|
|
@ -29,6 +29,7 @@ def int_to_hex(i, length=1): |
|
|
|
return rev_hex(s) |
|
|
|
|
|
|
|
def var_int(i): |
|
|
|
# https://en.bitcoin.it/wiki/Protocol_specification#Variable_length_integer |
|
|
|
if i<0xfd: |
|
|
|
return int_to_hex(i) |
|
|
|
elif i<=0xffff: |
|
|
@ -69,22 +70,22 @@ def i2d_ECPrivateKey(pkey, compressed=False): |
|
|
|
'%064x' % _r + \ |
|
|
|
'020101a144034200' |
|
|
|
|
|
|
|
return key.decode('hex') + i2o_ECPublicKey(pkey, compressed) |
|
|
|
return key.decode('hex') + i2o_ECPublicKey(pkey.pubkey, compressed) |
|
|
|
|
|
|
|
def i2o_ECPublicKey(pkey, compressed=False): |
|
|
|
def i2o_ECPublicKey(pubkey, compressed=False): |
|
|
|
# public keys are 65 bytes long (520 bits) |
|
|
|
# 0x04 + 32-byte X-coordinate + 32-byte Y-coordinate |
|
|
|
# 0x00 = point at infinity, 0x02 and 0x03 = compressed, 0x04 = uncompressed |
|
|
|
# compressed keys: <sign> <x> where <sign> is 0x02 if y is even and 0x03 if y is odd |
|
|
|
if compressed: |
|
|
|
if pkey.pubkey.point.y() & 1: |
|
|
|
key = '03' + '%064x' % pkey.pubkey.point.x() |
|
|
|
if pubkey.point.y() & 1: |
|
|
|
key = '03' + '%064x' % pubkey.point.x() |
|
|
|
else: |
|
|
|
key = '02' + '%064x' % pkey.pubkey.point.x() |
|
|
|
key = '02' + '%064x' % pubkey.point.x() |
|
|
|
else: |
|
|
|
key = '04' + \ |
|
|
|
'%064x' % pkey.pubkey.point.x() + \ |
|
|
|
'%064x' % pkey.pubkey.point.y() |
|
|
|
'%064x' % pubkey.point.x() + \ |
|
|
|
'%064x' % pubkey.point.y() |
|
|
|
|
|
|
|
return key.decode('hex') |
|
|
|
|
|
|
@ -94,8 +95,6 @@ def i2o_ECPublicKey(pkey, compressed=False): |
|
|
|
|
|
|
|
############ functions from pywallet ##################### |
|
|
|
|
|
|
|
addrtype = 0 |
|
|
|
|
|
|
|
def hash_160(public_key): |
|
|
|
try: |
|
|
|
md = hashlib.new('ripemd160') |
|
|
@ -111,7 +110,7 @@ def public_key_to_bc_address(public_key): |
|
|
|
h160 = hash_160(public_key) |
|
|
|
return hash_160_to_bc_address(h160) |
|
|
|
|
|
|
|
def hash_160_to_bc_address(h160): |
|
|
|
def hash_160_to_bc_address(h160, addrtype = 0): |
|
|
|
vh160 = chr(addrtype) + h160 |
|
|
|
h = Hash(vh160) |
|
|
|
addr = vh160 + h[0:4] |
|
|
@ -119,7 +118,7 @@ def hash_160_to_bc_address(h160): |
|
|
|
|
|
|
|
def bc_address_to_hash_160(addr): |
|
|
|
bytes = b58decode(addr, 25) |
|
|
|
return bytes[1:21] |
|
|
|
return ord(bytes[0]), bytes[1:21] |
|
|
|
|
|
|
|
def encode_point(pubkey, compressed=False): |
|
|
|
order = generator_secp256k1.order() |
|
|
@ -200,12 +199,12 @@ def DecodeBase58Check(psz): |
|
|
|
def PrivKeyToSecret(privkey): |
|
|
|
return privkey[9:9+32] |
|
|
|
|
|
|
|
def SecretToASecret(secret, compressed=False): |
|
|
|
def SecretToASecret(secret, compressed=False, addrtype=0): |
|
|
|
vchIn = chr((addrtype+128)&255) + secret |
|
|
|
if compressed: vchIn += '\01' |
|
|
|
return EncodeBase58Check(vchIn) |
|
|
|
|
|
|
|
def ASecretToSecret(key): |
|
|
|
def ASecretToSecret(key, addrtype=0): |
|
|
|
vch = DecodeBase58Check(key) |
|
|
|
if vch and vch[0] == chr((addrtype+128)&255): |
|
|
|
return vch[1:] |
|
|
@ -220,8 +219,8 @@ def regenerate_key(sec): |
|
|
|
secret = int('0x' + b.encode('hex'), 16) |
|
|
|
return EC_KEY(secret) |
|
|
|
|
|
|
|
def GetPubKey(pkey, compressed=False): |
|
|
|
return i2o_ECPublicKey(pkey, compressed) |
|
|
|
def GetPubKey(pubkey, compressed=False): |
|
|
|
return i2o_ECPublicKey(pubkey, compressed) |
|
|
|
|
|
|
|
def GetPrivKey(pkey, compressed=False): |
|
|
|
return i2d_ECPrivateKey(pkey, compressed) |
|
|
@ -254,46 +253,231 @@ class EC_KEY(object): |
|
|
|
self.secret = secret |
|
|
|
|
|
|
|
|
|
|
|
###################################### BIP32 ############################## |
|
|
|
|
|
|
|
def bip32_init(seed): |
|
|
|
import hmac |
|
|
|
|
|
|
|
I = hmac.new("Bitcoin seed", seed, hashlib.sha512).digest() |
|
|
|
|
|
|
|
print "seed", seed.encode('hex') |
|
|
|
master_secret = I[0:32] |
|
|
|
master_chain = I[32:] |
|
|
|
|
|
|
|
# public key |
|
|
|
curve = SECP256k1 |
|
|
|
master_private_key = ecdsa.SigningKey.from_string( master_secret, curve = SECP256k1 ) |
|
|
|
master_public_key = master_private_key.get_verifying_key() |
|
|
|
K = master_public_key.to_string() |
|
|
|
K_compressed = GetPubKey(master_public_key.pubkey,True) |
|
|
|
return master_secret, master_chain, K, K_compressed |
|
|
|
|
|
|
|
|
|
|
|
def CKD(k, c, n): |
|
|
|
import hmac |
|
|
|
from ecdsa.util import string_to_number, number_to_string |
|
|
|
order = generator_secp256k1.order() |
|
|
|
keypair = EC_KEY(string_to_number(k)) |
|
|
|
K = GetPubKey(keypair.pubkey,True) |
|
|
|
I = hmac.new(c, K + rev_hex(int_to_hex(n,4)).decode('hex'), hashlib.sha512).digest() |
|
|
|
k_n = number_to_string( (string_to_number(I[0:32]) * string_to_number(k)) % order , order ) |
|
|
|
c_n = I[32:] |
|
|
|
return k_n, c_n |
|
|
|
|
|
|
|
|
|
|
|
def CKD_prime(K, c, n): |
|
|
|
import hmac |
|
|
|
from ecdsa.util import string_to_number, number_to_string |
|
|
|
order = generator_secp256k1.order() |
|
|
|
|
|
|
|
K_public_key = ecdsa.VerifyingKey.from_string( K, curve = SECP256k1 ) |
|
|
|
K_compressed = GetPubKey(K_public_key.pubkey,True) |
|
|
|
|
|
|
|
I = hmac.new(c, K_compressed + rev_hex(int_to_hex(n,4)).decode('hex'), hashlib.sha512).digest() |
|
|
|
|
|
|
|
#pubkey = ecdsa.ecdsa.Public_key( generator_secp256k1, string_to_number(I[0:32]) * K_public_key.pubkey.point ) |
|
|
|
public_key = ecdsa.VerifyingKey.from_public_point( string_to_number(I[0:32]) * K_public_key.pubkey.point, curve = SECP256k1 ) |
|
|
|
K_n = public_key.to_string() |
|
|
|
K_n_compressed = GetPubKey(public_key.pubkey,True) |
|
|
|
c_n = I[32:] |
|
|
|
|
|
|
|
return K_n, K_n_compressed, c_n |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def filter(s): |
|
|
|
|
|
|
|
################################## transactions |
|
|
|
|
|
|
|
|
|
|
|
def tx_filter(s): |
|
|
|
out = re.sub('( [^\n]*|)\n','',s) |
|
|
|
out = out.replace(' ','') |
|
|
|
out = out.replace('\n','') |
|
|
|
return out |
|
|
|
|
|
|
|
# https://en.bitcoin.it/wiki/Protocol_specification#Variable_length_integer |
|
|
|
def raw_tx( inputs, outputs, for_sig = None ): |
|
|
|
s = int_to_hex(1,4) + ' version\n' |
|
|
|
s += var_int( len(inputs) ) + ' number of inputs\n' |
|
|
|
s = int_to_hex(1,4) # version |
|
|
|
s += var_int( len(inputs) ) # number of inputs |
|
|
|
for i in range(len(inputs)): |
|
|
|
_, _, p_hash, p_index, p_script, pubkey, sig = inputs[i] |
|
|
|
s += p_hash.decode('hex')[::-1].encode('hex') + ' prev hash\n' |
|
|
|
s += int_to_hex(p_index,4) + ' prev index\n' |
|
|
|
_, _, p_hash, p_index, p_script, pubkeysig = inputs[i] |
|
|
|
s += p_hash.decode('hex')[::-1].encode('hex') # prev hash |
|
|
|
s += int_to_hex(p_index,4) # prev index |
|
|
|
|
|
|
|
if for_sig is None: |
|
|
|
sig = sig + chr(1) # hashtype |
|
|
|
script = int_to_hex( len(sig)) + ' push %d bytes\n'%len(sig) |
|
|
|
script += sig.encode('hex') + ' sig\n' |
|
|
|
script += int_to_hex( len(pubkey)) + ' push %d bytes\n'%len(pubkey) |
|
|
|
script += pubkey.encode('hex') + ' pubkey\n' |
|
|
|
if len(pubkeysig) == 1: |
|
|
|
pubkey, sig = pubkeysig[0] |
|
|
|
sig = sig + chr(1) # hashtype |
|
|
|
script = int_to_hex( len(sig)) |
|
|
|
script += sig.encode('hex') |
|
|
|
script += int_to_hex( len(pubkey)) |
|
|
|
script += pubkey.encode('hex') |
|
|
|
else: |
|
|
|
pubkey0, sig0 = pubkeysig[0] |
|
|
|
pubkey1, sig1 = pubkeysig[1] |
|
|
|
sig0 = sig0 + chr(1) |
|
|
|
sig1 = sig1 + chr(1) |
|
|
|
inner_script = multisig_script([pubkey0, pubkey1]) |
|
|
|
script = '00' # op_0 |
|
|
|
script += int_to_hex(len(sig0)) |
|
|
|
script += sig0.encode('hex') |
|
|
|
script += int_to_hex(len(sig1)) |
|
|
|
script += sig1.encode('hex') |
|
|
|
script += var_int(len(inner_script)/2) |
|
|
|
script += inner_script |
|
|
|
|
|
|
|
elif for_sig==i: |
|
|
|
script = p_script + ' scriptsig \n' |
|
|
|
if len(pubkeysig) > 1: |
|
|
|
script = multisig_script(pubkeysig) # p2sh uses the inner script |
|
|
|
else: |
|
|
|
script = p_script # scriptsig |
|
|
|
else: |
|
|
|
script='' |
|
|
|
s += var_int( len(filter(script))/2 ) + ' script length \n' |
|
|
|
s += var_int( len(tx_filter(script))/2 ) # script length |
|
|
|
s += script |
|
|
|
s += "ffffffff" + ' sequence\n' |
|
|
|
s += var_int( len(outputs) ) + ' number of outputs\n' |
|
|
|
s += "ffffffff" # sequence |
|
|
|
|
|
|
|
s += var_int( len(outputs) ) # number of outputs |
|
|
|
for output in outputs: |
|
|
|
addr, amount = output |
|
|
|
s += int_to_hex( amount, 8) + ' amount: %d\n'%amount |
|
|
|
script = '76a9' # op_dup, op_hash_160 |
|
|
|
script += '14' # push 0x14 bytes |
|
|
|
script += bc_address_to_hash_160(addr).encode('hex') |
|
|
|
script += '88ac' # op_equalverify, op_checksig |
|
|
|
s += var_int( len(filter(script))/2 ) + ' script length \n' |
|
|
|
s += script + ' script \n' |
|
|
|
s += int_to_hex(0,4) # lock time |
|
|
|
if for_sig is not None: s += int_to_hex(1, 4) # hash type |
|
|
|
s += int_to_hex( amount, 8) # amount |
|
|
|
addrtype, hash_160 = bc_address_to_hash_160(addr) |
|
|
|
if addrtype == 0: |
|
|
|
script = '76a9' # op_dup, op_hash_160 |
|
|
|
script += '14' # push 0x14 bytes |
|
|
|
script += hash_160.encode('hex') |
|
|
|
script += '88ac' # op_equalverify, op_checksig |
|
|
|
elif addrtype == 5: |
|
|
|
script = 'a9' # op_hash_160 |
|
|
|
script += '14' # push 0x14 bytes |
|
|
|
script += hash_160.encode('hex') |
|
|
|
script += '87' # op_equal |
|
|
|
else: |
|
|
|
raise |
|
|
|
|
|
|
|
s += var_int( len(tx_filter(script))/2 ) # script length |
|
|
|
s += script # script |
|
|
|
s += int_to_hex(0,4) # lock time |
|
|
|
if for_sig is not None: s += int_to_hex(1, 4) # hash type |
|
|
|
return tx_filter(s) |
|
|
|
|
|
|
|
|
|
|
|
def multisig_script(public_keys): |
|
|
|
# supports only "2 of 2", and "2 of 3" transactions |
|
|
|
n = len(public_keys) |
|
|
|
s = '52' |
|
|
|
for k in public_keys: |
|
|
|
s += var_int(len(k)/2) |
|
|
|
s += k |
|
|
|
if n==2: |
|
|
|
s += '52' |
|
|
|
elif n==3: |
|
|
|
s += '53' |
|
|
|
else: |
|
|
|
raise |
|
|
|
s += 'ae' |
|
|
|
return s |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_bip32(): |
|
|
|
seed = "ff000000000000000000000000000000".decode('hex') |
|
|
|
master_secret, master_chain, master_public_key, master_public_key_compressed = bip32_init(seed) |
|
|
|
|
|
|
|
print "secret key", master_secret.encode('hex') |
|
|
|
print "chain code", master_chain.encode('hex') |
|
|
|
|
|
|
|
key_id = hash_160(master_public_key_compressed) |
|
|
|
print "keyid", key_id.encode('hex') |
|
|
|
print "base58" |
|
|
|
print "address", hash_160_to_bc_address(key_id) |
|
|
|
print "secret key", SecretToASecret(master_secret, True) |
|
|
|
|
|
|
|
print "-- m/0 --" |
|
|
|
k0, c0 = CKD(master_secret, master_chain, 0) |
|
|
|
print "secret", k0.encode('hex') |
|
|
|
print "chain", c0.encode('hex') |
|
|
|
print "secret key", SecretToASecret(k0, True) |
|
|
|
|
|
|
|
K0, K0_compressed, c0 = CKD_prime(master_public_key, master_chain, 0) |
|
|
|
print "address", hash_160_to_bc_address(hash_160(K0_compressed)) |
|
|
|
|
|
|
|
print "-- m/0/1 --" |
|
|
|
K01, K01_compressed, c01 = CKD_prime(K0, c0, 1) |
|
|
|
print "address", hash_160_to_bc_address(hash_160(K01_compressed)) |
|
|
|
|
|
|
|
print "-- m/0/1/3 --" |
|
|
|
K013, K013_compressed, c013 = CKD_prime(K01, c01, 3) |
|
|
|
print "address", hash_160_to_bc_address(hash_160(K013_compressed)) |
|
|
|
|
|
|
|
print "-- m/0/1/3/7 --" |
|
|
|
K0137, K0137_compressed, c0137 = CKD_prime(K013, c013, 7) |
|
|
|
print "address", hash_160_to_bc_address(hash_160(K0137_compressed)) |
|
|
|
|
|
|
|
|
|
|
|
def test_p2sh(): |
|
|
|
|
|
|
|
print "2 of 2" |
|
|
|
pubkeys = ["04e89a79651522201d756f14b1874ae49139cc984e5782afeca30ffe84e5e6b2cfadcfe9875c490c8a1a05a4debd715dd57471af8886ab5dfbb3959d97f087f77a", |
|
|
|
"0455cf4a3ab68a011b18cb0a86aae2b8e9cad6c6355476de05247c57a9632d127084ac7630ad89893b43c486c5a9f7ec6158fb0feb708fa9255d5c4d44bc0858f8"] |
|
|
|
s = multisig_script(pubkeys) |
|
|
|
print "address", hash_160_to_bc_address(hash_160(s.decode('hex')), 5) |
|
|
|
|
|
|
|
|
|
|
|
print "Gavin's tutorial: redeem p2sh: http://blockchain.info/tx-index/30888901" |
|
|
|
pubkey1 = "0491bba2510912a5bd37da1fb5b1673010e43d2c6d812c514e91bfa9f2eb129e1c183329db55bd868e209aac2fbc02cb33d98fe74bf23f0c235d6126b1d8334f86" |
|
|
|
pubkey2 = "04865c40293a680cb9c020e7b1e106d8c1916d3cef99aa431a56d253e69256dac09ef122b1a986818a7cb624532f062c1d1f8722084861c5c3291ccffef4ec6874" |
|
|
|
pubkey3 = "048d2455d2403e08708fc1f556002f1b6cd83f992d085097f9974ab08a28838f07896fbab08f39495e15fa6fad6edbfb1e754e35fa1c7844c41f322a1863d46213" |
|
|
|
pubkeys = [pubkey1, pubkey2, pubkey3] |
|
|
|
|
|
|
|
tx_for_sig = raw_tx( [(None, None, '3c9018e8d5615c306d72397f8f5eef44308c98fb576a88e030c25456b4f3a7ac', 0, 'a914f815b036d9bbbce5e9f2a00abd1bf3dc91e9551087', pubkeys)], |
|
|
|
[('1GtpSrGhRGY5kkrNz4RykoqRQoJuG2L6DS',1000000)], for_sig = 0) |
|
|
|
|
|
|
|
print "tx for sig", tx_for_sig |
|
|
|
|
|
|
|
signature1 = "304502200187af928e9d155c4b1ac9c1c9118153239aba76774f775d7c1f9c3e106ff33c0221008822b0f658edec22274d0b6ae9de10ebf2da06b1bbdaaba4e50eb078f39e3d78" |
|
|
|
signature2 = "30440220795f0f4f5941a77ae032ecb9e33753788d7eb5cb0c78d805575d6b00a1d9bfed02203e1f4ad9332d1416ae01e27038e945bc9db59c732728a383a6f1ed2fb99da7a4" |
|
|
|
|
|
|
|
for pubkey in pubkeys: |
|
|
|
import traceback, sys |
|
|
|
|
|
|
|
public_key = ecdsa.VerifyingKey.from_string(pubkey[2:].decode('hex'), curve = SECP256k1) |
|
|
|
|
|
|
|
try: |
|
|
|
public_key.verify_digest( signature1.decode('hex'), Hash( tx_for_sig.decode('hex') ), sigdecode = ecdsa.util.sigdecode_der) |
|
|
|
print True |
|
|
|
except ecdsa.keys.BadSignatureError: |
|
|
|
#traceback.print_exc(file=sys.stdout) |
|
|
|
print False |
|
|
|
|
|
|
|
try: |
|
|
|
public_key.verify_digest( signature2.decode('hex'), Hash( tx_for_sig.decode('hex') ), sigdecode = ecdsa.util.sigdecode_der) |
|
|
|
print True |
|
|
|
except ecdsa.keys.BadSignatureError: |
|
|
|
#traceback.print_exc(file=sys.stdout) |
|
|
|
print False |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
#test_bip32() |
|
|
|
test_p2sh() |
|
|
|
|
|
|
|