|
|
|
#include "Arith256.h"
|
|
|
|
#include "Runtime.h"
|
|
|
|
#include "Type.h"
|
|
|
|
#include "Endianness.h"
|
|
|
|
|
|
|
|
#include <llvm/IR/Function.h>
|
|
|
|
#include <gmp.h>
|
|
|
|
|
|
|
|
namespace dev
|
|
|
|
{
|
|
|
|
namespace eth
|
|
|
|
{
|
|
|
|
namespace jit
|
|
|
|
{
|
|
|
|
|
|
|
|
Arith256::Arith256(llvm::IRBuilder<>& _builder) :
|
|
|
|
CompilerHelper(_builder)
|
|
|
|
{
|
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
m_result = m_builder.CreateAlloca(Type::Word, nullptr, "arith.result");
|
|
|
|
m_arg1 = m_builder.CreateAlloca(Type::Word, nullptr, "arith.arg1");
|
|
|
|
m_arg2 = m_builder.CreateAlloca(Type::Word, nullptr, "arith.arg2");
|
|
|
|
m_arg3 = m_builder.CreateAlloca(Type::Word, nullptr, "arith.arg3");
|
|
|
|
|
|
|
|
using Linkage = GlobalValue::LinkageTypes;
|
|
|
|
|
|
|
|
llvm::Type* arg2Types[] = {Type::WordPtr, Type::WordPtr, Type::WordPtr};
|
|
|
|
llvm::Type* arg3Types[] = {Type::WordPtr, Type::WordPtr, Type::WordPtr, Type::WordPtr};
|
|
|
|
|
|
|
|
m_mul = Function::Create(FunctionType::get(Type::Void, arg2Types, false), Linkage::ExternalLinkage, "arith_mul", getModule());
|
|
|
|
m_div = Function::Create(FunctionType::get(Type::Void, arg2Types, false), Linkage::ExternalLinkage, "arith_div", getModule());
|
|
|
|
m_mod = Function::Create(FunctionType::get(Type::Void, arg2Types, false), Linkage::ExternalLinkage, "arith_mod", getModule());
|
|
|
|
m_sdiv = Function::Create(FunctionType::get(Type::Void, arg2Types, false), Linkage::ExternalLinkage, "arith_sdiv", getModule());
|
|
|
|
m_smod = Function::Create(FunctionType::get(Type::Void, arg2Types, false), Linkage::ExternalLinkage, "arith_smod", getModule());
|
|
|
|
m_exp = Function::Create(FunctionType::get(Type::Void, arg2Types, false), Linkage::ExternalLinkage, "arith_exp", getModule());
|
|
|
|
m_addmod = Function::Create(FunctionType::get(Type::Void, arg3Types, false), Linkage::ExternalLinkage, "arith_addmod", getModule());
|
|
|
|
m_mulmod = Function::Create(FunctionType::get(Type::Void, arg3Types, false), Linkage::ExternalLinkage, "arith_mulmod", getModule());
|
|
|
|
}
|
|
|
|
|
|
|
|
Arith256::~Arith256()
|
|
|
|
{}
|
|
|
|
|
|
|
|
llvm::Value* Arith256::binaryOp(llvm::Function* _op, llvm::Value* _arg1, llvm::Value* _arg2)
|
|
|
|
{
|
|
|
|
m_builder.CreateStore(_arg1, m_arg1);
|
|
|
|
m_builder.CreateStore(_arg2, m_arg2);
|
|
|
|
m_builder.CreateCall3(_op, m_arg1, m_arg2, m_result);
|
|
|
|
return m_builder.CreateLoad(m_result);
|
|
|
|
}
|
|
|
|
|
|
|
|
llvm::Value* Arith256::ternaryOp(llvm::Function* _op, llvm::Value* _arg1, llvm::Value* _arg2, llvm::Value* _arg3)
|
|
|
|
{
|
|
|
|
m_builder.CreateStore(_arg1, m_arg1);
|
|
|
|
m_builder.CreateStore(_arg2, m_arg2);
|
|
|
|
m_builder.CreateStore(_arg3, m_arg3);
|
|
|
|
m_builder.CreateCall4(_op, m_arg1, m_arg2, m_arg3, m_result);
|
|
|
|
return m_builder.CreateLoad(m_result);
|
|
|
|
}
|
|
|
|
|
|
|
|
llvm::Value* Arith256::mul(llvm::Value* _arg1, llvm::Value* _arg2)
|
|
|
|
{
|
|
|
|
return binaryOp(m_mul, _arg1, _arg2);
|
|
|
|
}
|
|
|
|
|
|
|
|
llvm::Value* Arith256::div(llvm::Value* _arg1, llvm::Value* _arg2)
|
|
|
|
{
|
|
|
|
|
|
|
|
//return Endianness::toNative(m_builder, binaryOp(m_div, Endianness::toBE(m_builder, _arg1), Endianness::toBE(m_builder, _arg2)));
|
|
|
|
return binaryOp(m_div, _arg1, _arg2);
|
|
|
|
}
|
|
|
|
|
|
|
|
llvm::Value* Arith256::mod(llvm::Value* _arg1, llvm::Value* _arg2)
|
|
|
|
{
|
|
|
|
return binaryOp(m_mod, _arg1, _arg2);
|
|
|
|
}
|
|
|
|
|
|
|
|
llvm::Value* Arith256::sdiv(llvm::Value* _arg1, llvm::Value* _arg2)
|
|
|
|
{
|
|
|
|
return binaryOp(m_sdiv, _arg1, _arg2);
|
|
|
|
}
|
|
|
|
|
|
|
|
llvm::Value* Arith256::smod(llvm::Value* _arg1, llvm::Value* _arg2)
|
|
|
|
{
|
|
|
|
return binaryOp(m_smod, _arg1, _arg2);
|
|
|
|
}
|
|
|
|
|
|
|
|
llvm::Value* Arith256::exp(llvm::Value* _arg1, llvm::Value* _arg2)
|
|
|
|
{
|
|
|
|
return binaryOp(m_exp, _arg1, _arg2);
|
|
|
|
}
|
|
|
|
|
|
|
|
llvm::Value* Arith256::addmod(llvm::Value* _arg1, llvm::Value* _arg2, llvm::Value* _arg3)
|
|
|
|
{
|
|
|
|
return ternaryOp(m_addmod, _arg1, _arg2, _arg3);
|
|
|
|
}
|
|
|
|
|
|
|
|
llvm::Value* Arith256::mulmod(llvm::Value* _arg1, llvm::Value* _arg2, llvm::Value* _arg3)
|
|
|
|
{
|
|
|
|
return ternaryOp(m_mulmod, _arg1, _arg2, _arg3);
|
|
|
|
}
|
|
|
|
|
|
|
|
namespace
|
|
|
|
{
|
|
|
|
using s256 = boost::multiprecision::int256_t;
|
|
|
|
|
|
|
|
inline s256 u2s(u256 _u)
|
|
|
|
{
|
|
|
|
static const bigint c_end = (bigint)1 << 256;
|
|
|
|
static const u256 c_send = (u256)1 << 255;
|
|
|
|
if (_u < c_send)
|
|
|
|
return (s256)_u;
|
|
|
|
else
|
|
|
|
return (s256)-(c_end - _u);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline u256 s2u(s256 _u)
|
|
|
|
{
|
|
|
|
static const bigint c_end = (bigint)1 << 256;
|
|
|
|
if (_u >= 0)
|
|
|
|
return (u256)_u;
|
|
|
|
else
|
|
|
|
return (u256)(c_end + _u);
|
|
|
|
}
|
|
|
|
|
|
|
|
using uint128 = __uint128_t;
|
|
|
|
|
|
|
|
// uint128 add(uint128 a, uint128 b) { return a + b; }
|
|
|
|
// uint128 mul(uint128 a, uint128 b) { return a * b; }
|
|
|
|
//
|
|
|
|
// uint128 mulq(uint64_t x, uint64_t y)
|
|
|
|
// {
|
|
|
|
// return (uint128)x * (uint128)y;
|
|
|
|
// }
|
|
|
|
//
|
|
|
|
// uint128 addc(uint64_t x, uint64_t y)
|
|
|
|
// {
|
|
|
|
// return (uint128)x * (uint128)y;
|
|
|
|
// }
|
|
|
|
|
|
|
|
struct uint256
|
|
|
|
{
|
|
|
|
uint64_t lo;
|
|
|
|
uint64_t mid;
|
|
|
|
uint128 hi;
|
|
|
|
};
|
|
|
|
|
|
|
|
// uint256 add(uint256 x, uint256 y)
|
|
|
|
// {
|
|
|
|
// auto lo = (uint128) x.lo + y.lo;
|
|
|
|
// auto mid = (uint128) x.mid + y.mid + (lo >> 64);
|
|
|
|
// return {lo, mid, x.hi + y.hi + (mid >> 64)};
|
|
|
|
// }
|
|
|
|
|
|
|
|
uint256 mul(uint256 x, uint256 y)
|
|
|
|
{
|
|
|
|
auto t1 = (uint128) x.lo * y.lo;
|
|
|
|
auto t2 = (uint128) x.lo * y.mid;
|
|
|
|
auto t3 = x.lo * y.hi;
|
|
|
|
auto t4 = (uint128) x.mid * y.lo;
|
|
|
|
auto t5 = (uint128) x.mid * y.mid;
|
|
|
|
auto t6 = x.mid * y.hi;
|
|
|
|
auto t7 = x.hi * y.lo;
|
|
|
|
auto t8 = x.hi * y.mid;
|
|
|
|
|
|
|
|
auto lo = (uint64_t) t1;
|
|
|
|
auto m1 = (t1 >> 64) + (uint64_t) t2;
|
|
|
|
auto m2 = (uint64_t) m1;
|
|
|
|
auto mid = (uint128) m2 + (uint64_t) t4;
|
|
|
|
auto hi = (t2 >> 64) + t3 + (t4 >> 64) + t5 + (t6 << 64) + t7
|
|
|
|
+ (t8 << 64) + (m1 >> 64) + (mid >> 64);
|
|
|
|
|
|
|
|
return {lo, (uint64_t)mid, hi};
|
|
|
|
}
|
|
|
|
|
|
|
|
bool isZero(i256 const* _n)
|
|
|
|
{
|
|
|
|
return _n->a == 0 && _n->b == 0 && _n->c == 0 && _n->d == 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
const auto nLimbs = sizeof(i256) / sizeof(mp_limb_t);
|
|
|
|
|
|
|
|
int countLimbs(i256 const* _n)
|
|
|
|
{
|
|
|
|
static const auto limbsInWord = sizeof(_n->a) / sizeof(mp_limb_t);
|
|
|
|
static_assert(limbsInWord == 1, "E?");
|
|
|
|
|
|
|
|
int l = nLimbs;
|
|
|
|
if (_n->d != 0) return l;
|
|
|
|
l -= limbsInWord;
|
|
|
|
if (_n->c != 0) return l;
|
|
|
|
l -= limbsInWord;
|
|
|
|
if (_n->b != 0) return l;
|
|
|
|
l -= limbsInWord;
|
|
|
|
if (_n->a != 0) return l;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern "C"
|
|
|
|
{
|
|
|
|
|
|
|
|
using namespace dev::eth::jit;
|
|
|
|
|
|
|
|
EXPORT void arith_mul(uint256* _arg1, uint256* _arg2, uint256* o_result)
|
|
|
|
{
|
|
|
|
*o_result = mul(*_arg1, *_arg2);
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPORT void arith_div(i256* _arg1, i256* _arg2, i256* o_result)
|
|
|
|
{
|
|
|
|
*o_result = {};
|
|
|
|
if (isZero(_arg2))
|
|
|
|
return;
|
|
|
|
|
|
|
|
mpz_t x{nLimbs, countLimbs(_arg1), reinterpret_cast<mp_limb_t*>(_arg1)};
|
|
|
|
mpz_t y{nLimbs, countLimbs(_arg2), reinterpret_cast<mp_limb_t*>(_arg2)};
|
|
|
|
mpz_t z{nLimbs, 0, reinterpret_cast<mp_limb_t*>(o_result)};
|
|
|
|
|
|
|
|
mpz_tdiv_q(z, x, y);
|
|
|
|
|
|
|
|
// auto arg1 = llvm2eth(*_arg1);
|
|
|
|
// auto arg2 = llvm2eth(*_arg2);
|
|
|
|
// auto res = arg2 == 0 ? arg2 : arg1 / arg2;
|
|
|
|
// std::cout << "DIV " << arg1 << "/" << arg2 << " = " << res << std::endl;
|
|
|
|
// gmp_printf("GMP %Zd / %Zd = %Zd\n", x, y, z);
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPORT void arith_mod(i256* _arg1, i256* _arg2, i256* o_result)
|
|
|
|
{
|
|
|
|
*o_result = {};
|
|
|
|
if (isZero(_arg2))
|
|
|
|
return;
|
|
|
|
|
|
|
|
mpz_t x{nLimbs, countLimbs(_arg1), reinterpret_cast<mp_limb_t*>(_arg1)};
|
|
|
|
mpz_t y{nLimbs, countLimbs(_arg2), reinterpret_cast<mp_limb_t*>(_arg2)};
|
|
|
|
mpz_t z{nLimbs, 0, reinterpret_cast<mp_limb_t*>(o_result)};
|
|
|
|
|
|
|
|
mpz_tdiv_r(z, x, y);
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPORT void arith_sdiv(i256* _arg1, i256* _arg2, i256* o_result)
|
|
|
|
{
|
|
|
|
auto arg1 = llvm2eth(*_arg1);
|
|
|
|
auto arg2 = llvm2eth(*_arg2);
|
|
|
|
*o_result = eth2llvm(arg2 == 0 ? arg2 : s2u(u2s(arg1) / u2s(arg2)));
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPORT void arith_smod(i256* _arg1, i256* _arg2, i256* o_result)
|
|
|
|
{
|
|
|
|
auto arg1 = llvm2eth(*_arg1);
|
|
|
|
auto arg2 = llvm2eth(*_arg2);
|
|
|
|
*o_result = eth2llvm(arg2 == 0 ? arg2 : s2u(u2s(arg1) % u2s(arg2)));
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPORT void arith_exp(i256* _arg1, i256* _arg2, i256* o_result)
|
|
|
|
{
|
|
|
|
bigint left = llvm2eth(*_arg1);
|
|
|
|
bigint right = llvm2eth(*_arg2);
|
|
|
|
auto ret = static_cast<u256>(boost::multiprecision::powm(left, right, bigint(2) << 256));
|
|
|
|
*o_result = eth2llvm(ret);
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPORT void arith_mulmod(i256* _arg1, i256* _arg2, i256* _arg3, i256* o_result)
|
|
|
|
{
|
|
|
|
auto arg1 = llvm2eth(*_arg1);
|
|
|
|
auto arg2 = llvm2eth(*_arg2);
|
|
|
|
auto arg3 = llvm2eth(*_arg3);
|
|
|
|
if (arg3 != 0)
|
|
|
|
*o_result = eth2llvm(u256((bigint(arg1) * bigint(arg2)) % arg3));
|
|
|
|
else
|
|
|
|
*o_result = {};
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPORT void arith_addmod(i256* _arg1, i256* _arg2, i256* _arg3, i256* o_result)
|
|
|
|
{
|
|
|
|
auto arg1 = llvm2eth(*_arg1);
|
|
|
|
auto arg2 = llvm2eth(*_arg2);
|
|
|
|
auto arg3 = llvm2eth(*_arg3);
|
|
|
|
if (arg3 != 0)
|
|
|
|
*o_result = eth2llvm(u256((bigint(arg1) + bigint(arg2)) % arg3));
|
|
|
|
else
|
|
|
|
*o_result = {};
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|