Browse Source

RIP-EMD160 implementation for the VM.

Additional VM instructions.
cl-refactor
Gav Wood 11 years ago
parent
commit
21241b7370
  1. 53
      libethereum/Common.cpp
  2. 2
      libethereum/Common.h
  3. 91
      libethereum/VirtualMachine.cpp
  4. 35
      libethereum/VirtualMachine.h
  5. 351
      libethereum/rmd160.cpp
  6. 46
      libethereum/rmd160.h

53
libethereum/Common.cpp

@ -1,2 +1,55 @@
#include "Common.h"
#include "rmd160.h"
using namespace std;
using namespace eth;
/* collect four bytes into one word: */
#define BYTES_TO_DWORD(strptr) \
(((uint32_t) *((strptr)+3) << 24) | \
((uint32_t) *((strptr)+2) << 16) | \
((uint32_t) *((strptr)+1) << 8) | \
((uint32_t) *(strptr)))
u256 eth::ripemd160(fConstBytes _message)
/*
* returns RMD(message)
* message should be a string terminated by '\0'
*/
{
static const uint RMDsize = 160;
uint32_t MDbuf[RMDsize/32]; /* contains (A, B, C, D(, E)) */
static byte hashcode[RMDsize/8]; /* for final hash-value */
uint32_t X[16]; /* current 16-word chunk */
unsigned int i; /* counter */
uint32_t length; /* length in bytes of message */
uint32_t nbytes; /* # of bytes not yet processed */
/* initialize */
MDinit(MDbuf);
length = _message.size();
auto message = _message.data();
/* process message in 16-word chunks */
for (nbytes=length; nbytes > 63; nbytes-=64) {
for (i=0; i<16; i++) {
X[i] = BYTES_TO_DWORD(message);
message += 4;
}
compress(MDbuf, X);
} /* length mod 64 bytes left */
/* finish: */
MDfinish(MDbuf, message, length, 0);
for (i=0; i<RMDsize/8; i+=4) {
hashcode[i] = MDbuf[i>>2]; /* implicit cast to byte */
hashcode[i+1] = (MDbuf[i>>2] >> 8); /* extracts the 8 least */
hashcode[i+2] = (MDbuf[i>>2] >> 16); /* significant bits. */
hashcode[i+3] = (MDbuf[i>>2] >> 24);
}
u256 ret = 0;
for (i = 0; i < RMDsize / 8; ++i)
ret = (ret << 8) | hashcode[i];
return ret;
}

2
libethereum/Common.h

@ -74,4 +74,6 @@ template <class _T, class _U> uint commonPrefix(_T const& _t, _U const& _u)
return s;
}
u256 ripemd160(fConstBytes _message);
}

91
libethereum/VirtualMachine.cpp

@ -1,3 +1,4 @@
#include "sha256.h"
#include "VirtualMachine.h"
using namespace std;
using namespace eth;
@ -34,56 +35,140 @@ void VirtualMachine::go()
require(2);
m_stack[m_stack.size() - 2] += m_stack.back();
m_stack.pop_back();
break;
case Instruction::MUL:
//pops two items and pushes S[-1] * S[-2] mod 2^256.
require(2);
m_stack[m_stack.size() - 2] *= m_stack.back();
m_stack.pop_back();
break;
case Instruction::SUB:
require(2);
m_stack[m_stack.size() - 2] = m_stack.back() - m_stack[m_stack.size() - 2];
m_stack.pop_back();
break;
case Instruction::DIV:
require(2);
m_stack[m_stack.size() - 2] = m_stack.back() / m_stack[m_stack.size() - 2];
m_stack.pop_back();
break;
case Instruction::SDIV:
require(2);
(s256&)m_stack[m_stack.size() - 2] = (s256&)m_stack.back() / (s256&)m_stack[m_stack.size() - 2];
m_stack.pop_back();
break;
case Instruction::MOD:
require(2);
m_stack[m_stack.size() - 2] = m_stack.back() % m_stack[m_stack.size() - 2];
m_stack.pop_back();
break;
case Instruction::SMOD:
require(2);
(s256&)m_stack[m_stack.size() - 2] = (s256&)m_stack.back() % (s256&)m_stack[m_stack.size() - 2];
m_stack.pop_back();
break;
case Instruction::EXP:
{
// TODO: better implementation?
require(2);
// (s256&)m_stack[m_stack.size() - 2] = pow(m_stack.back(), m_stack[m_stack.size() - 2]);
// m_stack.pop_back();
auto n = m_stack.back();
auto x = m_stack[m_stack.size() - 2];
m_stack.pop_back();
for (u256 i = 0; i < x; ++i)
n *= n;
m_stack.back() = n;
break;
}
case Instruction::NEG:
require(1);
m_stack.back() = ~(m_stack.back() - 1);
break;
case Instruction::LT:
require(2);
m_stack[m_stack.size() - 2] = m_stack.back() < m_stack[m_stack.size() - 2] ? 1 : 0;
m_stack.pop_back();
break;
case Instruction::LE:
require(2);
m_stack[m_stack.size() - 2] = m_stack.back() <= m_stack[m_stack.size() - 2] ? 1 : 0;
m_stack.pop_back();
break;
case Instruction::GT:
require(2);
m_stack[m_stack.size() - 2] = m_stack.back() > m_stack[m_stack.size() - 2] ? 1 : 0;
m_stack.pop_back();
break;
case Instruction::GE:
require(2);
m_stack[m_stack.size() - 2] = m_stack.back() >= m_stack[m_stack.size() - 2] ? 1 : 0;
m_stack.pop_back();
break;
case Instruction::EQ:
require(2);
m_stack[m_stack.size() - 2] = m_stack.back() == m_stack[m_stack.size() - 2] ? 1 : 0;
m_stack.pop_back();
break;
case Instruction::NOT:
require(1);
m_stack.back() = m_stack.back() ? 0 : 1;
m_stack.pop_back();
break;
case Instruction::MYADDRESS:
case Instruction::MYCREATOR:
m_stack.push_back(m_myAddress);
break;
case Instruction::TXSENDER:
m_stack.push_back(m_txSender);
break;
case Instruction::TXVALUE:
m_stack.push_back(m_txValue);
break;
case Instruction::TXFEE:
m_stack.push_back(m_txFee);
break;
case Instruction::TXDATAN:
m_stack.push_back(m_txData.size());
break;
case Instruction::TXDATA:
require(1);
m_stack.back() = m_stack.back() < m_txData.size() ? m_txData[(uint)m_stack.back()] : 0;
break;
case Instruction::BLK_PREVHASH:
m_stack.push_back(m_previousBlock.hash);
break;
case Instruction::BLK_COINBASE:
m_stack.push_back(m_currentBlock.coinbase);
break;
case Instruction::BLK_TIMESTAMP:
m_stack.push_back(m_currentBlock.timestamp);
break;
case Instruction::BLK_NUMBER:
m_stack.push_back(m_currentBlock.number);
break;
case Instruction::BLK_DIFFICULTY:
m_stack.push_back(m_currentBlock.difficulty);
break;
case Instruction::SHA256:
case Instruction::RIPEMD160:
{
uint s = (uint)min(m_stack.back(), (u256)(m_stack.size() - 1) * 32);
bytes b(s);
uint i = 0;
for (; s; s = (s >= 32 ? s - 32 : 0), i += 32)
{
m_stack.pop_back();
u256 v = m_stack.back();
int sz = (int)min<u256>(32, s) - 1; // sz is one fewer than the number of bytes we're interested in.
v >>= ((31 - sz) * 8); // kill unused low-order bytes.
for (int j = 0; j <= sz; ++j, v >>= 8) // cycle through bytes, starting at low-order end.
b[i + sz - j] = (byte)(v & 0xff); // set each 32-byte (256-bit) chunk in reverse - (i.e. we want to put low-order last).
}
if (inst == Instruction::SHA256)
m_stack.back() = sha256(b);
else
m_stack.back() = ripemd160(&b);
break;
}
case Instruction::ECMUL:
case Instruction::ECADD:
case Instruction::ECSIGN:

35
libethereum/VirtualMachine.h

@ -23,14 +23,13 @@ enum class Instruction: uint8_t
SMOD, ///< Rx Ry Rz - like MOD, but for signed values just like SDIV (using Python's convention with negative numbers)
EXP, ///< Rx Ry Rz - sets Rz <- Rx ^ Ry mod 2^256
NEG, ///< Rx Ry - sets Ry <- 2^256 - Rx
LT = 0x10, ///< Rx Ry Rz - sets Rz <- 1 if Rx < Ry else 0
LT, ///< Rx Ry Rz - sets Rz <- 1 if Rx < Ry else 0
LE, ///< Rx Ry Rz - sets Rz <- 1 if Rx <= Ry else 0
GT, ///< Rx Ry Rz - sets Rz <- 1 if Rx > Ry else 0
GE, ///< Rx Ry Rz - sets Rz <- 1 if Rx >= Ry else 0
EQ, ///< Rx Ry Rz - sets Rz <- 1 if Rx = Ry else 0
NOT, ///< Rx Ry - sets Ry <- 1 if Rx = 0 else 0
MYADDRESS = 0x20, ///< Rx - sets Rx to the contract's own address
MYCREATOR, ///< Rx - sets Rx to the contract's own address
MYADDRESS = 0x10, ///< Rx - sets Rx to the contract's own address
TXSENDER, ///< pushes the transaction sender
TXVALUE , ///< pushes the transaction value
TXFEE, ///< pushes the transaction fee
@ -41,14 +40,14 @@ enum class Instruction: uint8_t
BLK_TIMESTAMP, ///< pushes the timestamp of the current block
BLK_NUMBER, ///< pushes the current block number
BLK_DIFFICULTY, ///< pushes the difficulty of the current block
SHA256 = 0x30, ///< sets Ry <- SHA256(Rx)
SHA256 = 0x20, ///< sets Ry <- SHA256(Rx)
RIPEMD160, ///< Rx Ry - sets Ry <- RIPEMD160(Rx)
ECMUL, ///< Rx Ry Rz Ra Rb - sets (Ra, Rb) = Rz * (Rx, Ry) in secp256k1, using (0,0) for the point at infinity
ECADD, ///< Rx Ry Rz Ra Rb Rc - sets (Rb, Rc) = (Rx, Ry) + (Ra, Rb)
ECSIGN, ///< Rx Ry Rz Ra Rb - sets(Rz, Ra, Rb)as the(r,s,prefix)values of an Electrum-style RFC6979 deterministic signature ofRxwith private keyRy`
ECRECOVER, ///< Rx Ry Rz Ra Rb Rc - sets(Rb, Rc)as the public key from the signature(Ry, Rz, Ra)of the message hashRx`
ECVALID, ///< Rx Ry Rz Ra Rb Rc - sets(Rb, Rc)as the public key from the signature(Ry, Rz, Ra)of the message hashRx`
PUSH = 0x40,
PUSH = 0x30,
POP,
DUP,
DUPN,
@ -56,18 +55,27 @@ enum class Instruction: uint8_t
SWAPN,
LOAD,
STORE,
JMP = 0x50, ///< Rx - sets the index pointer to the value at Rx
JMP = 0x40, ///< Rx - sets the index pointer to the value at Rx
JMPI, ///< Rx Ry - if Rx != 0, sets the index pointer to Ry
IND, ///< pushes the index pointer.
EXTRO = 0x60, ///< Rx Ry Rz - looks at the contract at address Rx and its memory state Ry, and outputs the result to Rz
EXTRO = 0x50, ///< Rx Ry Rz - looks at the contract at address Rx and its memory state Ry, and outputs the result to Rz
BALANCE, ///< Rx - returns the ether balance of address Rx
MKTX = 0x70, ///< Rx Ry Rz Rw Rv - sends Ry ether to Rx plus Rz fee with Rw data items starting from memory index Rv (and then reading to (Rv + 1), (Rv + 2) etc). Note that if Rx = 0 then this creates a new contract.
MKTX = 0x60, ///< Rx Ry Rz Rw Rv - sends Ry ether to Rx plus Rz fee with Rw data items starting from memory index Rv (and then reading to (Rv + 1), (Rv + 2) etc). Note that if Rx = 0 then this creates a new contract.
SUICIDE = 0xff ///< Rx - destroys the contract and clears all memory, sending the entire balance plus the negative fee from clearing memory minus TXFEE to the address
};
class BadInstruction: public std::exception {};
class StackTooSmall: public std::exception { public: StackTooSmall(uint _req, uint _got): req(_req), got(_got) {} uint req; uint got; };
struct BlockInfo
{
u256 hash;
u256 coinbase;
u256 timestamp;
u256 number;
u256 difficulty;
};
class VirtualMachine
{
public:
@ -91,6 +99,17 @@ private:
u256 m_extroFee;
u256 m_minerFee;
u256 m_voidFee;
u256 m_myAddress;
u256 m_txSender;
u256 m_txValue;
u256 m_txFee;
std::vector<u256> m_txData;
BlockInfo m_previousBlock;
BlockInfo m_currentBlock;
};
}

351
libethereum/rmd160.cpp

@ -0,0 +1,351 @@
/********************************************************************\
*
* FILE: rmd160.c
*
* CONTENTS: A sample C-implementation of the RIPEMD-160
* hash-function.
* TARGET: any computer with an ANSI C compiler
*
* AUTHOR: Antoon Bosselaers, ESAT-COSIC
* DATE: 1 March 1996
* VERSION: 1.0
*
* Copyright (c) Katholieke Universiteit Leuven
* 1996, All Rights Reserved
*
\********************************************************************/
/* header files */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "rmd160.h"
#include <cstdint>
/********************************************************************/
/* typedef 8 and 32 bit types, resp. */
/* adapt these, if necessary,
for your operating system and compiler */
typedef unsigned char byte;
typedef uint32_t dword;
/* if this line causes a compiler error,
adapt the defintion of dword above */
typedef int the_correct_size_was_chosen [sizeof (dword) == 4? 1: -1];
/********************************************************************/
/* macro definitions */
/* ROL(x, n) cyclically rotates x over n bits to the left */
/* x must be of an unsigned 32 bits type and 0 <= n < 32. */
#define ROL(x, n) (((x) << (n)) | ((x) >> (32-(n))))
/* the five basic functions F(), G() and H() */
#define F(x, y, z) ((x) ^ (y) ^ (z))
#define G(x, y, z) (((x) & (y)) | (~(x) & (z)))
#define H(x, y, z) (((x) | ~(y)) ^ (z))
#define I(x, y, z) (((x) & (z)) | ((y) & ~(z)))
#define J(x, y, z) ((x) ^ ((y) | ~(z)))
/* the ten basic operations FF() through III() */
#define FF(a, b, c, d, e, x, s) {\
(a) += F((b), (c), (d)) + (x);\
(a) = ROL((a), (s)) + (e);\
(c) = ROL((c), 10);\
}
#define GG(a, b, c, d, e, x, s) {\
(a) += G((b), (c), (d)) + (x) + 0x5a827999UL;\
(a) = ROL((a), (s)) + (e);\
(c) = ROL((c), 10);\
}
#define HH(a, b, c, d, e, x, s) {\
(a) += H((b), (c), (d)) + (x) + 0x6ed9eba1UL;\
(a) = ROL((a), (s)) + (e);\
(c) = ROL((c), 10);\
}
#define II(a, b, c, d, e, x, s) {\
(a) += I((b), (c), (d)) + (x) + 0x8f1bbcdcUL;\
(a) = ROL((a), (s)) + (e);\
(c) = ROL((c), 10);\
}
#define JJ(a, b, c, d, e, x, s) {\
(a) += J((b), (c), (d)) + (x) + 0xa953fd4eUL;\
(a) = ROL((a), (s)) + (e);\
(c) = ROL((c), 10);\
}
#define FFF(a, b, c, d, e, x, s) {\
(a) += F((b), (c), (d)) + (x);\
(a) = ROL((a), (s)) + (e);\
(c) = ROL((c), 10);\
}
#define GGG(a, b, c, d, e, x, s) {\
(a) += G((b), (c), (d)) + (x) + 0x7a6d76e9UL;\
(a) = ROL((a), (s)) + (e);\
(c) = ROL((c), 10);\
}
#define HHH(a, b, c, d, e, x, s) {\
(a) += H((b), (c), (d)) + (x) + 0x6d703ef3UL;\
(a) = ROL((a), (s)) + (e);\
(c) = ROL((c), 10);\
}
#define III(a, b, c, d, e, x, s) {\
(a) += I((b), (c), (d)) + (x) + 0x5c4dd124UL;\
(a) = ROL((a), (s)) + (e);\
(c) = ROL((c), 10);\
}
#define JJJ(a, b, c, d, e, x, s) {\
(a) += J((b), (c), (d)) + (x) + 0x50a28be6UL;\
(a) = ROL((a), (s)) + (e);\
(c) = ROL((c), 10);\
}
/********************************************************************/
void MDinit(dword *MDbuf)
{
MDbuf[0] = 0x67452301UL;
MDbuf[1] = 0xefcdab89UL;
MDbuf[2] = 0x98badcfeUL;
MDbuf[3] = 0x10325476UL;
MDbuf[4] = 0xc3d2e1f0UL;
return;
}
/********************************************************************/
void compress(dword *MDbuf, dword *X)
{
dword aa = MDbuf[0], bb = MDbuf[1], cc = MDbuf[2],
dd = MDbuf[3], ee = MDbuf[4];
dword aaa = MDbuf[0], bbb = MDbuf[1], ccc = MDbuf[2],
ddd = MDbuf[3], eee = MDbuf[4];
/* round 1 */
FF(aa, bb, cc, dd, ee, X[ 0], 11);
FF(ee, aa, bb, cc, dd, X[ 1], 14);
FF(dd, ee, aa, bb, cc, X[ 2], 15);
FF(cc, dd, ee, aa, bb, X[ 3], 12);
FF(bb, cc, dd, ee, aa, X[ 4], 5);
FF(aa, bb, cc, dd, ee, X[ 5], 8);
FF(ee, aa, bb, cc, dd, X[ 6], 7);
FF(dd, ee, aa, bb, cc, X[ 7], 9);
FF(cc, dd, ee, aa, bb, X[ 8], 11);
FF(bb, cc, dd, ee, aa, X[ 9], 13);
FF(aa, bb, cc, dd, ee, X[10], 14);
FF(ee, aa, bb, cc, dd, X[11], 15);
FF(dd, ee, aa, bb, cc, X[12], 6);
FF(cc, dd, ee, aa, bb, X[13], 7);
FF(bb, cc, dd, ee, aa, X[14], 9);
FF(aa, bb, cc, dd, ee, X[15], 8);
/* round 2 */
GG(ee, aa, bb, cc, dd, X[ 7], 7);
GG(dd, ee, aa, bb, cc, X[ 4], 6);
GG(cc, dd, ee, aa, bb, X[13], 8);
GG(bb, cc, dd, ee, aa, X[ 1], 13);
GG(aa, bb, cc, dd, ee, X[10], 11);
GG(ee, aa, bb, cc, dd, X[ 6], 9);
GG(dd, ee, aa, bb, cc, X[15], 7);
GG(cc, dd, ee, aa, bb, X[ 3], 15);
GG(bb, cc, dd, ee, aa, X[12], 7);
GG(aa, bb, cc, dd, ee, X[ 0], 12);
GG(ee, aa, bb, cc, dd, X[ 9], 15);
GG(dd, ee, aa, bb, cc, X[ 5], 9);
GG(cc, dd, ee, aa, bb, X[ 2], 11);
GG(bb, cc, dd, ee, aa, X[14], 7);
GG(aa, bb, cc, dd, ee, X[11], 13);
GG(ee, aa, bb, cc, dd, X[ 8], 12);
/* round 3 */
HH(dd, ee, aa, bb, cc, X[ 3], 11);
HH(cc, dd, ee, aa, bb, X[10], 13);
HH(bb, cc, dd, ee, aa, X[14], 6);
HH(aa, bb, cc, dd, ee, X[ 4], 7);
HH(ee, aa, bb, cc, dd, X[ 9], 14);
HH(dd, ee, aa, bb, cc, X[15], 9);
HH(cc, dd, ee, aa, bb, X[ 8], 13);
HH(bb, cc, dd, ee, aa, X[ 1], 15);
HH(aa, bb, cc, dd, ee, X[ 2], 14);
HH(ee, aa, bb, cc, dd, X[ 7], 8);
HH(dd, ee, aa, bb, cc, X[ 0], 13);
HH(cc, dd, ee, aa, bb, X[ 6], 6);
HH(bb, cc, dd, ee, aa, X[13], 5);
HH(aa, bb, cc, dd, ee, X[11], 12);
HH(ee, aa, bb, cc, dd, X[ 5], 7);
HH(dd, ee, aa, bb, cc, X[12], 5);
/* round 4 */
II(cc, dd, ee, aa, bb, X[ 1], 11);
II(bb, cc, dd, ee, aa, X[ 9], 12);
II(aa, bb, cc, dd, ee, X[11], 14);
II(ee, aa, bb, cc, dd, X[10], 15);
II(dd, ee, aa, bb, cc, X[ 0], 14);
II(cc, dd, ee, aa, bb, X[ 8], 15);
II(bb, cc, dd, ee, aa, X[12], 9);
II(aa, bb, cc, dd, ee, X[ 4], 8);
II(ee, aa, bb, cc, dd, X[13], 9);
II(dd, ee, aa, bb, cc, X[ 3], 14);
II(cc, dd, ee, aa, bb, X[ 7], 5);
II(bb, cc, dd, ee, aa, X[15], 6);
II(aa, bb, cc, dd, ee, X[14], 8);
II(ee, aa, bb, cc, dd, X[ 5], 6);
II(dd, ee, aa, bb, cc, X[ 6], 5);
II(cc, dd, ee, aa, bb, X[ 2], 12);
/* round 5 */
JJ(bb, cc, dd, ee, aa, X[ 4], 9);
JJ(aa, bb, cc, dd, ee, X[ 0], 15);
JJ(ee, aa, bb, cc, dd, X[ 5], 5);
JJ(dd, ee, aa, bb, cc, X[ 9], 11);
JJ(cc, dd, ee, aa, bb, X[ 7], 6);
JJ(bb, cc, dd, ee, aa, X[12], 8);
JJ(aa, bb, cc, dd, ee, X[ 2], 13);
JJ(ee, aa, bb, cc, dd, X[10], 12);
JJ(dd, ee, aa, bb, cc, X[14], 5);
JJ(cc, dd, ee, aa, bb, X[ 1], 12);
JJ(bb, cc, dd, ee, aa, X[ 3], 13);
JJ(aa, bb, cc, dd, ee, X[ 8], 14);
JJ(ee, aa, bb, cc, dd, X[11], 11);
JJ(dd, ee, aa, bb, cc, X[ 6], 8);
JJ(cc, dd, ee, aa, bb, X[15], 5);
JJ(bb, cc, dd, ee, aa, X[13], 6);
/* parallel round 1 */
JJJ(aaa, bbb, ccc, ddd, eee, X[ 5], 8);
JJJ(eee, aaa, bbb, ccc, ddd, X[14], 9);
JJJ(ddd, eee, aaa, bbb, ccc, X[ 7], 9);
JJJ(ccc, ddd, eee, aaa, bbb, X[ 0], 11);
JJJ(bbb, ccc, ddd, eee, aaa, X[ 9], 13);
JJJ(aaa, bbb, ccc, ddd, eee, X[ 2], 15);
JJJ(eee, aaa, bbb, ccc, ddd, X[11], 15);
JJJ(ddd, eee, aaa, bbb, ccc, X[ 4], 5);
JJJ(ccc, ddd, eee, aaa, bbb, X[13], 7);
JJJ(bbb, ccc, ddd, eee, aaa, X[ 6], 7);
JJJ(aaa, bbb, ccc, ddd, eee, X[15], 8);
JJJ(eee, aaa, bbb, ccc, ddd, X[ 8], 11);
JJJ(ddd, eee, aaa, bbb, ccc, X[ 1], 14);
JJJ(ccc, ddd, eee, aaa, bbb, X[10], 14);
JJJ(bbb, ccc, ddd, eee, aaa, X[ 3], 12);
JJJ(aaa, bbb, ccc, ddd, eee, X[12], 6);
/* parallel round 2 */
III(eee, aaa, bbb, ccc, ddd, X[ 6], 9);
III(ddd, eee, aaa, bbb, ccc, X[11], 13);
III(ccc, ddd, eee, aaa, bbb, X[ 3], 15);
III(bbb, ccc, ddd, eee, aaa, X[ 7], 7);
III(aaa, bbb, ccc, ddd, eee, X[ 0], 12);
III(eee, aaa, bbb, ccc, ddd, X[13], 8);
III(ddd, eee, aaa, bbb, ccc, X[ 5], 9);
III(ccc, ddd, eee, aaa, bbb, X[10], 11);
III(bbb, ccc, ddd, eee, aaa, X[14], 7);
III(aaa, bbb, ccc, ddd, eee, X[15], 7);
III(eee, aaa, bbb, ccc, ddd, X[ 8], 12);
III(ddd, eee, aaa, bbb, ccc, X[12], 7);
III(ccc, ddd, eee, aaa, bbb, X[ 4], 6);
III(bbb, ccc, ddd, eee, aaa, X[ 9], 15);
III(aaa, bbb, ccc, ddd, eee, X[ 1], 13);
III(eee, aaa, bbb, ccc, ddd, X[ 2], 11);
/* parallel round 3 */
HHH(ddd, eee, aaa, bbb, ccc, X[15], 9);
HHH(ccc, ddd, eee, aaa, bbb, X[ 5], 7);
HHH(bbb, ccc, ddd, eee, aaa, X[ 1], 15);
HHH(aaa, bbb, ccc, ddd, eee, X[ 3], 11);
HHH(eee, aaa, bbb, ccc, ddd, X[ 7], 8);
HHH(ddd, eee, aaa, bbb, ccc, X[14], 6);
HHH(ccc, ddd, eee, aaa, bbb, X[ 6], 6);
HHH(bbb, ccc, ddd, eee, aaa, X[ 9], 14);
HHH(aaa, bbb, ccc, ddd, eee, X[11], 12);
HHH(eee, aaa, bbb, ccc, ddd, X[ 8], 13);
HHH(ddd, eee, aaa, bbb, ccc, X[12], 5);
HHH(ccc, ddd, eee, aaa, bbb, X[ 2], 14);
HHH(bbb, ccc, ddd, eee, aaa, X[10], 13);
HHH(aaa, bbb, ccc, ddd, eee, X[ 0], 13);
HHH(eee, aaa, bbb, ccc, ddd, X[ 4], 7);
HHH(ddd, eee, aaa, bbb, ccc, X[13], 5);
/* parallel round 4 */
GGG(ccc, ddd, eee, aaa, bbb, X[ 8], 15);
GGG(bbb, ccc, ddd, eee, aaa, X[ 6], 5);
GGG(aaa, bbb, ccc, ddd, eee, X[ 4], 8);
GGG(eee, aaa, bbb, ccc, ddd, X[ 1], 11);
GGG(ddd, eee, aaa, bbb, ccc, X[ 3], 14);
GGG(ccc, ddd, eee, aaa, bbb, X[11], 14);
GGG(bbb, ccc, ddd, eee, aaa, X[15], 6);
GGG(aaa, bbb, ccc, ddd, eee, X[ 0], 14);
GGG(eee, aaa, bbb, ccc, ddd, X[ 5], 6);
GGG(ddd, eee, aaa, bbb, ccc, X[12], 9);
GGG(ccc, ddd, eee, aaa, bbb, X[ 2], 12);
GGG(bbb, ccc, ddd, eee, aaa, X[13], 9);
GGG(aaa, bbb, ccc, ddd, eee, X[ 9], 12);
GGG(eee, aaa, bbb, ccc, ddd, X[ 7], 5);
GGG(ddd, eee, aaa, bbb, ccc, X[10], 15);
GGG(ccc, ddd, eee, aaa, bbb, X[14], 8);
/* parallel round 5 */
FFF(bbb, ccc, ddd, eee, aaa, X[12] , 8);
FFF(aaa, bbb, ccc, ddd, eee, X[15] , 5);
FFF(eee, aaa, bbb, ccc, ddd, X[10] , 12);
FFF(ddd, eee, aaa, bbb, ccc, X[ 4] , 9);
FFF(ccc, ddd, eee, aaa, bbb, X[ 1] , 12);
FFF(bbb, ccc, ddd, eee, aaa, X[ 5] , 5);
FFF(aaa, bbb, ccc, ddd, eee, X[ 8] , 14);
FFF(eee, aaa, bbb, ccc, ddd, X[ 7] , 6);
FFF(ddd, eee, aaa, bbb, ccc, X[ 6] , 8);
FFF(ccc, ddd, eee, aaa, bbb, X[ 2] , 13);
FFF(bbb, ccc, ddd, eee, aaa, X[13] , 6);
FFF(aaa, bbb, ccc, ddd, eee, X[14] , 5);
FFF(eee, aaa, bbb, ccc, ddd, X[ 0] , 15);
FFF(ddd, eee, aaa, bbb, ccc, X[ 3] , 13);
FFF(ccc, ddd, eee, aaa, bbb, X[ 9] , 11);
FFF(bbb, ccc, ddd, eee, aaa, X[11] , 11);
/* combine results */
ddd += cc + MDbuf[1]; /* final result for MDbuf[0] */
MDbuf[1] = MDbuf[2] + dd + eee;
MDbuf[2] = MDbuf[3] + ee + aaa;
MDbuf[3] = MDbuf[4] + aa + bbb;
MDbuf[4] = MDbuf[0] + bb + ccc;
MDbuf[0] = ddd;
return;
}
/********************************************************************/
void MDfinish(dword *MDbuf, byte const *strptr, dword lswlen, dword mswlen)
{
unsigned int i; /* counter */
dword X[16]; /* message words */
memset(X, 0, 16*sizeof(dword));
/* put bytes from strptr into X */
for (i=0; i<(lswlen&63); i++) {
/* byte i goes into word X[i div 4] at pos. 8*(i mod 4) */
X[i>>2] ^= (dword) *strptr++ << (8 * (i&3));
}
/* append the bit m_n == 1 */
X[(lswlen>>2)&15] ^= (dword)1 << (8*(lswlen&3) + 7);
if ((lswlen & 63) > 55) {
/* length goes to next block */
compress(MDbuf, X);
memset(X, 0, 16*sizeof(dword));
}
/* append length in bits*/
X[14] = lswlen << 3;
X[15] = (lswlen >> 29) | (mswlen << 3);
compress(MDbuf, X);
return;
}
/************************ end of file rmd160.c **********************/

46
libethereum/rmd160.h

@ -0,0 +1,46 @@
/********************************************************************\
*
* FILE: rmd160.h
*
* CONTENTS: Header file for a sample C-implementation of the
* RIPEMD-160 hash-function.
* TARGET: any computer with an ANSI C compiler
*
* AUTHOR: Antoon Bosselaers, ESAT-COSIC
* DATE: 1 March 1996
* VERSION: 1.0
*
* Copyright (c) Katholieke Universiteit Leuven
* 1996, All Rights Reserved
*
\********************************************************************/
#ifndef RMD160H /* make sure this file is read only once */
#define RMD160H
/********************************************************************/
/* function prototypes */
void MDinit(uint32_t *MDbuf);
/*
* initializes MDbuffer to "magic constants"
*/
void compress(uint32_t *MDbuf, uint32_t *X);
/*
* the compression function.
* transforms MDbuf using message bytes X[0] through X[15]
*/
void MDfinish(uint32_t *MDbuf, unsigned char const *strptr, uint32_t lswlen, uint32_t mswlen);
/*
* puts bytes from strptr into X and pad out; appends length
* and finally, compresses the last block(s)
* note: length in bits == 8 * (lswlen + 2^32 mswlen).
* note: there are (lswlen mod 64) bytes left in strptr.
*/
#endif /* RMD160H */
/*********************** end of file rmd160.h ***********************/
Loading…
Cancel
Save