|
@ -1,8 +1,10 @@ |
|
|
#include "Arith256.h" |
|
|
#include "Arith256.h" |
|
|
#include "Runtime.h" |
|
|
#include "Runtime.h" |
|
|
#include "Type.h" |
|
|
#include "Type.h" |
|
|
|
|
|
#include "Endianness.h" |
|
|
|
|
|
|
|
|
#include <llvm/IR/Function.h> |
|
|
#include <llvm/IR/Function.h> |
|
|
|
|
|
#include <gmp.h> |
|
|
|
|
|
|
|
|
namespace dev |
|
|
namespace dev |
|
|
{ |
|
|
{ |
|
@ -63,6 +65,8 @@ llvm::Value* Arith256::mul(llvm::Value* _arg1, llvm::Value* _arg2) |
|
|
|
|
|
|
|
|
llvm::Value* Arith256::div(llvm::Value* _arg1, llvm::Value* _arg2) |
|
|
llvm::Value* Arith256::div(llvm::Value* _arg1, llvm::Value* _arg2) |
|
|
{ |
|
|
{ |
|
|
|
|
|
|
|
|
|
|
|
//return Endianness::toNative(m_builder, binaryOp(m_div, Endianness::toBE(m_builder, _arg1), Endianness::toBE(m_builder, _arg2)));
|
|
|
return binaryOp(m_div, _arg1, _arg2); |
|
|
return binaryOp(m_div, _arg1, _arg2); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
@ -168,6 +172,29 @@ namespace |
|
|
|
|
|
|
|
|
return {lo, (uint64_t)mid, hi}; |
|
|
return {lo, (uint64_t)mid, hi}; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
bool isZero(i256 const* _n) |
|
|
|
|
|
{ |
|
|
|
|
|
return _n->a == 0 && _n->b == 0 && _n->c == 0 && _n->d == 0; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
const auto nLimbs = sizeof(i256) / sizeof(mp_limb_t); |
|
|
|
|
|
|
|
|
|
|
|
int countLimbs(i256 const* _n) |
|
|
|
|
|
{ |
|
|
|
|
|
static const auto limbsInWord = sizeof(_n->a) / sizeof(mp_limb_t); |
|
|
|
|
|
static_assert(limbsInWord == 1, "E?"); |
|
|
|
|
|
|
|
|
|
|
|
int l = nLimbs; |
|
|
|
|
|
if (_n->d != 0) return l; |
|
|
|
|
|
l -= limbsInWord; |
|
|
|
|
|
if (_n->c != 0) return l; |
|
|
|
|
|
l -= limbsInWord; |
|
|
|
|
|
if (_n->b != 0) return l; |
|
|
|
|
|
l -= limbsInWord; |
|
|
|
|
|
if (_n->a != 0) return l; |
|
|
|
|
|
return 0; |
|
|
|
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
} |
|
|
} |
|
@ -187,16 +214,34 @@ extern "C" |
|
|
|
|
|
|
|
|
EXPORT void arith_div(i256* _arg1, i256* _arg2, i256* o_result) |
|
|
EXPORT void arith_div(i256* _arg1, i256* _arg2, i256* o_result) |
|
|
{ |
|
|
{ |
|
|
auto arg1 = llvm2eth(*_arg1); |
|
|
*o_result = {}; |
|
|
auto arg2 = llvm2eth(*_arg2); |
|
|
if (isZero(_arg2)) |
|
|
*o_result = eth2llvm(arg2 == 0 ? arg2 : arg1 / arg2); |
|
|
return; |
|
|
|
|
|
|
|
|
|
|
|
mpz_t x{nLimbs, countLimbs(_arg1), reinterpret_cast<mp_limb_t*>(_arg1)}; |
|
|
|
|
|
mpz_t y{nLimbs, countLimbs(_arg2), reinterpret_cast<mp_limb_t*>(_arg2)}; |
|
|
|
|
|
mpz_t z{nLimbs, 0, reinterpret_cast<mp_limb_t*>(o_result)}; |
|
|
|
|
|
|
|
|
|
|
|
mpz_tdiv_q(z, x, y); |
|
|
|
|
|
|
|
|
|
|
|
// auto arg1 = llvm2eth(*_arg1);
|
|
|
|
|
|
// auto arg2 = llvm2eth(*_arg2);
|
|
|
|
|
|
// auto res = arg2 == 0 ? arg2 : arg1 / arg2;
|
|
|
|
|
|
// std::cout << "DIV " << arg1 << "/" << arg2 << " = " << res << std::endl;
|
|
|
|
|
|
// gmp_printf("GMP %Zd / %Zd = %Zd\n", x, y, z);
|
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
EXPORT void arith_mod(i256* _arg1, i256* _arg2, i256* o_result) |
|
|
EXPORT void arith_mod(i256* _arg1, i256* _arg2, i256* o_result) |
|
|
{ |
|
|
{ |
|
|
auto arg1 = llvm2eth(*_arg1); |
|
|
*o_result = {}; |
|
|
auto arg2 = llvm2eth(*_arg2); |
|
|
if (isZero(_arg2)) |
|
|
*o_result = eth2llvm(arg2 == 0 ? arg2 : arg1 % arg2); |
|
|
return; |
|
|
|
|
|
|
|
|
|
|
|
mpz_t x{nLimbs, countLimbs(_arg1), reinterpret_cast<mp_limb_t*>(_arg1)}; |
|
|
|
|
|
mpz_t y{nLimbs, countLimbs(_arg2), reinterpret_cast<mp_limb_t*>(_arg2)}; |
|
|
|
|
|
mpz_t z{nLimbs, 0, reinterpret_cast<mp_limb_t*>(o_result)}; |
|
|
|
|
|
|
|
|
|
|
|
mpz_tdiv_r(z, x, y); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
EXPORT void arith_sdiv(i256* _arg1, i256* _arg2, i256* o_result) |
|
|
EXPORT void arith_sdiv(i256* _arg1, i256* _arg2, i256* o_result) |
|
|