|
|
@ -452,10 +452,7 @@ class EC_KEY(object): |
|
|
|
str_to_long = string_to_number |
|
|
|
|
|
|
|
P = generator |
|
|
|
if len(pubkey)==33: #compressed |
|
|
|
pk = Point( curve_secp256k1, str_to_long(pubkey[1:33]), ECC_YfromX(str_to_long(pubkey[1:33]), curve_secp256k1, pubkey[0]=='\x03')[0], _r ) |
|
|
|
else: |
|
|
|
pk = Point( curve_secp256k1, str_to_long(pubkey[1:33]), str_to_long(pubkey[33:65]), _r ) |
|
|
|
pk = ser_to_point(pubkey) |
|
|
|
|
|
|
|
for i in range(len(msgs)): |
|
|
|
n = ecdsa.util.randrange( pow(2,256) ) |
|
|
@ -524,17 +521,6 @@ class EC_KEY(object): |
|
|
|
random_seed = lambda n: "%032x"%ecdsa.util.randrange( pow(2,n) ) |
|
|
|
BIP32_PRIME = 0x80000000 |
|
|
|
|
|
|
|
def bip32_init(seed): |
|
|
|
import hmac |
|
|
|
seed = seed.decode('hex') |
|
|
|
I = hmac.new("Bitcoin seed", seed, hashlib.sha512).digest() |
|
|
|
|
|
|
|
master_secret = I[0:32] |
|
|
|
master_chain = I[32:] |
|
|
|
|
|
|
|
K, K_compressed = get_pubkeys_from_secret(master_secret) |
|
|
|
return master_secret, master_chain, K, K_compressed |
|
|
|
|
|
|
|
|
|
|
|
def get_pubkeys_from_secret(secret): |
|
|
|
# public key |
|
|
@ -545,7 +531,6 @@ def get_pubkeys_from_secret(secret): |
|
|
|
return K, K_compressed |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Child private key derivation function (from master private key) |
|
|
|
# k = master private key (32 bytes) |
|
|
|
# c = master chain code (extra entropy for key derivation) (32 bytes) |
|
|
@ -554,7 +539,7 @@ def get_pubkeys_from_secret(secret): |
|
|
|
# corresponding public key can NOT be determined without the master private key. |
|
|
|
# However, if n is positive, the resulting private key's corresponding |
|
|
|
# public key can be determined without the master private key. |
|
|
|
def CKD(k, c, n): |
|
|
|
def CKD_priv(k, c, n): |
|
|
|
import hmac |
|
|
|
from ecdsa.util import string_to_number, number_to_string |
|
|
|
order = generator_secp256k1.order() |
|
|
@ -577,54 +562,107 @@ def CKD(k, c, n): |
|
|
|
# n = index of key we want to derive |
|
|
|
# This function allows us to find the nth public key, as long as n is |
|
|
|
# non-negative. If n is negative, we need the master private key to find it. |
|
|
|
def CKD_prime(K, c, n): |
|
|
|
def CKD_pub(cK, c, n): |
|
|
|
import hmac |
|
|
|
from ecdsa.util import string_to_number, number_to_string |
|
|
|
order = generator_secp256k1.order() |
|
|
|
|
|
|
|
if n & BIP32_PRIME: raise |
|
|
|
|
|
|
|
K_public_key = ecdsa.VerifyingKey.from_string( K, curve = SECP256k1 ) |
|
|
|
K_compressed = GetPubKey(K_public_key.pubkey,True) |
|
|
|
|
|
|
|
I = hmac.new(c, K_compressed + rev_hex(int_to_hex(n,4)).decode('hex'), hashlib.sha512).digest() |
|
|
|
|
|
|
|
I = hmac.new(c, cK + rev_hex(int_to_hex(n,4)).decode('hex'), hashlib.sha512).digest() |
|
|
|
curve = SECP256k1 |
|
|
|
pubkey_point = string_to_number(I[0:32])*curve.generator + K_public_key.pubkey.point |
|
|
|
pubkey_point = string_to_number(I[0:32])*curve.generator + ser_to_point(cK) |
|
|
|
public_key = ecdsa.VerifyingKey.from_public_point( pubkey_point, curve = SECP256k1 ) |
|
|
|
|
|
|
|
K_n = public_key.to_string() |
|
|
|
K_n_compressed = GetPubKey(public_key.pubkey,True) |
|
|
|
c_n = I[32:] |
|
|
|
cK_n = GetPubKey(public_key.pubkey,True) |
|
|
|
|
|
|
|
return cK_n, c_n |
|
|
|
|
|
|
|
|
|
|
|
def parse_xprv(xprv): |
|
|
|
xprv = DecodeBase58Check( xprv ) |
|
|
|
assert len(xprv) == 78 |
|
|
|
assert xprv[0:4] == "0488ADE4".decode('hex') |
|
|
|
depth = ord(xprv[4]) |
|
|
|
fingerprint = xprv[5:9] |
|
|
|
child_number = xprv[9:13] |
|
|
|
c = xprv[13:13+32] |
|
|
|
k = xprv[13+33:] |
|
|
|
K, cK = get_pubkeys_from_secret(k) |
|
|
|
key_id = hash_160(cK) |
|
|
|
print "keyid", key_id.encode('hex') |
|
|
|
print "address", hash_160_to_bc_address(key_id) |
|
|
|
print "secret key", SecretToASecret(k, True) |
|
|
|
|
|
|
|
|
|
|
|
return K_n, K_n_compressed, c_n |
|
|
|
def bip32_root(seed): |
|
|
|
import hmac |
|
|
|
seed = seed.decode('hex') |
|
|
|
I = hmac.new("Bitcoin seed", seed, hashlib.sha512).digest() |
|
|
|
master_k = I[0:32] |
|
|
|
master_c = I[32:] |
|
|
|
K, cK = get_pubkeys_from_secret(master_k) |
|
|
|
xprv = ("0488ADE4" + "00" + "00000000" + "00000000").decode("hex") + master_c + chr(0) + master_k |
|
|
|
xpub = ("0488B21E" + "00" + "00000000" + "00000000").decode("hex") + master_c + cK |
|
|
|
return EncodeBase58Check(xprv), EncodeBase58Check(xpub) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def bip32_private_derivation(k, c, branch, sequence): |
|
|
|
def bip32_private_derivation(xprv, branch, sequence): |
|
|
|
xprv = DecodeBase58Check( xprv ) |
|
|
|
assert len(xprv) == 78 |
|
|
|
assert xprv[0:4] == "0488ADE4".decode('hex') |
|
|
|
assert sequence.startswith(branch) |
|
|
|
depth = ord(xprv[4]) |
|
|
|
fingerprint = xprv[5:9] |
|
|
|
child_number = xprv[9:13] |
|
|
|
c = xprv[13:13+32] |
|
|
|
k = xprv[13+33:] |
|
|
|
sequence = sequence[len(branch):] |
|
|
|
for n in sequence.split('/'): |
|
|
|
if n == '': continue |
|
|
|
n = int(n[:-1]) + BIP32_PRIME if n[-1] == "'" else int(n) |
|
|
|
k, c = CKD(k, c, n) |
|
|
|
K, K_compressed = get_pubkeys_from_secret(k) |
|
|
|
return k.encode('hex'), c.encode('hex'), K.encode('hex'), K_compressed.encode('hex') |
|
|
|
i = int(n[:-1]) + BIP32_PRIME if n[-1] == "'" else int(n) |
|
|
|
parent_k = k |
|
|
|
k, c = CKD_priv(k, c, i) |
|
|
|
depth += 1 |
|
|
|
|
|
|
|
_, parent_cK = get_pubkeys_from_secret(parent_k) |
|
|
|
fingerprint = hash_160(parent_cK)[0:4] |
|
|
|
child_number = ("%08X"%i).decode('hex') |
|
|
|
K, cK = get_pubkeys_from_secret(k) |
|
|
|
xprv = "0488ADE4".decode('hex') + chr(depth) + fingerprint + child_number + c + chr(0) + k |
|
|
|
xpub = "0488B21E".decode('hex') + chr(depth) + fingerprint + child_number + c + cK |
|
|
|
return EncodeBase58Check(xprv), EncodeBase58Check(xpub) |
|
|
|
|
|
|
|
|
|
|
|
def bip32_public_derivation(c, K, branch, sequence): |
|
|
|
|
|
|
|
def bip32_public_derivation(xpub, branch, sequence): |
|
|
|
xpub = DecodeBase58Check( xpub ) |
|
|
|
assert len(xpub) == 78 |
|
|
|
assert xpub[0:4] == "0488B21E".decode('hex') |
|
|
|
assert sequence.startswith(branch) |
|
|
|
depth = ord(xpub[4]) |
|
|
|
fingerprint = xpub[5:9] |
|
|
|
child_number = xpub[9:13] |
|
|
|
c = xpub[13:13+32] |
|
|
|
cK = xpub[13+32:] |
|
|
|
sequence = sequence[len(branch):] |
|
|
|
for n in sequence.split('/'): |
|
|
|
n = int(n) |
|
|
|
K, cK, c = CKD_prime(K, c, n) |
|
|
|
if n == '': continue |
|
|
|
i = int(n) |
|
|
|
parent_cK = cK |
|
|
|
cK, c = CKD_pub(cK, c, i) |
|
|
|
depth += 1 |
|
|
|
|
|
|
|
fingerprint = hash_160(parent_cK)[0:4] |
|
|
|
child_number = ("%08X"%i).decode('hex') |
|
|
|
xpub = "0488B21E".decode('hex') + chr(depth) + fingerprint + child_number + c + cK |
|
|
|
return EncodeBase58Check(xpub) |
|
|
|
|
|
|
|
|
|
|
|
return c.encode('hex'), K.encode('hex'), cK.encode('hex') |
|
|
|
|
|
|
|
|
|
|
|
def bip32_private_key(sequence, k, chain): |
|
|
|
for i in sequence: |
|
|
|
k, chain = CKD(k, chain, i) |
|
|
|
k, chain = CKD_priv(k, chain, i) |
|
|
|
return SecretToASecret(k, True) |
|
|
|
|
|
|
|
|
|
|
@ -642,41 +680,28 @@ def test_bip32(seed, sequence): |
|
|
|
see https://en.bitcoin.it/wiki/BIP_0032_TestVectors |
|
|
|
""" |
|
|
|
|
|
|
|
master_secret, master_chain, master_public_key, master_public_key_compressed = bip32_init(seed) |
|
|
|
xprv, xpub = bip32_root(seed) |
|
|
|
print xpub |
|
|
|
print xprv |
|
|
|
#parse_xprv(xprv) |
|
|
|
|
|
|
|
print "secret key", master_secret.encode('hex') |
|
|
|
print "chain code", master_chain.encode('hex') |
|
|
|
|
|
|
|
key_id = hash_160(master_public_key_compressed) |
|
|
|
print "keyid", key_id.encode('hex') |
|
|
|
print "base58" |
|
|
|
print "address", hash_160_to_bc_address(key_id) |
|
|
|
print "secret key", SecretToASecret(master_secret, True) |
|
|
|
|
|
|
|
k = master_secret |
|
|
|
c = master_chain |
|
|
|
|
|
|
|
s = ['m'] |
|
|
|
assert sequence[0:2] == "m/" |
|
|
|
path = 'm' |
|
|
|
sequence = sequence[2:] |
|
|
|
for n in sequence.split('/'): |
|
|
|
s.append(n) |
|
|
|
print "Chain [%s]" % '/'.join(s) |
|
|
|
|
|
|
|
n = int(n[:-1]) + BIP32_PRIME if n[-1] == "'" else int(n) |
|
|
|
k0, c0 = CKD(k, c, n) |
|
|
|
K0, K0_compressed = get_pubkeys_from_secret(k0) |
|
|
|
child_path = path + '/' + n |
|
|
|
if n[-1] != "'": |
|
|
|
xpub2 = bip32_public_derivation(xpub, path, child_path) |
|
|
|
xprv, xpub = bip32_private_derivation(xprv, path, child_path) |
|
|
|
if n[-1] != "'": |
|
|
|
assert xpub == xpub2 |
|
|
|
|
|
|
|
print "* Identifier" |
|
|
|
print " * (main addr)", hash_160_to_bc_address(hash_160(K0_compressed)) |
|
|
|
|
|
|
|
print "* Secret Key" |
|
|
|
print " * (hex)", k0.encode('hex') |
|
|
|
print " * (wif)", SecretToASecret(k0, True) |
|
|
|
path = child_path |
|
|
|
print path |
|
|
|
print xpub |
|
|
|
print xprv |
|
|
|
|
|
|
|
print "* Chain Code" |
|
|
|
print " * (hex)", c0.encode('hex') |
|
|
|
|
|
|
|
k = k0 |
|
|
|
c = c0 |
|
|
|
print "----" |
|
|
|
|
|
|
|
|
|
|
@ -709,7 +734,8 @@ def test_crypto(): |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
test_crypto() |
|
|
|
#test_bip32("000102030405060708090a0b0c0d0e0f", "0'/1/2'/2/1000000000") |
|
|
|
#test_bip32("fffcf9f6f3f0edeae7e4e1dedbd8d5d2cfccc9c6c3c0bdbab7b4b1aeaba8a5a29f9c999693908d8a8784817e7b7875726f6c696663605d5a5754514e4b484542","0/2147483647'/1/2147483646'/2") |
|
|
|
#test_crypto() |
|
|
|
test_bip32("000102030405060708090a0b0c0d0e0f", "m/0'/1/2'/2/1000000000") |
|
|
|
test_bip32("fffcf9f6f3f0edeae7e4e1dedbd8d5d2cfccc9c6c3c0bdbab7b4b1aeaba8a5a29f9c999693908d8a8784817e7b7875726f6c696663605d5a5754514e4b484542","m/0/2147483647'/1/2147483646'/2") |
|
|
|
|
|
|
|
|
|
|
|