You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

748 lines
23 KiB

# -*- coding: utf-8 -*-
#!/usr/bin/env python
#
# Electrum - lightweight Bitcoin client
# Copyright (C) 2011 thomasv@gitorious
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import hashlib, base64, ecdsa, re
11 years ago
import hmac
from util import print_error
def rev_hex(s):
return s.decode('hex')[::-1].encode('hex')
def int_to_hex(i, length=1):
s = hex(i)[2:].rstrip('L')
s = "0"*(2*length - len(s)) + s
return rev_hex(s)
def var_int(i):
# https://en.bitcoin.it/wiki/Protocol_specification#Variable_length_integer
if i<0xfd:
return int_to_hex(i)
elif i<=0xffff:
return "fd"+int_to_hex(i,2)
elif i<=0xffffffff:
return "fe"+int_to_hex(i,4)
else:
return "ff"+int_to_hex(i,8)
def op_push(i):
if i<0x4c:
return int_to_hex(i)
elif i<0xff:
return '4c' + int_to_hex(i)
elif i<0xffff:
return '4d' + int_to_hex(i,2)
else:
return '4e' + int_to_hex(i,4)
def sha256(x):
return hashlib.sha256(x).digest()
def Hash(x):
if type(x) is unicode: x=x.encode('utf-8')
return sha256(sha256(x))
hash_encode = lambda x: x[::-1].encode('hex')
hash_decode = lambda x: x.decode('hex')[::-1]
11 years ago
hmac_sha_512 = lambda x,y: hmac.new(x, y, hashlib.sha512).digest()
11 years ago
def mnemonic_to_seed(mnemonic, passphrase):
from pbkdf2 import PBKDF2
import hmac
PBKDF2_ROUNDS = 2048
return PBKDF2(mnemonic, 'mnemonic' + passphrase, iterations = PBKDF2_ROUNDS, macmodule = hmac, digestmodule = hashlib.sha512).read(64)
11 years ago
from version import SEED_PREFIX
is_new_seed = lambda x: hmac_sha_512("Seed version", x).encode('hex')[0:2].startswith(SEED_PREFIX)
def is_old_seed(seed):
import mnemonic
words = seed.strip().split()
try:
mnemonic.mn_decode(words)
uses_electrum_words = True
except Exception:
uses_electrum_words = False
try:
seed.decode('hex')
is_hex = True
except Exception:
is_hex = False
return is_hex or (uses_electrum_words and len(words) == 12)
# pywallet openssl private key implementation
def i2d_ECPrivateKey(pkey, compressed=False):
if compressed:
key = '3081d30201010420' + \
'%064x' % pkey.secret + \
'a081a53081a2020101302c06072a8648ce3d0101022100' + \
'%064x' % _p + \
'3006040100040107042102' + \
'%064x' % _Gx + \
'022100' + \
'%064x' % _r + \
'020101a124032200'
else:
key = '308201130201010420' + \
'%064x' % pkey.secret + \
'a081a53081a2020101302c06072a8648ce3d0101022100' + \
'%064x' % _p + \
'3006040100040107044104' + \
'%064x' % _Gx + \
'%064x' % _Gy + \
'022100' + \
'%064x' % _r + \
'020101a144034200'
return key.decode('hex') + i2o_ECPublicKey(pkey.pubkey, compressed)
def i2o_ECPublicKey(pubkey, compressed=False):
# public keys are 65 bytes long (520 bits)
# 0x04 + 32-byte X-coordinate + 32-byte Y-coordinate
# 0x00 = point at infinity, 0x02 and 0x03 = compressed, 0x04 = uncompressed
# compressed keys: <sign> <x> where <sign> is 0x02 if y is even and 0x03 if y is odd
if compressed:
if pubkey.point.y() & 1:
key = '03' + '%064x' % pubkey.point.x()
else:
key = '02' + '%064x' % pubkey.point.x()
else:
key = '04' + \
'%064x' % pubkey.point.x() + \
'%064x' % pubkey.point.y()
return key.decode('hex')
# end pywallet openssl private key implementation
############ functions from pywallet #####################
def hash_160(public_key):
try:
md = hashlib.new('ripemd160')
md.update(sha256(public_key))
return md.digest()
except Exception:
import ripemd
md = ripemd.new(sha256(public_key))
return md.digest()
def public_key_to_bc_address(public_key):
h160 = hash_160(public_key)
return hash_160_to_bc_address(h160)
def hash_160_to_bc_address(h160, addrtype = 0):
vh160 = chr(addrtype) + h160
h = Hash(vh160)
addr = vh160 + h[0:4]
return b58encode(addr)
def bc_address_to_hash_160(addr):
bytes = b58decode(addr, 25)
return ord(bytes[0]), bytes[1:21]
__b58chars = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'
__b58base = len(__b58chars)
def b58encode(v):
""" encode v, which is a string of bytes, to base58."""
long_value = 0L
for (i, c) in enumerate(v[::-1]):
long_value += (256**i) * ord(c)
result = ''
while long_value >= __b58base:
div, mod = divmod(long_value, __b58base)
result = __b58chars[mod] + result
long_value = div
result = __b58chars[long_value] + result
# Bitcoin does a little leading-zero-compression:
# leading 0-bytes in the input become leading-1s
nPad = 0
for c in v:
if c == '\0': nPad += 1
else: break
return (__b58chars[0]*nPad) + result
def b58decode(v, length):
""" decode v into a string of len bytes."""
long_value = 0L
for (i, c) in enumerate(v[::-1]):
long_value += __b58chars.find(c) * (__b58base**i)
result = ''
while long_value >= 256:
div, mod = divmod(long_value, 256)
result = chr(mod) + result
long_value = div
result = chr(long_value) + result
nPad = 0
for c in v:
if c == __b58chars[0]: nPad += 1
else: break
result = chr(0)*nPad + result
if length is not None and len(result) != length:
return None
return result
def EncodeBase58Check(vchIn):
hash = Hash(vchIn)
return b58encode(vchIn + hash[0:4])
def DecodeBase58Check(psz):
vchRet = b58decode(psz, None)
key = vchRet[0:-4]
csum = vchRet[-4:]
hash = Hash(key)
cs32 = hash[0:4]
if cs32 != csum:
return None
else:
return key
def PrivKeyToSecret(privkey):
return privkey[9:9+32]
def SecretToASecret(secret, compressed=False, addrtype=0):
vchIn = chr((addrtype+128)&255) + secret
if compressed: vchIn += '\01'
return EncodeBase58Check(vchIn)
def ASecretToSecret(key, addrtype=0):
vch = DecodeBase58Check(key)
if vch and vch[0] == chr((addrtype+128)&255):
return vch[1:]
else:
return False
def regenerate_key(sec):
b = ASecretToSecret(sec)
if not b:
return False
b = b[0:32]
return EC_KEY(b)
def GetPubKey(pubkey, compressed=False):
return i2o_ECPublicKey(pubkey, compressed)
def GetPrivKey(pkey, compressed=False):
return i2d_ECPrivateKey(pkey, compressed)
def GetSecret(pkey):
return ('%064x' % pkey.secret).decode('hex')
def is_compressed(sec):
b = ASecretToSecret(sec)
return len(b) == 33
def public_key_from_private_key(sec):
# rebuild public key from private key, compressed or uncompressed
pkey = regenerate_key(sec)
assert pkey
compressed = is_compressed(sec)
public_key = GetPubKey(pkey.pubkey, compressed)
return public_key.encode('hex')
def address_from_private_key(sec):
public_key = public_key_from_private_key(sec)
address = public_key_to_bc_address(public_key.decode('hex'))
return address
def is_valid(addr):
ADDRESS_RE = re.compile('[1-9A-HJ-NP-Za-km-z]{26,}\\Z')
if not ADDRESS_RE.match(addr): return False
try:
addrtype, h = bc_address_to_hash_160(addr)
except Exception:
return False
return addr == hash_160_to_bc_address(h, addrtype)
########### end pywallet functions #######################
try:
from ecdsa.ecdsa import curve_secp256k1, generator_secp256k1
except Exception:
print "cannot import ecdsa.curve_secp256k1. You probably need to upgrade ecdsa.\nTry: sudo pip install --upgrade ecdsa"
exit()
from ecdsa.curves import SECP256k1
from ecdsa.ellipticcurve import Point
from ecdsa.util import string_to_number, number_to_string
def msg_magic(message):
varint = var_int(len(message))
encoded_varint = "".join([chr(int(varint[i:i+2], 16)) for i in xrange(0, len(varint), 2)])
return "\x18Bitcoin Signed Message:\n" + encoded_varint + message
def verify_message(address, signature, message):
try:
EC_KEY.verify_message(address, signature, message)
return True
except Exception as e:
print_error("Verification error: {0}".format(e))
return False
def encrypt_message(message, pubkey):
return EC_KEY.encrypt_message(message, pubkey.decode('hex'))
def chunks(l, n):
return [l[i:i+n] for i in xrange(0, len(l), n)]
def ECC_YfromX(x,curved=curve_secp256k1, odd=True):
_p = curved.p()
_a = curved.a()
_b = curved.b()
for offset in range(128):
Mx = x + offset
My2 = pow(Mx, 3, _p) + _a * pow(Mx, 2, _p) + _b % _p
My = pow(My2, (_p+1)/4, _p )
if curved.contains_point(Mx,My):
if odd == bool(My&1):
return [My,offset]
return [_p-My,offset]
raise Exception('ECC_YfromX: No Y found')
def private_header(msg,v):
assert v<1, "Can't write version %d private header"%v
r = ''
if v==0:
r += ('%08x'%len(msg)).decode('hex')
r += sha256(msg)[:2]
return ('%02x'%v).decode('hex') + ('%04x'%len(r)).decode('hex') + r
def public_header(pubkey,v):
assert v<1, "Can't write version %d public header"%v
r = ''
if v==0:
r = sha256(pubkey)[:2]
return '\x6a\x6a' + ('%02x'%v).decode('hex') + ('%04x'%len(r)).decode('hex') + r
def negative_point(P):
return Point( P.curve(), P.x(), -P.y(), P.order() )
def point_to_ser(P, comp=True ):
if comp:
return ( ('%02x'%(2+(P.y()&1)))+('%064x'%P.x()) ).decode('hex')
return ( '04'+('%064x'%P.x())+('%064x'%P.y()) ).decode('hex')
def ser_to_point(Aser):
curve = curve_secp256k1
generator = generator_secp256k1
_r = generator.order()
assert Aser[0] in ['\x02','\x03','\x04']
if Aser[0] == '\x04':
return Point( curve, str_to_long(Aser[1:33]), str_to_long(Aser[33:]), _r )
Mx = string_to_number(Aser[1:])
return Point( curve, Mx, ECC_YfromX(Mx, curve, Aser[0]=='\x03')[0], _r )
class EC_KEY(object):
def __init__( self, k ):
secret = string_to_number(k)
self.pubkey = ecdsa.ecdsa.Public_key( generator_secp256k1, generator_secp256k1 * secret )
self.privkey = ecdsa.ecdsa.Private_key( self.pubkey, secret )
self.secret = secret
def get_public_key(self, compressed=True):
return point_to_ser(self.pubkey.point, compressed).encode('hex')
def sign_message(self, message, compressed, address):
private_key = ecdsa.SigningKey.from_secret_exponent( self.secret, curve = SECP256k1 )
public_key = private_key.get_verifying_key()
signature = private_key.sign_digest_deterministic( Hash( msg_magic(message) ), hashfunc=hashlib.sha256, sigencode = ecdsa.util.sigencode_string )
assert public_key.verify_digest( signature, Hash( msg_magic(message) ), sigdecode = ecdsa.util.sigdecode_string)
for i in range(4):
sig = base64.b64encode( chr(27 + i + (4 if compressed else 0)) + signature )
try:
self.verify_message( address, sig, message)
return sig
except Exception:
continue
else:
raise Exception("error: cannot sign message")
@classmethod
def verify_message(self, address, signature, message):
""" See http://www.secg.org/download/aid-780/sec1-v2.pdf for the math """
from ecdsa import numbertheory, util
import msqr
curve = curve_secp256k1
G = generator_secp256k1
order = G.order()
# extract r,s from signature
sig = base64.b64decode(signature)
if len(sig) != 65: raise Exception("Wrong encoding")
r,s = util.sigdecode_string(sig[1:], order)
nV = ord(sig[0])
if nV < 27 or nV >= 35:
raise Exception("Bad encoding")
if nV >= 31:
compressed = True
nV -= 4
else:
compressed = False
recid = nV - 27
# 1.1
x = r + (recid/2) * order
# 1.3
alpha = ( x * x * x + curve.a() * x + curve.b() ) % curve.p()
beta = msqr.modular_sqrt(alpha, curve.p())
y = beta if (beta - recid) % 2 == 0 else curve.p() - beta
# 1.4 the constructor checks that nR is at infinity
R = Point(curve, x, y, order)
# 1.5 compute e from message:
h = Hash( msg_magic(message) )
e = string_to_number(h)
minus_e = -e % order
# 1.6 compute Q = r^-1 (sR - eG)
inv_r = numbertheory.inverse_mod(r,order)
Q = inv_r * ( s * R + minus_e * G )
public_key = ecdsa.VerifyingKey.from_public_point( Q, curve = SECP256k1 )
# check that Q is the public key
public_key.verify_digest( sig[1:], h, sigdecode = ecdsa.util.sigdecode_string)
# check that we get the original signing address
addr = public_key_to_bc_address( point_to_ser(public_key.pubkey.point, compressed) )
if address != addr:
raise Exception("Bad signature")
# ecdsa encryption/decryption methods
# credits: jackjack, https://github.com/jackjack-jj/jeeq
@classmethod
def encrypt_message(self, message, pubkey):
generator = generator_secp256k1
curved = curve_secp256k1
r = ''
msg = private_header(message,0) + message
msg = msg + ('\x00'*( 32-(len(msg)%32) ))
msgs = chunks(msg,32)
_r = generator.order()
str_to_long = string_to_number
P = generator
pk = ser_to_point(pubkey)
for i in range(len(msgs)):
n = ecdsa.util.randrange( pow(2,256) )
Mx = str_to_long(msgs[i])
My, xoffset = ECC_YfromX(Mx, curved)
M = Point( curved, Mx+xoffset, My, _r )
T = P*n
U = pk*n + M
toadd = point_to_ser(T) + point_to_ser(U)
toadd = chr(ord(toadd[0])-2 + 2*xoffset) + toadd[1:]
r += toadd
return base64.b64encode(public_header(pubkey,0) + r)
def decrypt_message(self, enc):
G = generator_secp256k1
curved = curve_secp256k1
pvk = self.secret
pubkeys = [point_to_ser(G*pvk,True), point_to_ser(G*pvk,False)]
enc = base64.b64decode(enc)
str_to_long = string_to_number
assert enc[:2]=='\x6a\x6a'
phv = str_to_long(enc[2])
assert phv==0, "Can't read version %d public header"%phv
hs = str_to_long(enc[3:5])
public_header=enc[5:5+hs]
checksum_pubkey=public_header[:2]
address=filter(lambda x:sha256(x)[:2]==checksum_pubkey, pubkeys)
assert len(address)>0, 'Bad private key'
address=address[0]
enc=enc[5+hs:]
r = ''
for Tser,User in map(lambda x:[x[:33],x[33:]], chunks(enc,66)):
ots = ord(Tser[0])
xoffset = ots>>1
Tser = chr(2+(ots&1))+Tser[1:]
T = ser_to_point(Tser)
U = ser_to_point(User)
V = T*pvk
Mcalc = U + negative_point(V)
r += ('%064x'%(Mcalc.x()-xoffset)).decode('hex')
pvhv = str_to_long(r[0])
assert pvhv==0, "Can't read version %d private header"%pvhv
phs = str_to_long(r[1:3])
private_header = r[3:3+phs]
size = str_to_long(private_header[:4])
checksum = private_header[4:6]
r = r[3+phs:]
msg = r[:size]
hashmsg = sha256(msg)[:2]
checksumok = hashmsg==checksum
return [msg, checksumok, address]
###################################### BIP32 ##############################
random_seed = lambda n: "%032x"%ecdsa.util.randrange( pow(2,n) )
BIP32_PRIME = 0x80000000
def get_pubkeys_from_secret(secret):
# public key
private_key = ecdsa.SigningKey.from_string( secret, curve = SECP256k1 )
public_key = private_key.get_verifying_key()
K = public_key.to_string()
K_compressed = GetPubKey(public_key.pubkey,True)
return K, K_compressed
# Child private key derivation function (from master private key)
# k = master private key (32 bytes)
# c = master chain code (extra entropy for key derivation) (32 bytes)
# n = the index of the key we want to derive. (only 32 bits will be used)
# If n is negative (i.e. the 32nd bit is set), the resulting private key's
# corresponding public key can NOT be determined without the master private key.
# However, if n is positive, the resulting private key's corresponding
# public key can be determined without the master private key.
def CKD_priv(k, c, n):
is_prime = n & BIP32_PRIME
return _CKD_priv(k, c, rev_hex(int_to_hex(n,4)).decode('hex'), is_prime)
def _CKD_priv(k, c, s, is_prime):
import hmac
from ecdsa.util import string_to_number, number_to_string
order = generator_secp256k1.order()
keypair = EC_KEY(k)
cK = GetPubKey(keypair.pubkey,True)
data = chr(0) + k + s if is_prime else cK + s
I = hmac.new(c, data, hashlib.sha512).digest()
k_n = number_to_string( (string_to_number(I[0:32]) + string_to_number(k)) % order , order )
c_n = I[32:]
return k_n, c_n
# Child public key derivation function (from public key only)
# K = master public key
# c = master chain code
# n = index of key we want to derive
# This function allows us to find the nth public key, as long as n is
# non-negative. If n is negative, we need the master private key to find it.
def CKD_pub(cK, c, n):
if n & BIP32_PRIME: raise
return _CKD_pub(cK, c, rev_hex(int_to_hex(n,4)).decode('hex'))
# helper function, callable with arbitrary string
def _CKD_pub(cK, c, s):
import hmac
from ecdsa.util import string_to_number, number_to_string
order = generator_secp256k1.order()
I = hmac.new(c, cK + s, hashlib.sha512).digest()
curve = SECP256k1
pubkey_point = string_to_number(I[0:32])*curve.generator + ser_to_point(cK)
public_key = ecdsa.VerifyingKey.from_public_point( pubkey_point, curve = SECP256k1 )
c_n = I[32:]
cK_n = GetPubKey(public_key.pubkey,True)
return cK_n, c_n
def deserialize_xkey(xkey):
xkey = DecodeBase58Check(xkey)
assert len(xkey) == 78
assert xkey[0:4].encode('hex') in ["0488ade4", "0488b21e"]
depth = ord(xkey[4])
fingerprint = xkey[5:9]
child_number = xkey[9:13]
c = xkey[13:13+32]
if xkey[0:4].encode('hex') == "0488ade4":
K_or_k = xkey[13+33:]
else:
K_or_k = xkey[13+32:]
return depth, fingerprint, child_number, c, K_or_k
def bip32_root(seed):
import hmac
seed = seed.decode('hex')
I = hmac.new("Bitcoin seed", seed, hashlib.sha512).digest()
master_k = I[0:32]
master_c = I[32:]
K, cK = get_pubkeys_from_secret(master_k)
xprv = ("0488ADE4" + "00" + "00000000" + "00000000").decode("hex") + master_c + chr(0) + master_k
xpub = ("0488B21E" + "00" + "00000000" + "00000000").decode("hex") + master_c + cK
return EncodeBase58Check(xprv), EncodeBase58Check(xpub)
def bip32_private_derivation(xprv, branch, sequence):
depth, fingerprint, child_number, c, k = deserialize_xkey(xprv)
12 years ago
assert sequence.startswith(branch)
sequence = sequence[len(branch):]
for n in sequence.split('/'):
if n == '': continue
i = int(n[:-1]) + BIP32_PRIME if n[-1] == "'" else int(n)
parent_k = k
k, c = CKD_priv(k, c, i)
depth += 1
_, parent_cK = get_pubkeys_from_secret(parent_k)
fingerprint = hash_160(parent_cK)[0:4]
child_number = ("%08X"%i).decode('hex')
K, cK = get_pubkeys_from_secret(k)
xprv = "0488ADE4".decode('hex') + chr(depth) + fingerprint + child_number + c + chr(0) + k
xpub = "0488B21E".decode('hex') + chr(depth) + fingerprint + child_number + c + cK
return EncodeBase58Check(xprv), EncodeBase58Check(xpub)
def bip32_public_derivation(xpub, branch, sequence):
depth, fingerprint, child_number, c, cK = deserialize_xkey(xpub)
12 years ago
assert sequence.startswith(branch)
sequence = sequence[len(branch):]
for n in sequence.split('/'):
if n == '': continue
i = int(n)
parent_cK = cK
cK, c = CKD_pub(cK, c, i)
depth += 1
fingerprint = hash_160(parent_cK)[0:4]
child_number = ("%08X"%i).decode('hex')
xpub = "0488B21E".decode('hex') + chr(depth) + fingerprint + child_number + c + cK
return EncodeBase58Check(xpub)
12 years ago
def bip32_private_key(sequence, k, chain):
for i in sequence:
k, chain = CKD_priv(k, chain, i)
12 years ago
return SecretToASecret(k, True)
12 years ago
################################## transactions
MIN_RELAY_TX_FEE = 10000
def test_bip32(seed, sequence):
"""
run a test vector,
see https://en.bitcoin.it/wiki/BIP_0032_TestVectors
"""
xprv, xpub = bip32_root(seed)
print xpub
print xprv
assert sequence[0:2] == "m/"
path = 'm'
sequence = sequence[2:]
for n in sequence.split('/'):
child_path = path + '/' + n
if n[-1] != "'":
xpub2 = bip32_public_derivation(xpub, path, child_path)
xprv, xpub = bip32_private_derivation(xprv, path, child_path)
if n[-1] != "'":
assert xpub == xpub2
path = child_path
print path
print xpub
print xprv
print "----"
def test_crypto():
G = generator_secp256k1
_r = G.order()
pvk = ecdsa.util.randrange( pow(2,256) ) %_r
Pub = pvk*G
pubkey_c = point_to_ser(Pub,True)
pubkey_u = point_to_ser(Pub,False)
addr_c = public_key_to_bc_address(pubkey_c)
addr_u = public_key_to_bc_address(pubkey_u)
print "Private key ", '%064x'%pvk
print "Compressed public key ", pubkey_c.encode('hex')
print "Uncompressed public key", pubkey_u.encode('hex')
message = "Chancellor on brink of second bailout for banks"
enc = EC_KEY.encrypt_message(message,pubkey_c)
eck = EC_KEY(number_to_string(pvk,_r))
dec = eck.decrypt_message(enc)
print "decrypted", dec
signature = eck.sign_message(message, True, addr_c)
print signature
EC_KEY.verify_message(addr_c, signature, message)
if __name__ == '__main__':
#test_crypto()
test_bip32("000102030405060708090a0b0c0d0e0f", "m/0'/1/2'/2/1000000000")
test_bip32("fffcf9f6f3f0edeae7e4e1dedbd8d5d2cfccc9c6c3c0bdbab7b4b1aeaba8a5a29f9c999693908d8a8784817e7b7875726f6c696663605d5a5754514e4b484542","m/0/2147483647'/1/2147483646'/2")