You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

451 lines
12 KiB

/*
10 years ago
This file is part of ethash.
10 years ago
ethash is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
10 years ago
ethash is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
*/
10 years ago
/** @file internal.c
* @author Tim Hughes <tim@twistedfury.com>
* @author Matthew Wampler-Doty
* @date 2015
*/
#include <assert.h>
#include <inttypes.h>
#include <stddef.h>
#include "ethash.h"
#include "fnv.h"
#include "endian.h"
#include "internal.h"
#include "data_sizes.h"
#ifdef WITH_CRYPTOPP
#include "sha3_cryptopp.h"
#else
#include "sha3.h"
#endif // WITH_CRYPTOPP
uint64_t ethash_get_datasize(const uint32_t block_number) {
assert(block_number / EPOCH_LENGTH < 2048);
return dag_sizes[block_number / EPOCH_LENGTH];
}
uint64_t ethash_get_cachesize(const uint32_t block_number) {
assert(block_number / EPOCH_LENGTH < 2048);
return cache_sizes[block_number / EPOCH_LENGTH];
}
// Follows Sergio's "STRICT MEMORY HARD HASHING FUNCTIONS" (2014)
// https://bitslog.files.wordpress.com/2013/12/memohash-v0-3.pdf
// SeqMemoHash(s, R, N)
bool static ethash_compute_cache_nodes(node *const nodes,
ethash_params const *params,
ethash_h256_t const* seed)
{
if (params->cache_size % sizeof(node) != 0) {
return false;
}
uint32_t const num_nodes = (uint32_t) (params->cache_size / sizeof(node));
SHA3_512(nodes[0].bytes, (uint8_t*)seed, 32);
for (unsigned i = 1; i != num_nodes; ++i) {
SHA3_512(nodes[i].bytes, nodes[i - 1].bytes, 64);
}
for (unsigned j = 0; j != CACHE_ROUNDS; j++) {
for (unsigned i = 0; i != num_nodes; i++) {
uint32_t const idx = nodes[i].words[0] % num_nodes;
node data;
data = nodes[(num_nodes - 1 + i) % num_nodes];
for (unsigned w = 0; w != NODE_WORDS; ++w) {
data.words[w] ^= nodes[idx].words[w];
}
SHA3_512(nodes[i].bytes, data.bytes, sizeof(data));
}
}
// now perform endian conversion
fix_endian_arr32(nodes->words, num_nodes * NODE_WORDS);
return true;
}
ethash_cache *ethash_cache_new(ethash_params const *params, ethash_h256_t const *seed)
{
ethash_cache *ret;
ret = malloc(sizeof(*ret));
if (!ret) {
return NULL;
}
ret->mem = malloc((size_t)params->cache_size);
if (!ret->mem) {
goto fail_free_cache;
}
node *nodes = (node*)ret->mem;
if (!ethash_compute_cache_nodes(nodes, params, seed)) {
goto fail_free_cache_mem;
}
return ret;
fail_free_cache_mem:
free(ret->mem);
fail_free_cache:
free(ret);
return NULL;
}
void ethash_cache_delete(ethash_cache *c)
{
free(c->mem);
free(c);
}
void ethash_calculate_dag_item(node *const ret,
const unsigned node_index,
const struct ethash_params *params,
const struct ethash_cache *cache)
{
uint32_t num_parent_nodes = (uint32_t) (params->cache_size / sizeof(node));
node const *cache_nodes = (node const *) cache->mem;
node const *init = &cache_nodes[node_index % num_parent_nodes];
memcpy(ret, init, sizeof(node));
ret->words[0] ^= node_index;
SHA3_512(ret->bytes, ret->bytes, sizeof(node));
#if defined(_M_X64) && ENABLE_SSE
__m128i const fnv_prime = _mm_set1_epi32(FNV_PRIME);
__m128i xmm0 = ret->xmm[0];
__m128i xmm1 = ret->xmm[1];
__m128i xmm2 = ret->xmm[2];
__m128i xmm3 = ret->xmm[3];
#endif
for (unsigned i = 0; i != DATASET_PARENTS; ++i) {
uint32_t parent_index = ((node_index ^ i) * FNV_PRIME ^ ret->words[i % NODE_WORDS]) % num_parent_nodes;
node const *parent = &cache_nodes[parent_index];
#if defined(_M_X64) && ENABLE_SSE
{
xmm0 = _mm_mullo_epi32(xmm0, fnv_prime);
xmm1 = _mm_mullo_epi32(xmm1, fnv_prime);
xmm2 = _mm_mullo_epi32(xmm2, fnv_prime);
xmm3 = _mm_mullo_epi32(xmm3, fnv_prime);
xmm0 = _mm_xor_si128(xmm0, parent->xmm[0]);
xmm1 = _mm_xor_si128(xmm1, parent->xmm[1]);
xmm2 = _mm_xor_si128(xmm2, parent->xmm[2]);
xmm3 = _mm_xor_si128(xmm3, parent->xmm[3]);
// have to write to ret as values are used to compute index
ret->xmm[0] = xmm0;
ret->xmm[1] = xmm1;
ret->xmm[2] = xmm2;
ret->xmm[3] = xmm3;
}
#else
{
for (unsigned w = 0; w != NODE_WORDS; ++w) {
ret->words[w] = fnv_hash(ret->words[w], parent->words[w]);
}
}
#endif
}
SHA3_512(ret->bytes, ret->bytes, sizeof(node));
}
bool ethash_compute_full_data(void *mem,
ethash_params const *params,
ethash_cache const *cache)
{
if (params->full_size % (sizeof(uint32_t) * MIX_WORDS) != 0 ||
(params->full_size % sizeof(node)) != 0) {
return false;
}
node *full_nodes = mem;
// now compute full nodes
for (unsigned n = 0; n != (params->full_size / sizeof(node)); ++n) {
ethash_calculate_dag_item(&(full_nodes[n]), n, params, cache);
}
return true;
}
static bool ethash_hash(ethash_return_value *ret,
node const *full_nodes,
ethash_cache const *cache,
ethash_params const *params,
ethash_h256_t const *header_hash,
const uint64_t nonce,
ethash_callback_t callback)
{
if (params->full_size % MIX_WORDS != 0) {
return false;
}
// pack hash and nonce together into first 40 bytes of s_mix
assert(sizeof(node) * 8 == 512);
node s_mix[MIX_NODES + 1];
memcpy(s_mix[0].bytes, header_hash, 32);
fix_endian64(s_mix[0].double_words[4], nonce);
// compute sha3-512 hash and replicate across mix
SHA3_512(s_mix->bytes, s_mix->bytes, 40);
fix_endian_arr32(s_mix[0].words, 16);
node *const mix = s_mix + 1;
for (unsigned w = 0; w != MIX_WORDS; ++w) {
mix->words[w] = s_mix[0].words[w % NODE_WORDS];
}
unsigned const
page_size = sizeof(uint32_t) * MIX_WORDS,
num_full_pages = (unsigned) (params->full_size / page_size);
for (unsigned i = 0; i != ACCESSES; ++i) {
uint32_t const index = ((s_mix->words[0] ^ i) * FNV_PRIME ^ mix->words[i % MIX_WORDS]) % num_full_pages;
for (unsigned n = 0; n != MIX_NODES; ++n) {
const node *dag_node;
if (callback &&
callback(((float)(i * n) / (float)(ACCESSES * MIX_NODES) * 100) != 0)) {
return false;
}
if (full_nodes) {
dag_node = &full_nodes[MIX_NODES * index + n];
} else {
node tmp_node;
ethash_calculate_dag_item(&tmp_node, index * MIX_NODES + n, params, cache);
dag_node = &tmp_node;
}
#if defined(_M_X64) && ENABLE_SSE
{
__m128i fnv_prime = _mm_set1_epi32(FNV_PRIME);
__m128i xmm0 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[0]);
__m128i xmm1 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[1]);
__m128i xmm2 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[2]);
__m128i xmm3 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[3]);
mix[n].xmm[0] = _mm_xor_si128(xmm0, dag_node->xmm[0]);
mix[n].xmm[1] = _mm_xor_si128(xmm1, dag_node->xmm[1]);
mix[n].xmm[2] = _mm_xor_si128(xmm2, dag_node->xmm[2]);
mix[n].xmm[3] = _mm_xor_si128(xmm3, dag_node->xmm[3]);
}
#else
{
for (unsigned w = 0; w != NODE_WORDS; ++w) {
mix[n].words[w] = fnv_hash(mix[n].words[w], dag_node->words[w]);
}
}
#endif
}
}
// compress mix
for (unsigned w = 0; w != MIX_WORDS; w += 4) {
uint32_t reduction = mix->words[w + 0];
reduction = reduction * FNV_PRIME ^ mix->words[w + 1];
reduction = reduction * FNV_PRIME ^ mix->words[w + 2];
reduction = reduction * FNV_PRIME ^ mix->words[w + 3];
mix->words[w / 4] = reduction;
}
fix_endian_arr32(mix->words, MIX_WORDS / 4);
memcpy(&ret->mix_hash, mix->bytes, 32);
// final Keccak hash
SHA3_256(&ret->result, s_mix->bytes, 64 + 32); // Keccak-256(s + compressed_mix)
return true;
}
void ethash_quick_hash(ethash_h256_t *return_hash,
ethash_h256_t const *header_hash,
const uint64_t nonce,
ethash_h256_t const *mix_hash)
{
uint8_t buf[64 + 32];
memcpy(buf, header_hash, 32);
fix_endian64_same(nonce);
memcpy(&(buf[32]), &nonce, 8);
SHA3_512(buf, buf, 40);
memcpy(&(buf[64]), mix_hash, 32);
SHA3_256(return_hash, buf, 64 + 32);
}
void ethash_get_seedhash(ethash_h256_t *seedhash, const uint32_t block_number)
{
ethash_h256_reset(seedhash);
const uint32_t epochs = block_number / EPOCH_LENGTH;
for (uint32_t i = 0; i < epochs; ++i)
SHA3_256(seedhash, (uint8_t*)seedhash, 32);
}
int ethash_quick_check_difficulty(ethash_h256_t const *header_hash,
const uint64_t nonce,
ethash_h256_t const *mix_hash,
ethash_h256_t const *difficulty)
{
ethash_h256_t return_hash;
ethash_quick_hash(&return_hash, header_hash, nonce, mix_hash);
return ethash_check_difficulty(&return_hash, difficulty);
}
ethash_light_t ethash_light_new(ethash_params const *params, ethash_h256_t const *seed)
{
struct ethash_light *ret;
ret = calloc(sizeof(*ret), 1);
if (!ret) {
return NULL;
}
ret->cache = ethash_cache_new(params, seed);
if (!ret->cache) {
goto fail_free_light;
}
return ret;
fail_free_light:
free(ret);
return NULL;
}
void ethash_light_delete(ethash_light_t light)
{
if (light->cache) {
ethash_cache_delete(light->cache);
}
free(light);
}
bool ethash_light_compute(ethash_return_value *ret,
ethash_light_t light,
ethash_params const *params,
const ethash_h256_t *header_hash,
const uint64_t nonce)
{
return ethash_hash(ret, NULL, light->cache, params, header_hash, nonce, NULL);
}
ethash_cache *ethash_light_get_cache(ethash_light_t light)
{
return light->cache;
}
ethash_cache *ethash_light_acquire_cache(ethash_light_t light)
{
ethash_cache* ret = light->cache;
light->cache = 0;
return ret;
}
ethash_full_t ethash_full_new(ethash_params const* params,
ethash_cache const* cache,
ethash_callback_t callback)
{
struct ethash_full *ret;
ret = calloc(sizeof(*ret), 1);
if (!ret) {
return NULL;
}
ret->cache = (ethash_cache*)cache;
ret->data = malloc((size_t)params->full_size);
if (!ret->data) {
goto fail_free_full;
}
if (!ethash_compute_full_data(ret->data, params, cache)) {
goto fail_free_full_data;
}
ret->callback = callback;
return ret;
fail_free_full_data:
free(ret->data);
fail_free_full:
free(ret);
return NULL;
}
void ethash_full_delete(ethash_full_t full)
{
if (full->cache) {
ethash_cache_delete(full->cache);
}
free(full->data);
free(full);
}
bool ethash_full_compute(ethash_return_value *ret,
ethash_full_t full,
ethash_params const *params,
const ethash_h256_t *header_hash,
const uint64_t nonce)
{
return ethash_hash(ret,
(node const*)full->data,
NULL,
params,
header_hash,
nonce,
full->callback);
}
ethash_cache *ethash_full_get_cache(ethash_full_t full)
{
return full->cache;
}
ethash_cache *ethash_full_acquire_cache(ethash_full_t full)
{
ethash_cache* ret = full->cache;
full->cache = 0;
return ret;
}
/**
* =========================
* = DEPRECATED API =
* =========================
*
* Kept for backwards compatibility with whoever still uses it. Please consider
* switching to the new API (look above)
*/
void ethash_mkcache(ethash_cache *cache,
ethash_params const *params,
ethash_h256_t const* seed)
{
node *nodes = (node*) cache->mem;
ethash_compute_cache_nodes(nodes, params, seed);
}
void ethash_full(ethash_return_value *ret,
void const *full_mem,
ethash_params const *params,
ethash_h256_t const *header_hash,
const uint64_t nonce)
{
ethash_hash(ret, (node const *) full_mem, NULL, params, header_hash, nonce, NULL);
}
void ethash_light(ethash_return_value *ret,
ethash_cache const *cache,
ethash_params const *params,
ethash_h256_t const *header_hash,
const uint64_t nonce)
{
ethash_hash(ret, NULL, cache, params, header_hash, nonce, NULL);
}