1:
|
|
|
|
s += int_to_hex(1, 4) # hash type
|
|
|
|
return s
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def multisig_script(public_keys, num=None):
|
|
|
|
# supports only "2 of 2", and "2 of 3" transactions
|
|
|
|
n = len(public_keys)
|
|
|
|
|
|
|
|
if num is None:
|
|
|
|
num = n
|
|
|
|
|
|
|
|
assert num <= n and n <= 3 and n >= 2
|
|
|
|
|
|
|
|
if num==2:
|
|
|
|
s = '52'
|
|
|
|
elif num == 3:
|
|
|
|
s = '53'
|
|
|
|
else:
|
|
|
|
raise
|
|
|
|
|
|
|
|
for k in public_keys:
|
|
|
|
s += var_int(len(k)/2)
|
|
|
|
s += k
|
|
|
|
if n==2:
|
|
|
|
s += '52'
|
|
|
|
elif n==3:
|
|
|
|
s += '53'
|
|
|
|
else:
|
|
|
|
raise
|
|
|
|
s += 'ae'
|
|
|
|
return s
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Transaction:
|
|
|
|
|
|
|
|
def __init__(self, raw):
|
|
|
|
self.raw = raw
|
|
|
|
self.deserialize()
|
|
|
|
self.inputs = self.d['inputs']
|
|
|
|
self.outputs = self.d['outputs']
|
|
|
|
self.outputs = map(lambda x: (x['address'],x['value']), self.outputs)
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_io(klass, inputs, outputs):
|
|
|
|
raw = raw_tx(inputs, outputs, for_sig = -1) # for_sig=-1 means do not sign
|
|
|
|
self = klass(raw)
|
|
|
|
self.inputs = inputs
|
|
|
|
self.outputs = outputs
|
|
|
|
return self
|
|
|
|
|
|
|
|
def __str__(self):
|
|
|
|
return self.raw
|
|
|
|
|
|
|
|
def for_sig(self,i):
|
|
|
|
return raw_tx(self.inputs, self.outputs, for_sig = i)
|
|
|
|
|
|
|
|
def hash(self):
|
|
|
|
return Hash(self.raw.decode('hex') )[::-1].encode('hex')
|
|
|
|
|
|
|
|
def sign(self, private_keys):
|
|
|
|
import deserialize
|
|
|
|
|
|
|
|
for i in range(len(self.inputs)):
|
|
|
|
txin = self.inputs[i]
|
|
|
|
tx_for_sig = raw_tx( self.inputs, self.outputs, for_sig = i )
|
|
|
|
|
|
|
|
if txin.get('redeemScript'):
|
|
|
|
# 1 parse the redeem script
|
|
|
|
num, redeem_pubkeys = deserialize.parse_redeemScript(txin.get('redeemScript'))
|
|
|
|
self.inputs[i]["pubkeys"] = redeem_pubkeys
|
|
|
|
|
|
|
|
# build list of public/private keys
|
|
|
|
keypairs = {}
|
|
|
|
for sec in private_keys.values():
|
|
|
|
compressed = is_compressed(sec)
|
|
|
|
pkey = regenerate_key(sec)
|
|
|
|
pubkey = GetPubKey(pkey.pubkey, compressed)
|
|
|
|
keypairs[ pubkey.encode('hex') ] = sec
|
|
|
|
|
|
|
|
# list of already existing signatures
|
|
|
|
signatures = txin.get("signatures",[])
|
|
|
|
found = False
|
|
|
|
complete = True
|
|
|
|
|
|
|
|
# check if we have a key corresponding to the redeem script
|
|
|
|
for pubkey in redeem_pubkeys:
|
|
|
|
public_key = ecdsa.VerifyingKey.from_string(pubkey[2:].decode('hex'), curve = SECP256k1)
|
|
|
|
|
|
|
|
for s in signatures:
|
|
|
|
try:
|
|
|
|
public_key.verify_digest( s.decode('hex')[:-1], Hash( tx_for_sig.decode('hex') ), sigdecode = ecdsa.util.sigdecode_der)
|
|
|
|
break
|
|
|
|
except ecdsa.keys.BadSignatureError:
|
|
|
|
continue
|
|
|
|
else:
|
|
|
|
if pubkey in keypairs.keys():
|
|
|
|
# add signature
|
|
|
|
sec = keypairs[pubkey]
|
|
|
|
compressed = is_compressed(sec)
|
|
|
|
pkey = regenerate_key(sec)
|
|
|
|
secexp = pkey.secret
|
|
|
|
private_key = ecdsa.SigningKey.from_secret_exponent( secexp, curve = SECP256k1 )
|
|
|
|
public_key = private_key.get_verifying_key()
|
|
|
|
sig = private_key.sign_digest( Hash( tx_for_sig.decode('hex') ), sigencode = ecdsa.util.sigencode_der )
|
|
|
|
assert public_key.verify_digest( sig, Hash( tx_for_sig.decode('hex') ), sigdecode = ecdsa.util.sigdecode_der)
|
|
|
|
signatures.append( sig.encode('hex') )
|
|
|
|
found = True
|
|
|
|
else:
|
|
|
|
complete = False
|
|
|
|
|
|
|
|
if not found:
|
|
|
|
raise BaseException("public key not found", keypairs.keys(), redeem_pubkeys)
|
|
|
|
|
|
|
|
# for p2sh, pubkeysig is a tuple (may be incomplete)
|
|
|
|
self.inputs[i]["signatures"] = signatures
|
|
|
|
self.is_complete = complete
|
|
|
|
|
|
|
|
else:
|
|
|
|
sec = private_keys[txin['address']]
|
|
|
|
compressed = is_compressed(sec)
|
|
|
|
pkey = regenerate_key(sec)
|
|
|
|
secexp = pkey.secret
|
|
|
|
|
|
|
|
private_key = ecdsa.SigningKey.from_secret_exponent( secexp, curve = SECP256k1 )
|
|
|
|
public_key = private_key.get_verifying_key()
|
|
|
|
pkey = EC_KEY(secexp)
|
|
|
|
pubkey = GetPubKey(pkey.pubkey, compressed)
|
|
|
|
sig = private_key.sign_digest( Hash( tx_for_sig.decode('hex') ), sigencode = ecdsa.util.sigencode_der )
|
|
|
|
assert public_key.verify_digest( sig, Hash( tx_for_sig.decode('hex') ), sigdecode = ecdsa.util.sigdecode_der)
|
|
|
|
|
|
|
|
self.inputs[i]["pubkeysig"] = [(pubkey, sig)]
|
|
|
|
self.is_complete = True
|
|
|
|
|
|
|
|
self.raw = raw_tx( self.inputs, self.outputs )
|
|
|
|
|
|
|
|
|
|
|
|
def deserialize(self):
|
|
|
|
import deserialize
|
|
|
|
vds = deserialize.BCDataStream()
|
|
|
|
vds.write(self.raw.decode('hex'))
|
|
|
|
self.d = deserialize.parse_Transaction(vds)
|
|
|
|
return self.d
|
|
|
|
|
|
|
|
|
|
|
|
def has_address(self, addr):
|
|
|
|
found = False
|
|
|
|
for txin in self.inputs:
|
|
|
|
if addr == txin.get('address'):
|
|
|
|
found = True
|
|
|
|
break
|
|
|
|
for txout in self.outputs:
|
|
|
|
if addr == txout[0]:
|
|
|
|
found = True
|
|
|
|
break
|
|
|
|
return found
|
|
|
|
|
|
|
|
|
|
|
|
def get_value(self, addresses, prevout_values):
|
|
|
|
# return the balance for that tx
|
|
|
|
is_send = False
|
|
|
|
is_pruned = False
|
|
|
|
v_in = v_out = v_out_mine = 0
|
|
|
|
|
|
|
|
for item in self.inputs:
|
|
|
|
addr = item.get('address')
|
|
|
|
if addr in addresses:
|
|
|
|
is_send = True
|
|
|
|
key = item['prevout_hash'] + ':%d'%item['prevout_n']
|
|
|
|
value = prevout_values.get( key )
|
|
|
|
if value is None:
|
|
|
|
is_pruned = True
|
|
|
|
else:
|
|
|
|
v_in += value
|
|
|
|
else:
|
|
|
|
is_pruned = True
|
|
|
|
|
|
|
|
for item in self.outputs:
|
|
|
|
addr, value = item
|
|
|
|
v_out += value
|
|
|
|
if addr in addresses:
|
|
|
|
v_out_mine += value
|
|
|
|
|
|
|
|
if not is_pruned:
|
|
|
|
# all inputs are mine:
|
|
|
|
fee = v_out - v_in
|
|
|
|
v = v_out_mine - v_in
|
|
|
|
else:
|
|
|
|
# some inputs are mine:
|
|
|
|
fee = None
|
|
|
|
if is_send:
|
|
|
|
v = v_out_mine - v_out
|
|
|
|
else:
|
|
|
|
# no input is mine
|
|
|
|
v = v_out_mine
|
|
|
|
|
|
|
|
return is_send, v, fee
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_bip32():
|
|
|
|
seed = "ff000000000000000000000000000000".decode('hex')
|
|
|
|
master_secret, master_chain, master_public_key, master_public_key_compressed = bip32_init(seed)
|
|
|
|
|
|
|
|
print "secret key", master_secret.encode('hex')
|
|
|
|
print "chain code", master_chain.encode('hex')
|
|
|
|
|
|
|
|
key_id = hash_160(master_public_key_compressed)
|
|
|
|
print "keyid", key_id.encode('hex')
|
|
|
|
print "base58"
|
|
|
|
print "address", hash_160_to_bc_address(key_id)
|
|
|
|
print "secret key", SecretToASecret(master_secret, True)
|
|
|
|
|
|
|
|
print "-- m/0 --"
|
|
|
|
k0, c0 = CKD(master_secret, master_chain, 0)
|
|
|
|
print "secret", k0.encode('hex')
|
|
|
|
print "chain", c0.encode('hex')
|
|
|
|
print "secret key", SecretToASecret(k0, True)
|
|
|
|
|
|
|
|
K0, K0_compressed, c0 = CKD_prime(master_public_key, master_chain, 0)
|
|
|
|
print "address", hash_160_to_bc_address(hash_160(K0_compressed))
|
|
|
|
|
|
|
|
print "-- m/0/1 --"
|
|
|
|
K01, K01_compressed, c01 = CKD_prime(K0, c0, 1)
|
|
|
|
print "address", hash_160_to_bc_address(hash_160(K01_compressed))
|
|
|
|
|
|
|
|
print "-- m/0/1/3 --"
|
|
|
|
K013, K013_compressed, c013 = CKD_prime(K01, c01, 3)
|
|
|
|
print "address", hash_160_to_bc_address(hash_160(K013_compressed))
|
|
|
|
|
|
|
|
print "-- m/0/1/3/7 --"
|
|
|
|
K0137, K0137_compressed, c0137 = CKD_prime(K013, c013, 7)
|
|
|
|
print "address", hash_160_to_bc_address(hash_160(K0137_compressed))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
test_bip32()
|
|
|
|
|
|
|
|
|