Browse Source

Merge pull request #415 from chriseth/sol_expressionCompiler

Solidity expression compiler
cl-refactor
chriseth 10 years ago
parent
commit
46d413e83a
  1. 61
      libsolidity/AST.cpp
  2. 163
      libsolidity/AST.h
  3. 30
      libsolidity/ASTPrinter.cpp
  4. 5
      libsolidity/ASTPrinter.h
  5. 12
      libsolidity/ASTVisitor.h
  6. 6
      libsolidity/BaseTypes.h
  7. 401
      libsolidity/Compiler.cpp
  8. 146
      libsolidity/Compiler.h
  9. 21
      libsolidity/NameAndTypeResolver.cpp
  10. 23
      libsolidity/NameAndTypeResolver.h
  11. 5
      libsolidity/Parser.h
  12. 43
      libsolidity/Scanner.cpp
  13. 24
      libsolidity/Scanner.h
  14. 4
      libsolidity/Scope.cpp
  15. 10
      libsolidity/Scope.h
  16. 36
      libsolidity/SourceReferenceFormatter.cpp
  17. 20
      libsolidity/Token.h
  18. 92
      libsolidity/Types.cpp
  19. 68
      libsolidity/Types.h
  20. 43
      solc/main.cpp
  21. 229
      test/solidityCompiler.cpp
  22. 2
      test/solidityNameAndTypeResolution.cpp
  23. 2
      test/solidityParser.cpp

61
libsolidity/AST.cpp

@ -26,6 +26,8 @@
#include <libsolidity/ASTVisitor.h>
#include <libsolidity/Exceptions.h>
using namespace std;
namespace dev
{
namespace solidity
@ -248,12 +250,12 @@ void Literal::accept(ASTVisitor& _visitor)
_visitor.endVisit(*this);
}
TypeError ASTNode::createTypeError(std::string const& _description)
TypeError ASTNode::createTypeError(string const& _description)
{
return TypeError() << errinfo_sourceLocation(getLocation()) << errinfo_comment(_description);
}
void Statement::expectType(Expression& _expression, const Type& _expectedType)
void Statement::expectType(Expression& _expression, Type const& _expectedType)
{
_expression.checkTypeRequirements();
if (!_expression.getType()->isImplicitlyConvertibleTo(_expectedType))
@ -263,7 +265,7 @@ void Statement::expectType(Expression& _expression, const Type& _expectedType)
void Block::checkTypeRequirements()
{
for (std::shared_ptr<Statement> const& statement: m_statements)
for (shared_ptr<Statement> const& statement: m_statements)
statement->checkTypeRequirements();
}
@ -291,7 +293,7 @@ void Break::checkTypeRequirements()
void Return::checkTypeRequirements()
{
BOOST_ASSERT(m_returnParameters);
assert(m_returnParameters);
if (m_returnParameters->getParameters().size() != 1)
BOOST_THROW_EXCEPTION(createTypeError("Different number of arguments in return statement "
"than in returns declaration."));
@ -328,7 +330,7 @@ void Assignment::checkTypeRequirements()
m_type = m_leftHandSide->getType();
if (m_assigmentOperator != Token::ASSIGN)
{
// complex assignment
// compound assignment
if (!m_type->acceptsBinaryOperator(Token::AssignmentToBinaryOp(m_assigmentOperator)))
BOOST_THROW_EXCEPTION(createTypeError("Operator not compatible with type."));
}
@ -339,7 +341,7 @@ void UnaryOperation::checkTypeRequirements()
// INC, DEC, NOT, BIT_NOT, DELETE
m_subExpression->checkTypeRequirements();
m_type = m_subExpression->getType();
if (m_type->acceptsUnaryOperator(m_operator))
if (!m_type->acceptsUnaryOperator(m_operator))
BOOST_THROW_EXCEPTION(createTypeError("Unary operator not compatible with type."));
}
@ -354,10 +356,10 @@ void BinaryOperation::checkTypeRequirements()
else
BOOST_THROW_EXCEPTION(createTypeError("No common type found in binary operation."));
if (Token::isCompareOp(m_operator))
m_type = std::make_shared<BoolType>();
m_type = make_shared<BoolType>();
else
{
BOOST_ASSERT(Token::isBinaryOp(m_operator));
assert(Token::isBinaryOp(m_operator));
m_type = m_commonType;
if (!m_commonType->acceptsBinaryOperator(m_operator))
BOOST_THROW_EXCEPTION(createTypeError("Operator not compatible with type."));
@ -369,12 +371,12 @@ void FunctionCall::checkTypeRequirements()
m_expression->checkTypeRequirements();
for (ASTPointer<Expression> const& argument: m_arguments)
argument->checkTypeRequirements();
Type const& expressionType = *m_expression->getType();
Type::Category const category = expressionType.getCategory();
if (category == Type::Category::TYPE)
Type const* expressionType = m_expression->getType().get();
if (isTypeConversion())
{
TypeType const* type = dynamic_cast<TypeType const*>(&expressionType);
BOOST_ASSERT(type);
TypeType const* type = dynamic_cast<TypeType const*>(expressionType);
assert(type);
//@todo for structs, we have to check the number of arguments to be equal to the
// number of non-mapping members
if (m_arguments.size() != 1)
@ -384,15 +386,15 @@ void FunctionCall::checkTypeRequirements()
BOOST_THROW_EXCEPTION(createTypeError("Explicit type conversion not allowed."));
m_type = type->getActualType();
}
else if (category == Type::Category::FUNCTION)
else
{
//@todo would be nice to create a struct type from the arguments
// and then ask if that is implicitly convertible to the struct represented by the
// function parameters
FunctionType const* function = dynamic_cast<FunctionType const*>(&expressionType);
BOOST_ASSERT(function);
FunctionType const* function = dynamic_cast<FunctionType const*>(expressionType);
assert(function);
FunctionDefinition const& fun = function->getFunction();
std::vector<ASTPointer<VariableDeclaration>> const& parameters = fun.getParameters();
vector<ASTPointer<VariableDeclaration>> const& parameters = fun.getParameters();
if (parameters.size() != m_arguments.size())
BOOST_THROW_EXCEPTION(createTypeError("Wrong argument count for function call."));
for (size_t i = 0; i < m_arguments.size(); ++i)
@ -401,29 +403,32 @@ void FunctionCall::checkTypeRequirements()
// @todo actually the return type should be an anonymous struct,
// but we change it to the type of the first return value until we have structs
if (fun.getReturnParameterList()->getParameters().empty())
m_type = std::make_shared<VoidType>();
m_type = make_shared<VoidType>();
else
m_type = fun.getReturnParameterList()->getParameters().front()->getType();
}
else
BOOST_THROW_EXCEPTION(createTypeError("Type does not support invocation."));
}
bool FunctionCall::isTypeConversion() const
{
return m_expression->getType()->getCategory() == Type::Category::TYPE;
}
void MemberAccess::checkTypeRequirements()
{
BOOST_ASSERT(false); // not yet implemented
assert(false); // not yet implemented
// m_type = ;
}
void IndexAccess::checkTypeRequirements()
{
BOOST_ASSERT(false); // not yet implemented
assert(false); // not yet implemented
// m_type = ;
}
void Identifier::checkTypeRequirements()
{
BOOST_ASSERT(m_referencedDeclaration);
assert(m_referencedDeclaration);
//@todo these dynamic casts here are not really nice...
// is i useful to have an AST visitor here?
// or can this already be done in NameAndTypeResolver?
@ -446,7 +451,7 @@ void Identifier::checkTypeRequirements()
if (structDef)
{
// note that we do not have a struct type here
m_type = std::make_shared<TypeType>(std::make_shared<StructType>(*structDef));
m_type = make_shared<TypeType>(make_shared<StructType>(*structDef));
return;
}
FunctionDefinition* functionDef = dynamic_cast<FunctionDefinition*>(m_referencedDeclaration);
@ -455,21 +460,21 @@ void Identifier::checkTypeRequirements()
// a function reference is not a TypeType, because calling a TypeType converts to the type.
// Calling a function (e.g. function(12), otherContract.function(34)) does not do a type
// conversion.
m_type = std::make_shared<FunctionType>(*functionDef);
m_type = make_shared<FunctionType>(*functionDef);
return;
}
ContractDefinition* contractDef = dynamic_cast<ContractDefinition*>(m_referencedDeclaration);
if (contractDef)
{
m_type = std::make_shared<TypeType>(std::make_shared<ContractType>(*contractDef));
m_type = make_shared<TypeType>(make_shared<ContractType>(*contractDef));
return;
}
BOOST_ASSERT(false); // declaration reference of unknown/forbidden type
assert(false); // declaration reference of unknown/forbidden type
}
void ElementaryTypeNameExpression::checkTypeRequirements()
{
m_type = std::make_shared<TypeType>(Type::fromElementaryTypeName(m_typeToken));
m_type = make_shared<TypeType>(Type::fromElementaryTypeName(m_typeToken));
}
void Literal::checkTypeRequirements()

163
libsolidity/AST.h

@ -40,6 +40,12 @@ namespace solidity
class ASTVisitor;
/**
* The root (abstract) class of the AST inheritance tree.
* It is possible to traverse all direct and indirect children of an AST node by calling
* accept, providing an ASTVisitor.
*/
class ASTNode: private boost::noncopyable
{
public:
@ -55,28 +61,45 @@ public:
element->accept(_visitor);
}
/// Returns the source code location of this node.
Location const& getLocation() const { return m_location; }
/// Creates a @ref TypeError exception and decorates it with the location of the node and
/// the given description
TypeError createTypeError(std::string const& _description);
///@{
///@name equality operators
/// Equality relies on the fact that nodes cannot be copied.
bool operator==(ASTNode const& _other) const { return this == &_other; }
bool operator!=(ASTNode const& _other) const { return !operator==(_other); }
///@}
private:
Location m_location;
};
/**
* Abstract AST class for a declaration (contract, function, struct, variable).
*/
class Declaration: public ASTNode
{
public:
Declaration(Location const& _location, ASTPointer<ASTString> const& _name):
ASTNode(_location), m_name(_name) {}
const ASTString& getName() const { return *m_name; }
/// Returns the declared name.
ASTString const& getName() const { return *m_name; }
private:
ASTPointer<ASTString> m_name;
};
/**
* Definition of a contract. This is the only AST nodes where child nodes are not visited in
* document order. It first visits all struct declarations, then all variable declarations and
* finally all function declarations.
*/
class ContractDefinition: public Declaration
{
public:
@ -116,9 +139,11 @@ private:
std::vector<ASTPointer<VariableDeclaration>> m_members;
};
/// Used as function parameter list and return list
/// None of the parameters is allowed to contain mappings (not even recursively
/// inside structs)
/**
* Parameter list, used as function parameter list and return list.
* None of the parameters is allowed to contain mappings (not even recursively
* inside structs), but (@todo) this is not yet enforced.
*/
class ParameterList: public ASTNode
{
public:
@ -161,6 +186,10 @@ private:
ASTPointer<Block> m_body;
};
/**
* Declaration of a variable. This can be used in various places, e.g. in function parameter
* lists, struct definitions and even function bodys.
*/
class VariableDeclaration: public Declaration
{
public:
@ -172,30 +201,38 @@ public:
bool isTypeGivenExplicitly() const { return bool(m_typeName); }
TypeName* getTypeName() const { return m_typeName.get(); }
//! Returns the declared or inferred type. Can be an empty pointer if no type was explicitly
//! declared and there is no assignment to the variable that fixes the type.
/// Returns the declared or inferred type. Can be an empty pointer if no type was explicitly
/// declared and there is no assignment to the variable that fixes the type.
std::shared_ptr<Type const> const& getType() const { return m_type; }
void setType(std::shared_ptr<Type const> const& _type) { m_type = _type; }
private:
ASTPointer<TypeName> m_typeName; ///< can be empty ("var")
std::shared_ptr<Type const> m_type;
std::shared_ptr<Type const> m_type; ///< derived type, initially empty
};
/// types
/// Types
/// @{
/**
* Abstract base class of a type name, can be any built-in or user-defined type.
*/
class TypeName: public ASTNode
{
public:
explicit TypeName(Location const& _location): ASTNode(_location) {}
virtual void accept(ASTVisitor& _visitor) override;
/// Retrieve the element of the type hierarchy this node refers to. Can return an empty shared
/// pointer until the types have been resolved using the @ref NameAndTypeResolver.
virtual std::shared_ptr<Type> toType() = 0;
};
/// any pre-defined type that is not a mapping
/**
* Any pre-defined type name represented by a single keyword, i.e. it excludes mappings,
* contracts, functions, etc.
*/
class ElementaryTypeName: public TypeName
{
public:
@ -204,12 +241,16 @@ public:
virtual void accept(ASTVisitor& _visitor) override;
virtual std::shared_ptr<Type> toType() override { return Type::fromElementaryTypeName(m_type); }
Token::Value getType() const { return m_type; }
Token::Value getTypeName() const { return m_type; }
private:
Token::Value m_type;
};
/**
* Name referring to a user-defined type (i.e. a struct).
* @todo some changes are necessary if this is also used to refer to contract types later
*/
class UserDefinedTypeName: public TypeName
{
public:
@ -218,7 +259,7 @@ public:
virtual void accept(ASTVisitor& _visitor) override;
virtual std::shared_ptr<Type> toType() override { return Type::fromUserDefinedTypeName(*this); }
const ASTString& getName() const { return *m_name; }
ASTString const& getName() const { return *m_name; }
void setReferencedStruct(StructDefinition& _referencedStruct) { m_referencedStruct = &_referencedStruct; }
StructDefinition const* getReferencedStruct() const { return m_referencedStruct; }
@ -228,6 +269,9 @@ private:
StructDefinition* m_referencedStruct;
};
/**
* A mapping type. Its source form is "mapping('keyType' => 'valueType')"
*/
class Mapping: public TypeName
{
public:
@ -247,23 +291,30 @@ private:
/// Statements
/// @{
/**
* Abstract base class for statements.
*/
class Statement: public ASTNode
{
public:
explicit Statement(Location const& _location): ASTNode(_location) {}
virtual void accept(ASTVisitor& _visitor) override;
//! Check all type requirements, throws exception if some requirement is not met.
//! For expressions, this also returns the inferred type of the expression. For other
//! statements, returns the empty pointer.
/// Check all type requirements, throws exception if some requirement is not met.
/// This includes checking that operators are applicable to their arguments but also that
/// the number of function call arguments matches the number of formal parameters and so forth.
virtual void checkTypeRequirements() = 0;
protected:
//! Check that the inferred type for _expression is _expectedType or at least implicitly
//! convertible to _expectedType. If not, throw exception.
/// Helper function, check that the inferred type for @a _expression is @a _expectedType or at
/// least implicitly convertible to @a _expectedType. If not, throw exception.
void expectType(Expression& _expression, Type const& _expectedType);
};
/**
* Brace-enclosed block containing zero or more statements.
*/
class Block: public Statement
{
public:
@ -277,6 +328,10 @@ private:
std::vector<ASTPointer<Statement>> m_statements;
};
/**
* If-statement with an optional "else" part. Note that "else if" is modeled by having a new
* if-statement as the false (else) body.
*/
class IfStatement: public Statement
{
public:
@ -290,9 +345,13 @@ public:
private:
ASTPointer<Expression> m_condition;
ASTPointer<Statement> m_trueBody;
ASTPointer<Statement> m_falseBody; //< "else" part, optional
ASTPointer<Statement> m_falseBody; ///< "else" part, optional
};
/**
* Statement in which a break statement is legal.
* @todo actually check this requirement.
*/
class BreakableStatement: public Statement
{
public:
@ -341,11 +400,17 @@ public:
void setFunctionReturnParameters(ParameterList& _parameters) { m_returnParameters = &_parameters; }
private:
ASTPointer<Expression> m_expression; //< value to return, optional
ASTPointer<Expression> m_expression; ///< value to return, optional
ParameterList* m_returnParameters; //< extracted from the function declaration
/// Pointer to the parameter list of the function, filled by the @ref NameAndTypeResolver.
ParameterList* m_returnParameters;
};
/**
* Definition of a variable as a statement inside a function. It requires a type name (which can
* also be "var") but the actual assignment can be missing.
* Examples: var a = 2; uint256 a;
*/
class VariableDefinition: public Statement
{
public:
@ -357,17 +422,22 @@ public:
private:
ASTPointer<VariableDeclaration> m_variable;
ASTPointer<Expression> m_value; ///< can be missing
ASTPointer<Expression> m_value; ///< the assigned value, can be missing
};
/**
* An expression, i.e. something that has a value (which can also be of type "void" in case
* of function calls).
*/
class Expression: public Statement
{
public:
Expression(Location const& _location): Statement(_location) {}
std::shared_ptr<Type const> const& getType() const { return m_type; }
protected:
//! Inferred type of the expression, only filled after a call to checkTypeRequirements().
/// Inferred type of the expression, only filled after a call to checkTypeRequirements().
std::shared_ptr<Type const> m_type;
};
@ -376,6 +446,10 @@ protected:
/// Expressions
/// @{
/**
* Assignment, can also be a compound assignment.
* Examples: (a = 7 + 8) or (a *= 2)
*/
class Assignment: public Expression
{
public:
@ -386,7 +460,9 @@ public:
virtual void accept(ASTVisitor& _visitor) override;
virtual void checkTypeRequirements() override;
Expression& getLeftHandSide() const { return *m_leftHandSide; }
Token::Value getAssignmentOperator() const { return m_assigmentOperator; }
Expression& getRightHandSide() const { return *m_rightHandSide; }
private:
ASTPointer<Expression> m_leftHandSide;
@ -394,6 +470,10 @@ private:
ASTPointer<Expression> m_rightHandSide;
};
/**
* Operation involving a unary operator, pre- or postfix.
* Examples: ++i, delete x or !true
*/
class UnaryOperation: public Expression
{
public:
@ -413,6 +493,10 @@ private:
bool m_isPrefix;
};
/**
* Operation involving a binary operator.
* Examples: 1 + 2, true && false or 1 <= 4
*/
class BinaryOperation: public Expression
{
public:
@ -422,6 +506,8 @@ public:
virtual void accept(ASTVisitor& _visitor) override;
virtual void checkTypeRequirements() override;
Expression& getLeftExpression() const { return *m_left; }
Expression& getRightExpression() const { return *m_right; }
Token::Value getOperator() const { return m_operator; }
private:
@ -432,7 +518,9 @@ private:
std::shared_ptr<Type const> m_commonType;
};
/// Can be ordinary function call, type cast or struct construction.
/**
* Can be ordinary function call, type cast or struct construction.
*/
class FunctionCall: public Expression
{
public:
@ -442,11 +530,18 @@ public:
virtual void accept(ASTVisitor& _visitor) override;
virtual void checkTypeRequirements() override;
/// Returns true if this is not an actual function call, but an explicit type conversion
/// or constructor call.
bool isTypeConversion() const;
private:
ASTPointer<Expression> m_expression;
std::vector<ASTPointer<Expression>> m_arguments;
};
/**
* Access to a member of an object. Example: x.name
*/
class MemberAccess: public Expression
{
public:
@ -454,7 +549,7 @@ public:
ASTPointer<ASTString> const& _memberName):
Expression(_location), m_expression(_expression), m_memberName(_memberName) {}
virtual void accept(ASTVisitor& _visitor) override;
const ASTString& getMemberName() const { return *m_memberName; }
ASTString const& getMemberName() const { return *m_memberName; }
virtual void checkTypeRequirements() override;
private:
@ -462,6 +557,9 @@ private:
ASTPointer<ASTString> m_memberName;
};
/**
* Index access to an array. Example: a[2]
*/
class IndexAccess: public Expression
{
public:
@ -476,12 +574,19 @@ private:
ASTPointer<Expression> m_index;
};
/**
* Primary expression, i.e. an expression that cannot be divided any further. Examples are literals
* or variable references.
*/
class PrimaryExpression: public Expression
{
public:
PrimaryExpression(Location const& _location): Expression(_location) {}
};
/**
* An identifier, i.e. a reference to a declaration by name like a variable or function.
*/
class Identifier: public PrimaryExpression
{
public:
@ -491,16 +596,22 @@ public:
virtual void checkTypeRequirements() override;
ASTString const& getName() const { return *m_name; }
void setReferencedDeclaration(Declaration& _referencedDeclaration) { m_referencedDeclaration = &_referencedDeclaration; }
Declaration* getReferencedDeclaration() { return m_referencedDeclaration; }
private:
ASTPointer<ASTString> m_name;
//! Declaration the name refers to.
/// Declaration the name refers to.
Declaration* m_referencedDeclaration;
};
/**
* An elementary type name expression is used in expressions like "a = uint32(2)" to change the
* type of an expression explicitly. Here, "uint32" is the elementary type name expression and
* "uint32(2)" is a @ref FunctionCall.
*/
class ElementaryTypeNameExpression: public PrimaryExpression
{
public:
@ -515,6 +626,9 @@ private:
Token::Value m_typeToken;
};
/**
* A literal string or number. @see Type::literalToBigEndian is used to actually parse its value.
*/
class Literal: public PrimaryExpression
{
public:
@ -524,6 +638,7 @@ public:
virtual void checkTypeRequirements() override;
Token::Value getToken() const { return m_token; }
/// @returns the non-parsed value of the literal
ASTString const& getValue() const { return *m_value; }
private:

30
libsolidity/ASTPrinter.cpp

@ -23,17 +23,19 @@
#include <libsolidity/ASTPrinter.h>
#include <libsolidity/AST.h>
using namespace std;
namespace dev
{
namespace solidity
{
ASTPrinter::ASTPrinter(ASTPointer<ASTNode> const& _ast, std::string const& _source):
ASTPrinter::ASTPrinter(ASTPointer<ASTNode> const& _ast, string const& _source):
m_indentation(0), m_source(_source), m_ast(_ast)
{
}
void ASTPrinter::print(std::ostream& _stream)
void ASTPrinter::print(ostream& _stream)
{
m_ostream = &_stream;
m_ast->accept(*this);
@ -87,7 +89,7 @@ bool ASTPrinter::visit(TypeName& _node)
bool ASTPrinter::visit(ElementaryTypeName& _node)
{
writeLine(std::string("ElementaryTypeName ") + Token::toString(_node.getType()));
writeLine(string("ElementaryTypeName ") + Token::toString(_node.getTypeName()));
printSourcePart(_node);
return goDeeper();
}
@ -179,7 +181,7 @@ bool ASTPrinter::visit(Expression& _node)
bool ASTPrinter::visit(Assignment& _node)
{
writeLine(std::string("Assignment using operator ") + Token::toString(_node.getAssignmentOperator()));
writeLine(string("Assignment using operator ") + Token::toString(_node.getAssignmentOperator()));
printType(_node);
printSourcePart(_node);
return goDeeper();
@ -187,7 +189,7 @@ bool ASTPrinter::visit(Assignment& _node)
bool ASTPrinter::visit(UnaryOperation& _node)
{
writeLine(std::string("UnaryOperation (") + (_node.isPrefixOperation() ? "prefix" : "postfix") +
writeLine(string("UnaryOperation (") + (_node.isPrefixOperation() ? "prefix" : "postfix") +
") " + Token::toString(_node.getOperator()));
printType(_node);
printSourcePart(_node);
@ -196,7 +198,7 @@ bool ASTPrinter::visit(UnaryOperation& _node)
bool ASTPrinter::visit(BinaryOperation& _node)
{
writeLine(std::string("BinaryOperation using operator ") + Token::toString(_node.getOperator()));
writeLine(string("BinaryOperation using operator ") + Token::toString(_node.getOperator()));
printType(_node);
printSourcePart(_node);
return goDeeper();
@ -236,7 +238,7 @@ bool ASTPrinter::visit(PrimaryExpression& _node)
bool ASTPrinter::visit(Identifier& _node)
{
writeLine(std::string("Identifier ") + _node.getName());
writeLine(string("Identifier ") + _node.getName());
printType(_node);
printSourcePart(_node);
return goDeeper();
@ -244,7 +246,7 @@ bool ASTPrinter::visit(Identifier& _node)
bool ASTPrinter::visit(ElementaryTypeNameExpression& _node)
{
writeLine(std::string("ElementaryTypeNameExpression ") + Token::toString(_node.getTypeToken()));
writeLine(string("ElementaryTypeNameExpression ") + Token::toString(_node.getTypeToken()));
printType(_node);
printSourcePart(_node);
return goDeeper();
@ -255,7 +257,7 @@ bool ASTPrinter::visit(Literal& _node)
char const* tokenString = Token::toString(_node.getToken());
if (!tokenString)
tokenString = "[no token]";
writeLine(std::string("Literal, token: ") + tokenString + " value: " + _node.getValue());
writeLine(string("Literal, token: ") + tokenString + " value: " + _node.getValue());
printType(_node);
printSourcePart(_node);
return goDeeper();
@ -417,7 +419,7 @@ void ASTPrinter::printSourcePart(ASTNode const& _node)
{
Location const& location(_node.getLocation());
*m_ostream << getIndentation() << " Source: |"
<< m_source.substr(location.start, location.end - location.start) << "|" << std::endl;
<< m_source.substr(location.start, location.end - location.start) << "|" << endl;
}
}
@ -429,14 +431,14 @@ void ASTPrinter::printType(Expression const& _expression)
*m_ostream << getIndentation() << " Type unknown.\n";
}
std::string ASTPrinter::getIndentation() const
string ASTPrinter::getIndentation() const
{
return std::string(m_indentation * 2, ' ');
return string(m_indentation * 2, ' ');
}
void ASTPrinter::writeLine(std::string const& _line)
void ASTPrinter::writeLine(string const& _line)
{
*m_ostream << getIndentation() << _line << std::endl;
*m_ostream << getIndentation() << _line << endl;
}
}

5
libsolidity/ASTPrinter.h

@ -30,12 +30,15 @@ namespace dev
namespace solidity
{
/**
* Pretty-printer for the abstract syntax tree (the "pretty" is arguable) for debugging purposes.
*/
class ASTPrinter: public ASTVisitor
{
public:
/// Create a printer for the given abstract syntax tree. If the source is specified,
/// the corresponding parts of the source are printed with each node.
ASTPrinter(ASTPointer<ASTNode> const& _ast, const std::string& _source = std::string());
ASTPrinter(ASTPointer<ASTNode> const& _ast, std::string const& _source = std::string());
/// Output the string representation of the AST to _stream.
void print(std::ostream& _stream);

12
libsolidity/ASTVisitor.h

@ -30,13 +30,17 @@ namespace dev
namespace solidity
{
/**
* Visitor interface for the abstract syntax tree. This class is tightly bound to the
* implementation of @ref ASTNode::accept and its overrides. After a call to
* @ref ASTNode::accept, the function visit for the appropriate parameter is called and then
* (if it returns true) this continues recursively for all child nodes in document order
* (there is an exception for contracts). After all child nodes have been visited, endVisit is
* called for the node.
*/
class ASTVisitor
{
public:
/// These functions are called after a call to ASTNode::accept,
/// first visit, then (if visit returns true) recursively for all
/// child nodes in document order (exception for contracts) and then
/// endVisit.
virtual bool visit(ASTNode&) { return true; }
virtual bool visit(ContractDefinition&) { return true; }
virtual bool visit(StructDefinition&) { return true; }

6
libsolidity/BaseTypes.h

@ -29,8 +29,10 @@ namespace dev
namespace solidity
{
/// Representation of an interval of source positions.
/// The interval includes start and excludes end.
/**
* Representation of an interval of source positions.
* The interval includes start and excludes end.
*/
struct Location
{
Location(int _start, int _end): start(_start), end(_end) { }

401
libsolidity/Compiler.cpp

@ -0,0 +1,401 @@
/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @author Christian <c@ethdev.com>
* @date 2014
* Solidity AST to EVM bytecode compiler.
*/
#include <cassert>
#include <utility>
#include <libsolidity/AST.h>
#include <libsolidity/Compiler.h>
namespace dev {
namespace solidity {
void CompilerContext::setLabelPosition(uint32_t _label, uint32_t _position)
{
assert(m_labelPositions.find(_label) == m_labelPositions.end());
m_labelPositions[_label] = _position;
}
uint32_t CompilerContext::getLabelPosition(uint32_t _label) const
{
auto iter = m_labelPositions.find(_label);
assert(iter != m_labelPositions.end());
return iter->second;
}
void ExpressionCompiler::compile(Expression& _expression)
{
m_assemblyItems.clear();
_expression.accept(*this);
}
bytes ExpressionCompiler::getAssembledBytecode() const
{
bytes assembled;
assembled.reserve(m_assemblyItems.size());
// resolve label references
for (uint32_t pos = 0; pos < m_assemblyItems.size(); ++pos)
{
AssemblyItem const& item = m_assemblyItems[pos];
if (item.getType() == AssemblyItem::Type::LABEL)
m_context.setLabelPosition(item.getLabel(), pos + 1);
}
for (AssemblyItem const& item: m_assemblyItems)
if (item.getType() == AssemblyItem::Type::LABELREF)
assembled.push_back(m_context.getLabelPosition(item.getLabel()));
else
assembled.push_back(item.getData());
return assembled;
}
AssemblyItems ExpressionCompiler::compileExpression(CompilerContext& _context,
Expression& _expression)
{
ExpressionCompiler compiler(_context);
compiler.compile(_expression);
return compiler.getAssemblyItems();
}
void ExpressionCompiler::endVisit(Assignment& _assignment)
{
Expression& rightHandSide = _assignment.getRightHandSide();
Token::Value op = _assignment.getAssignmentOperator();
if (op != Token::ASSIGN)
{
// compound assignment
// @todo retrieve lvalue value
rightHandSide.accept(*this);
Type const& resultType = *_assignment.getType();
cleanHigherOrderBitsIfNeeded(*rightHandSide.getType(), resultType);
appendOrdinaryBinaryOperatorCode(Token::AssignmentToBinaryOp(op), resultType);
}
else
rightHandSide.accept(*this);
// @todo store value
}
void ExpressionCompiler::endVisit(UnaryOperation& _unaryOperation)
{
//@todo type checking and creating code for an operator should be in the same place:
// the operator should know how to convert itself and to which types it applies, so
// put this code together with "Type::acceptsBinary/UnaryOperator" into a class that
// represents the operator
switch (_unaryOperation.getOperator())
{
case Token::NOT: // !
append(eth::Instruction::NOT);
break;
case Token::BIT_NOT: // ~
append(eth::Instruction::BNOT);
break;
case Token::DELETE: // delete
// a -> a xor a (= 0).
// @todo this should also be an assignment
// @todo semantics change for complex types
append(eth::Instruction::DUP1);
append(eth::Instruction::XOR);
break;
case Token::INC: // ++ (pre- or postfix)
// @todo this should also be an assignment
if (_unaryOperation.isPrefixOperation())
{
append(eth::Instruction::PUSH1);
append(1);
append(eth::Instruction::ADD);
}
break;
case Token::DEC: // -- (pre- or postfix)
// @todo this should also be an assignment
if (_unaryOperation.isPrefixOperation())
{
append(eth::Instruction::PUSH1);
append(1);
append(eth::Instruction::SWAP1); //@todo avoid this
append(eth::Instruction::SUB);
}
break;
case Token::ADD: // +
// unary add, so basically no-op
break;
case Token::SUB: // -
// unary -x translates into "0-x"
append(eth::Instruction::PUSH1);
append(0);
append(eth::Instruction::SUB);
break;
default:
assert(false); // invalid operation
}
}
bool ExpressionCompiler::visit(BinaryOperation& _binaryOperation)
{
Expression& leftExpression = _binaryOperation.getLeftExpression();
Expression& rightExpression = _binaryOperation.getRightExpression();
Type const& resultType = *_binaryOperation.getType();
Token::Value const op = _binaryOperation.getOperator();
if (op == Token::AND || op == Token::OR)
{
// special case: short-circuiting
appendAndOrOperatorCode(_binaryOperation);
}
else if (Token::isCompareOp(op))
{
leftExpression.accept(*this);
rightExpression.accept(*this);
// the types to compare have to be the same, but the resulting type is always bool
assert(*leftExpression.getType() == *rightExpression.getType());
appendCompareOperatorCode(op, *leftExpression.getType());
}
else
{
leftExpression.accept(*this);
cleanHigherOrderBitsIfNeeded(*leftExpression.getType(), resultType);
rightExpression.accept(*this);
cleanHigherOrderBitsIfNeeded(*rightExpression.getType(), resultType);
appendOrdinaryBinaryOperatorCode(op, resultType);
}
// do not visit the child nodes, we already did that explicitly
return false;
}
void ExpressionCompiler::endVisit(FunctionCall& _functionCall)
{
if (_functionCall.isTypeConversion())
{
//@todo binary representation for all supported types (bool and int) is the same, so no-op
// here for now.
}
else
{
//@todo
}
}
void ExpressionCompiler::endVisit(MemberAccess&)
{
}
void ExpressionCompiler::endVisit(IndexAccess&)
{
}
void ExpressionCompiler::endVisit(Identifier&)
{
}
void ExpressionCompiler::endVisit(Literal& _literal)
{
switch (_literal.getType()->getCategory())
{
case Type::Category::INTEGER:
case Type::Category::BOOL:
{
bytes value = _literal.getType()->literalToBigEndian(_literal);
assert(value.size() <= 32);
assert(!value.empty());
append(static_cast<byte>(eth::Instruction::PUSH1) + static_cast<byte>(value.size() - 1));
append(value);
break;
}
default:
assert(false); // @todo
}
}
void ExpressionCompiler::cleanHigherOrderBitsIfNeeded(Type const& _typeOnStack, Type const& _targetType)
{
// If the type of one of the operands is extended, we need to remove all
// higher-order bits that we might have ignored in previous operations.
// @todo: store in the AST whether the operand might have "dirty" higher
// order bits
if (_typeOnStack == _targetType)
return;
if (_typeOnStack.getCategory() == Type::Category::INTEGER &&
_targetType.getCategory() == Type::Category::INTEGER)
{
//@todo
}
else
{
// If we get here, there is either an implementation missing to clean higher oder bits
// for non-integer types that are explicitly convertible or we got here in error.
assert(!_typeOnStack.isExplicitlyConvertibleTo(_targetType));
assert(false); // these types should not be convertible.
}
}
void ExpressionCompiler::appendAndOrOperatorCode(BinaryOperation& _binaryOperation)
{
Token::Value const op = _binaryOperation.getOperator();
assert(op == Token::OR || op == Token::AND);
_binaryOperation.getLeftExpression().accept(*this);
append(eth::Instruction::DUP1);
if (op == Token::AND)
append(eth::Instruction::NOT);
uint32_t endLabel = appendConditionalJump();
_binaryOperation.getRightExpression().accept(*this);
appendLabel(endLabel);
}
void ExpressionCompiler::appendCompareOperatorCode(Token::Value _operator, Type const& _type)
{
if (_operator == Token::EQ || _operator == Token::NE)
{
append(eth::Instruction::EQ);
if (_operator == Token::NE)
append(eth::Instruction::NOT);
}
else
{
IntegerType const* type = dynamic_cast<IntegerType const*>(&_type);
assert(type);
bool const isSigned = type->isSigned();
// note that EVM opcodes compare like "stack[0] < stack[1]",
// but our left value is at stack[1], so everyhing is reversed.
switch (_operator)
{
case Token::GTE:
append(isSigned ? eth::Instruction::SGT : eth::Instruction::GT);
append(eth::Instruction::NOT);
break;
case Token::LTE:
append(isSigned ? eth::Instruction::SLT : eth::Instruction::LT);
append(eth::Instruction::NOT);
break;
case Token::GT:
append(isSigned ? eth::Instruction::SLT : eth::Instruction::LT);
break;
case Token::LT:
append(isSigned ? eth::Instruction::SGT : eth::Instruction::GT);
break;
default:
assert(false);
}
}
}
void ExpressionCompiler::appendOrdinaryBinaryOperatorCode(Token::Value _operator, Type const& _type)
{
if (Token::isArithmeticOp(_operator))
appendArithmeticOperatorCode(_operator, _type);
else if (Token::isBitOp(_operator))
appendBitOperatorCode(_operator);
else if (Token::isShiftOp(_operator))
appendShiftOperatorCode(_operator);
else
assert(false); // unknown binary operator
}
void ExpressionCompiler::appendArithmeticOperatorCode(Token::Value _operator, Type const& _type)
{
IntegerType const* type = dynamic_cast<IntegerType const*>(&_type);
assert(type);
bool const isSigned = type->isSigned();
switch (_operator)
{
case Token::ADD:
append(eth::Instruction::ADD);
break;
case Token::SUB:
append(eth::Instruction::SWAP1);
append(eth::Instruction::SUB);
break;
case Token::MUL:
append(eth::Instruction::MUL);
break;
case Token::DIV:
append(isSigned ? eth::Instruction::SDIV : eth::Instruction::DIV);
break;
case Token::MOD:
append(isSigned ? eth::Instruction::SMOD : eth::Instruction::MOD);
break;
default:
assert(false);
}
}
void ExpressionCompiler::appendBitOperatorCode(Token::Value _operator)
{
switch (_operator)
{
case Token::BIT_OR:
append(eth::Instruction::OR);
break;
case Token::BIT_AND:
append(eth::Instruction::AND);
break;
case Token::BIT_XOR:
append(eth::Instruction::XOR);
break;
default:
assert(false);
}
}
void ExpressionCompiler::appendShiftOperatorCode(Token::Value _operator)
{
switch (_operator)
{
case Token::SHL:
assert(false); //@todo
break;
case Token::SAR:
assert(false); //@todo
break;
default:
assert(false);
}
}
uint32_t ExpressionCompiler::appendConditionalJump()
{
uint32_t label = m_context.dispenseNewLabel();
append(eth::Instruction::PUSH1);
appendLabelref(label);
append(eth::Instruction::JUMPI);
return label;
}
void ExpressionCompiler::append(bytes const& _data)
{
m_assemblyItems.reserve(m_assemblyItems.size() + _data.size());
for (byte b: _data)
append(b);
}
}
}

146
libsolidity/Compiler.h

@ -0,0 +1,146 @@
/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @author Christian <c@ethdev.com>
* @date 2014
* Solidity AST to EVM bytecode compiler.
*/
#include <libevmface/Instruction.h>
#include <libsolidity/ASTVisitor.h>
#include <libsolidity/Types.h>
#include <libsolidity/Token.h>
namespace dev {
namespace solidity {
/**
* A single item of compiled code that can be assembled to a single byte value in the final
* bytecode. Its main purpose is to inject jump labels and label references into the opcode stream,
* which can be resolved in the final step.
*/
class AssemblyItem
{
public:
enum class Type
{
CODE, ///< m_data is opcode, m_label is empty.
DATA, ///< m_data is actual data, m_label is empty
LABEL, ///< m_data is JUMPDEST opcode, m_label is id of label
LABELREF ///< m_data is empty, m_label is id of label
};
explicit AssemblyItem(eth::Instruction _instruction) : m_type(Type::CODE), m_data(byte(_instruction)) {}
explicit AssemblyItem(byte _data): m_type(Type::DATA), m_data(_data) {}
/// Factory functions
static AssemblyItem labelRef(uint32_t _label) { return AssemblyItem(Type::LABELREF, 0, _label); }
static AssemblyItem label(uint32_t _label) { return AssemblyItem(Type::LABEL, byte(eth::Instruction::JUMPDEST), _label); }
Type getType() const { return m_type; }
byte getData() const { return m_data; }
uint32_t getLabel() const { return m_label; }
private:
AssemblyItem(Type _type, byte _data, uint32_t _label): m_type(_type), m_data(_data), m_label(_label) {}
Type m_type;
byte m_data; ///< data to be written to the bytecode stream (or filled by a label if this is a LABELREF)
uint32_t m_label; ///< the id of a label either referenced or defined by this item
};
using AssemblyItems = std::vector<AssemblyItem>;
/**
* Context to be shared by all units that compile the same contract. Its current usage only
* concerns dispensing unique jump label IDs and storing their actual positions in the bytecode
* stream.
*/
class CompilerContext
{
public:
CompilerContext(): m_nextLabel(0) {}
uint32_t dispenseNewLabel() { return m_nextLabel++; }
void setLabelPosition(uint32_t _label, uint32_t _position);
uint32_t getLabelPosition(uint32_t _label) const;
private:
uint32_t m_nextLabel;
std::map<uint32_t, uint32_t> m_labelPositions;
};
/**
* Compiler for expressions, i.e. converts an AST tree whose root is an Expression into a stream
* of EVM instructions. It needs a compiler context that is the same for the whole compilation
* unit.
*/
class ExpressionCompiler: public ASTVisitor
{
public:
ExpressionCompiler(CompilerContext& _compilerContext): m_context(_compilerContext) {}
/// Compile the given expression and (re-)populate the assembly item list.
void compile(Expression& _expression);
AssemblyItems const& getAssemblyItems() const { return m_assemblyItems; }
bytes getAssembledBytecode() const;
/// Compile the given expression and return the assembly items right away.
static AssemblyItems compileExpression(CompilerContext& _context, Expression& _expression);
private:
virtual void endVisit(Assignment& _assignment) override;
virtual void endVisit(UnaryOperation& _unaryOperation) override;
virtual bool visit(BinaryOperation& _binaryOperation) override;
virtual void endVisit(FunctionCall& _functionCall) override;
virtual void endVisit(MemberAccess& _memberAccess) override;
virtual void endVisit(IndexAccess& _indexAccess) override;
virtual void endVisit(Identifier& _identifier) override;
virtual void endVisit(Literal& _literal) override;
/// Appends code to remove dirty higher order bits in case of an implicit promotion to a wider type.
void cleanHigherOrderBitsIfNeeded(Type const& _typeOnStack, Type const& _targetType);
///@{
///@name Append code for various operator types
void appendAndOrOperatorCode(BinaryOperation& _binaryOperation);
void appendCompareOperatorCode(Token::Value _operator, Type const& _type);
void appendOrdinaryBinaryOperatorCode(Token::Value _operator, Type const& _type);
void appendArithmeticOperatorCode(Token::Value _operator, Type const& _type);
void appendBitOperatorCode(Token::Value _operator);
void appendShiftOperatorCode(Token::Value _operator);
/// @}
/// Appends a JUMPI instruction to a new label and returns the label
uint32_t appendConditionalJump();
/// Append elements to the current instruction list.
void append(eth::Instruction const& _instruction) { m_assemblyItems.push_back(AssemblyItem(_instruction)); }
void append(byte _value) { m_assemblyItems.push_back(AssemblyItem(_value)); }
void append(bytes const& _data);
void appendLabelref(byte _label) { m_assemblyItems.push_back(AssemblyItem::labelRef(_label)); }
void appendLabel(byte _label) { m_assemblyItems.push_back(AssemblyItem::label(_label)); }
AssemblyItems m_assemblyItems;
CompilerContext& m_context;
};
}
}

21
libsolidity/NameAndTypeResolver.cpp

@ -20,11 +20,12 @@
* Parser part that determines the declarations corresponding to names and the types of expressions.
*/
#include <cassert>
#include <libsolidity/NameAndTypeResolver.h>
#include <libsolidity/AST.h>
#include <libsolidity/Exceptions.h>
#include <boost/assert.hpp>
using namespace std;
namespace dev
{
@ -68,7 +69,7 @@ Declaration* NameAndTypeResolver::getNameFromCurrentScope(ASTString const& _name
}
DeclarationRegistrationHelper::DeclarationRegistrationHelper(std::map<ASTNode*, Scope>& _scopes,
DeclarationRegistrationHelper::DeclarationRegistrationHelper(map<ASTNode*, Scope>& _scopes,
ASTNode& _astRoot):
m_scopes(_scopes), m_currentScope(&m_scopes[nullptr])
{
@ -120,22 +121,22 @@ void DeclarationRegistrationHelper::endVisit(VariableDeclaration&)
void DeclarationRegistrationHelper::enterNewSubScope(ASTNode& _node)
{
std::map<ASTNode*, Scope>::iterator iter;
map<ASTNode*, Scope>::iterator iter;
bool newlyAdded;
std::tie(iter, newlyAdded) = m_scopes.emplace(&_node, Scope(m_currentScope));
BOOST_ASSERT(newlyAdded);
tie(iter, newlyAdded) = m_scopes.emplace(&_node, Scope(m_currentScope));
assert(newlyAdded);
m_currentScope = &iter->second;
}
void DeclarationRegistrationHelper::closeCurrentScope()
{
BOOST_ASSERT(m_currentScope);
m_currentScope = m_currentScope->getOuterScope();
assert(m_currentScope);
m_currentScope = m_currentScope->getEnclosingScope();
}
void DeclarationRegistrationHelper::registerDeclaration(Declaration& _declaration, bool _opensScope)
{
BOOST_ASSERT(m_currentScope);
assert(m_currentScope);
if (!m_currentScope->registerDeclaration(_declaration))
BOOST_THROW_EXCEPTION(DeclarationError() << errinfo_sourceLocation(_declaration.getLocation())
<< errinfo_comment("Identifier already declared."));
@ -162,7 +163,7 @@ void ReferencesResolver::endVisit(VariableDeclaration& _variable)
bool ReferencesResolver::visit(Return& _return)
{
BOOST_ASSERT(m_returnParameters);
assert(m_returnParameters);
_return.setFunctionReturnParameters(*m_returnParameters);
return true;
}

23
libsolidity/NameAndTypeResolver.h

@ -33,8 +33,11 @@ namespace dev
namespace solidity
{
//! Resolves name references, resolves all types and checks that all operations are valid for the
//! inferred types. An exception is throw on the first error.
/**
* Resolves name references, types and checks types of all expressions.
* Specifically, it checks that all operations are valid for the inferred types.
* An exception is throw on the first error.
*/
class NameAndTypeResolver: private boost::noncopyable
{
public:
@ -46,15 +49,17 @@ public:
private:
void reset();
//! Maps nodes declaring a scope to scopes, i.e. ContractDefinition, FunctionDeclaration and
//! StructDefinition (@todo not yet implemented), where nullptr denotes the global scope.
/// Maps nodes declaring a scope to scopes, i.e. ContractDefinition, FunctionDeclaration and
/// StructDefinition (@todo not yet implemented), where nullptr denotes the global scope.
std::map<ASTNode*, Scope> m_scopes;
Scope* m_currentScope;
};
//! Traverses the given AST upon construction and fills _scopes with all declarations inside the
//! AST.
/**
* Traverses the given AST upon construction and fills _scopes with all declarations inside the
* AST.
*/
class DeclarationRegistrationHelper: private ASTVisitor
{
public:
@ -78,8 +83,10 @@ private:
Scope* m_currentScope;
};
//! Resolves references to declarations (of variables and types) and also establishes the link
//! between a return statement and the return parameter list.
/**
* Resolves references to declarations (of variables and types) and also establishes the link
* between a return statement and the return parameter list.
*/
class ReferencesResolver: private ASTVisitor
{
public:

5
libsolidity/Parser.h

@ -44,8 +44,8 @@ private:
/// End position of the current token
int getEndPosition() const;
/// Parsing functions for the AST nodes
///@{
///@name Parsing functions for the AST nodes
ASTPointer<ContractDefinition> parseContractDefinition();
ASTPointer<FunctionDefinition> parseFunctionDefinition(bool _isPublic);
ASTPointer<StructDefinition> parseStructDefinition();
@ -66,8 +66,9 @@ private:
std::vector<ASTPointer<Expression>> parseFunctionCallArguments();
///@}
/// Helper functions
///@{
///@name Helper functions
/// If current token value is not _value, throw exception otherwise advance token.
void expectToken(Token::Value _value);
Token::Value expectAssignmentOperator();

43
libsolidity/Scanner.cpp

@ -50,11 +50,13 @@
* Solidity scanner.
*/
#include <cassert>
#include <algorithm>
#include <tuple>
#include <libsolidity/Scanner.h>
using namespace std;
namespace dev
{
namespace solidity
@ -118,7 +120,7 @@ void Scanner::reset(CharStream const& _source)
bool Scanner::scanHexNumber(char& o_scannedNumber, int _expectedLength)
{
BOOST_ASSERT(_expectedLength <= 4); // prevent overflow
assert(_expectedLength <= 4); // prevent overflow
char x = 0;
for (int i = 0; i < _expectedLength; i++)
{
@ -178,7 +180,7 @@ Token::Value Scanner::skipSingleLineComment()
Token::Value Scanner::skipMultiLineComment()
{
BOOST_ASSERT(m_char == '*');
assert(m_char == '*');
advance();
while (!isSourcePastEndOfInput())
{
@ -471,7 +473,7 @@ void Scanner::scanDecimalDigits()
Token::Value Scanner::scanNumber(bool _periodSeen)
{
BOOST_ASSERT(IsDecimalDigit(m_char)); // the first digit of the number or the fraction
assert(IsDecimalDigit(m_char)); // the first digit of the number or the fraction
enum { DECIMAL, HEX, OCTAL, IMPLICIT_OCTAL, BINARY } kind = DECIMAL;
LiteralScope literal(this);
if (_periodSeen)
@ -513,7 +515,7 @@ Token::Value Scanner::scanNumber(bool _periodSeen)
// scan exponent, if any
if (m_char == 'e' || m_char == 'E')
{
BOOST_ASSERT(kind != HEX); // 'e'/'E' must be scanned as part of the hex number
assert(kind != HEX); // 'e'/'E' must be scanned as part of the hex number
if (kind != DECIMAL) return Token::ILLEGAL;
// scan exponent
addLiteralCharAndAdvance();
@ -607,9 +609,9 @@ Token::Value Scanner::scanNumber(bool _periodSeen)
KEYWORD("while", Token::WHILE) \
static Token::Value KeywordOrIdentifierToken(std::string const& input)
static Token::Value KeywordOrIdentifierToken(string const& input)
{
BOOST_ASSERT(!input.empty());
assert(!input.empty());
int const kMinLength = 2;
int const kMaxLength = 10;
if (input.size() < kMinLength || input.size() > kMaxLength)
@ -637,7 +639,7 @@ case ch:
Token::Value Scanner::scanIdentifierOrKeyword()
{
BOOST_ASSERT(IsIdentifierStart(m_char));
assert(IsIdentifierStart(m_char));
LiteralScope literal(this);
addLiteralCharAndAdvance();
// Scan the rest of the identifier characters.
@ -659,42 +661,41 @@ char CharStream::advanceAndGet()
char CharStream::rollback(size_t _amount)
{
BOOST_ASSERT(m_pos >= _amount);
assert(m_pos >= _amount);
m_pos -= _amount;
return get();
}
std::string CharStream::getLineAtPosition(int _position) const
string CharStream::getLineAtPosition(int _position) const
{
// if _position points to \n, it returns the line before the \n
using size_type = std::string::size_type;
size_type searchStart = std::min<size_type>(m_source.size(), _position);
using size_type = string::size_type;
size_type searchStart = min<size_type>(m_source.size(), _position);
if (searchStart > 0)
searchStart--;
size_type lineStart = m_source.rfind('\n', searchStart);
if (lineStart == std::string::npos)
if (lineStart == string::npos)
lineStart = 0;
else
lineStart++;
return m_source.substr(lineStart,
std::min(m_source.find('\n', lineStart),
return m_source.substr(lineStart, min(m_source.find('\n', lineStart),
m_source.size()) - lineStart);
}
std::tuple<int, int> CharStream::translatePositionToLineColumn(int _position) const
tuple<int, int> CharStream::translatePositionToLineColumn(int _position) const
{
using size_type = std::string::size_type;
size_type searchPosition = std::min<size_type>(m_source.size(), _position);
int lineNumber = std::count(m_source.begin(), m_source.begin() + searchPosition, '\n');
using size_type = string::size_type;
size_type searchPosition = min<size_type>(m_source.size(), _position);
int lineNumber = count(m_source.begin(), m_source.begin() + searchPosition, '\n');
size_type lineStart;
if (searchPosition == 0)
lineStart = 0;
else
{
lineStart = m_source.rfind('\n', searchPosition - 1);
lineStart = lineStart == std::string::npos ? 0 : lineStart + 1;
lineStart = lineStart == string::npos ? 0 : lineStart + 1;
}
return std::tuple<int, int>(lineNumber, searchPosition - lineStart);
return tuple<int, int>(lineNumber, searchPosition - lineStart);
}

24
libsolidity/Scanner.h

@ -52,8 +52,6 @@
#pragma once
#include <boost/assert.hpp>
#include <libdevcore/Common.h>
#include <libdevcore/Log.h>
#include <libdevcore/CommonData.h>
@ -81,9 +79,10 @@ public:
char advanceAndGet();
char rollback(size_t _amount);
///@{
///@name Error printing helper functions
/// Functions that help pretty-printing parse errors
/// Do only use in error cases, they are quite expensive.
/// @{
std::string getLineAtPosition(int _position) const;
std::tuple<int, int> translatePositionToLineColumn(int _position) const;
///@}
@ -119,26 +118,28 @@ public:
/// Returns the next token and advances input.
Token::Value next();
/// Information about the current token
///@{
///@name Information about the current token
/// Returns the current token
Token::Value getCurrentToken() { return m_current_token.token; }
Location getCurrentLocation() const { return m_current_token.location; }
const std::string& getCurrentLiteral() const { return m_current_token.literal; }
std::string const& getCurrentLiteral() const { return m_current_token.literal; }
///@}
/// Information about the next token
///@{
///@name Information about the next token
/// Returns the next token without advancing input.
Token::Value peekNextToken() const { return m_next_token.token; }
Location peekLocation() const { return m_next_token.location; }
const std::string& peekLiteral() const { return m_next_token.literal; }
std::string const& peekLiteral() const { return m_next_token.literal; }
///@}
/// Functions that help pretty-printing parse errors.
/// Do only use in error cases, they are quite expensive.
///@{
///@name Error printing helper functions
/// Functions that help pretty-printing parse errors
/// Do only use in error cases, they are quite expensive.
std::string getLineAtPosition(int _position) const { return m_source.getLineAtPosition(_position); }
std::tuple<int, int> translatePositionToLineColumn(int _position) const { return m_source.translatePositionToLineColumn(_position); }
///@}
@ -152,8 +153,8 @@ private:
std::string literal;
};
/// Literal buffer support
///@{
///@name Literal buffer support
inline void startNewLiteral() { m_next_token.literal.clear(); }
inline void addLiteralChar(char c) { m_next_token.literal.push_back(c); }
inline void dropLiteral() { m_next_token.literal.clear(); }
@ -169,9 +170,10 @@ private:
bool scanHexNumber(char& o_scannedNumber, int _expectedLength);
// Scans a single JavaScript token.
/// Scans a single JavaScript token.
void scanToken();
/// Skips all whitespace and @returns true if something was skipped.
bool skipWhitespace();
Token::Value skipSingleLineComment();
Token::Value skipMultiLineComment();

4
libsolidity/Scope.cpp

@ -41,8 +41,8 @@ Declaration* Scope::resolveName(ASTString const& _name, bool _recursive) const
auto result = m_declarations.find(_name);
if (result != m_declarations.end())
return result->second;
if (_recursive && m_outerScope)
return m_outerScope->resolveName(_name, true);
if (_recursive && m_enclosingScope)
return m_enclosingScope->resolveName(_name, true);
return nullptr;
}

10
libsolidity/Scope.h

@ -32,18 +32,22 @@ namespace dev
namespace solidity
{
/**
* Container that stores mappings betwee names and declarations. It also contains a link to the
* enclosing scope.
*/
class Scope
{
public:
explicit Scope(Scope* _outerScope = nullptr): m_outerScope(_outerScope) {}
explicit Scope(Scope* _enclosingScope = nullptr): m_enclosingScope(_enclosingScope) {}
/// Registers the declaration in the scope unless its name is already declared. Returns true iff
/// it was not yet declared.
bool registerDeclaration(Declaration& _declaration);
Declaration* resolveName(ASTString const& _name, bool _recursive = false) const;
Scope* getOuterScope() const { return m_outerScope; }
Scope* getEnclosingScope() const { return m_enclosingScope; }
private:
Scope* m_outerScope;
Scope* m_enclosingScope;
std::map<ASTString, Declaration*> m_declarations;
};

36
libsolidity/SourceReferenceFormatter.cpp

@ -24,57 +24,59 @@
#include <libsolidity/Scanner.h>
#include <libsolidity/Exceptions.h>
using namespace std;
namespace dev
{
namespace solidity
{
void SourceReferenceFormatter::printSourceLocation(std::ostream& _stream,
void SourceReferenceFormatter::printSourceLocation(ostream& _stream,
Location const& _location,
Scanner const& _scanner)
{
int startLine;
int startColumn;
std::tie(startLine, startColumn) = _scanner.translatePositionToLineColumn(_location.start);
tie(startLine, startColumn) = _scanner.translatePositionToLineColumn(_location.start);
_stream << "starting at line " << (startLine + 1) << ", column " << (startColumn + 1) << "\n";
int endLine;
int endColumn;
std::tie(endLine, endColumn) = _scanner.translatePositionToLineColumn(_location.end);
tie(endLine, endColumn) = _scanner.translatePositionToLineColumn(_location.end);
if (startLine == endLine)
{
_stream << _scanner.getLineAtPosition(_location.start) << std::endl
<< std::string(startColumn, ' ') << "^";
_stream << _scanner.getLineAtPosition(_location.start) << endl
<< string(startColumn, ' ') << "^";
if (endColumn > startColumn + 2)
_stream << std::string(endColumn - startColumn - 2, '-');
_stream << string(endColumn - startColumn - 2, '-');
if (endColumn > startColumn + 1)
_stream << "^";
_stream << std::endl;
_stream << endl;
}
else
_stream << _scanner.getLineAtPosition(_location.start) << std::endl
<< std::string(startColumn, ' ') << "^\n"
_stream << _scanner.getLineAtPosition(_location.start) << endl
<< string(startColumn, ' ') << "^\n"
<< "Spanning multiple lines.\n";
}
void SourceReferenceFormatter::printSourcePosition(std::ostream& _stream,
void SourceReferenceFormatter::printSourcePosition(ostream& _stream,
int _position,
const Scanner& _scanner)
{
int line;
int column;
std::tie(line, column) = _scanner.translatePositionToLineColumn(_position);
_stream << "at line " << (line + 1) << ", column " << (column + 1) << std::endl
<< _scanner.getLineAtPosition(_position) << std::endl
<< std::string(column, ' ') << "^" << std::endl;
tie(line, column) = _scanner.translatePositionToLineColumn(_position);
_stream << "at line " << (line + 1) << ", column " << (column + 1) << endl
<< _scanner.getLineAtPosition(_position) << endl
<< string(column, ' ') << "^" << endl;
}
void SourceReferenceFormatter::printExceptionInformation(std::ostream& _stream,
void SourceReferenceFormatter::printExceptionInformation(ostream& _stream,
Exception const& _exception,
std::string const& _name,
string const& _name,
Scanner const& _scanner)
{
_stream << _name;
if (std::string const* description = boost::get_error_info<errinfo_comment>(_exception))
if (string const* description = boost::get_error_info<errinfo_comment>(_exception))
_stream << ": " << *description;
if (int const* position = boost::get_error_info<errinfo_sourcePosition>(_exception))

20
libsolidity/Token.h

@ -42,8 +42,7 @@
#pragma once
#include <boost/assert.hpp>
#include <cassert>
#include <libdevcore/Common.h>
#include <libdevcore/Log.h>
@ -225,7 +224,7 @@ public:
// (e.g. "LT" for the token LT).
static char const* getName(Value tok)
{
BOOST_ASSERT(tok < NUM_TOKENS); // tok is unsigned
assert(tok < NUM_TOKENS); // tok is unsigned
return m_name[tok];
}
@ -236,6 +235,7 @@ public:
static bool isAssignmentOp(Value tok) { return ASSIGN <= tok && tok <= ASSIGN_MOD; }
static bool isBinaryOp(Value op) { return COMMA <= op && op <= MOD; }
static bool isTruncatingBinaryOp(Value op) { return BIT_OR <= op && op <= SHR; }
static bool isArithmeticOp(Value op) { return ADD <= op && op <= MOD; }
static bool isCompareOp(Value op) { return EQ <= op && op <= IN; }
static bool isOrderedRelationalCompareOp(Value op)
{
@ -251,7 +251,7 @@ public:
static Value negateCompareOp(Value op)
{
BOOST_ASSERT(isArithmeticCompareOp(op));
assert(isArithmeticCompareOp(op));
switch (op)
{
case EQ:
@ -267,14 +267,14 @@ public:
case GTE:
return LT;
default:
BOOST_ASSERT(false); // should not get here
assert(false); // should not get here
return op;
}
}
static Value reverseCompareOp(Value op)
{
BOOST_ASSERT(isArithmeticCompareOp(op));
assert(isArithmeticCompareOp(op));
switch (op)
{
case EQ:
@ -290,14 +290,14 @@ public:
case GTE:
return LTE;
default:
BOOST_ASSERT(false); // should not get here
assert(false); // should not get here
return op;
}
}
static Value AssignmentToBinaryOp(Value op)
{
BOOST_ASSERT(isAssignmentOp(op) && op != ASSIGN);
assert(isAssignmentOp(op) && op != ASSIGN);
return Token::Value(op + (BIT_OR - ASSIGN_BIT_OR));
}
@ -311,7 +311,7 @@ public:
// have a (unique) string (e.g. an IDENTIFIER).
static char const* toString(Value tok)
{
BOOST_ASSERT(tok < NUM_TOKENS); // tok is unsigned.
assert(tok < NUM_TOKENS); // tok is unsigned.
return m_string[tok];
}
@ -319,7 +319,7 @@ public:
// operators; returns 0 otherwise.
static int precedence(Value tok)
{
BOOST_ASSERT(tok < NUM_TOKENS); // tok is unsigned.
assert(tok < NUM_TOKENS); // tok is unsigned.
return m_precedence[tok];
}

92
libsolidity/Types.cpp

@ -20,7 +20,9 @@
* Solidity data types
*/
#include <cassert>
#include <libdevcore/CommonIO.h>
#include <libdevcore/CommonData.h>
#include <libsolidity/Types.h>
#include <libsolidity/AST.h>
@ -50,7 +52,7 @@ std::shared_ptr<Type> Type::fromElementaryTypeName(Token::Value _typeToken)
else if (_typeToken == Token::BOOL)
return std::make_shared<BoolType>();
else
BOOST_ASSERT(false); // @todo add other tyes
assert(false); // @todo add other tyes
return std::shared_ptr<Type>();
}
@ -61,7 +63,7 @@ std::shared_ptr<Type> Type::fromUserDefinedTypeName(UserDefinedTypeName const& _
std::shared_ptr<Type> Type::fromMapping(Mapping const&)
{
BOOST_ASSERT(false); //@todo not yet implemented
assert(false); //@todo not yet implemented
return std::shared_ptr<Type>();
}
@ -92,12 +94,12 @@ IntegerType::IntegerType(int _bits, IntegerType::Modifier _modifier):
{
if (isAddress())
_bits = 160;
BOOST_ASSERT(_bits > 0 && _bits <= 256 && _bits % 8 == 0);
assert(_bits > 0 && _bits <= 256 && _bits % 8 == 0);
}
bool IntegerType::isImplicitlyConvertibleTo(Type const& _convertTo) const
{
if (_convertTo.getCategory() != Category::INTEGER)
if (_convertTo.getCategory() != getCategory())
return false;
IntegerType const& convertTo = dynamic_cast<IntegerType const&>(_convertTo);
if (convertTo.m_bits < m_bits)
@ -114,7 +116,7 @@ bool IntegerType::isImplicitlyConvertibleTo(Type const& _convertTo) const
bool IntegerType::isExplicitlyConvertibleTo(Type const& _convertTo) const
{
return _convertTo.getCategory() == Category::INTEGER;
return _convertTo.getCategory() == getCategory();
}
bool IntegerType::acceptsBinaryOperator(Token::Value _operator) const
@ -129,7 +131,24 @@ bool IntegerType::acceptsBinaryOperator(Token::Value _operator) const
bool IntegerType::acceptsUnaryOperator(Token::Value _operator) const
{
return _operator == Token::DELETE || (!isAddress() && _operator == Token::BIT_NOT);
if (_operator == Token::DELETE)
return true;
if (isAddress())
return false;
if (_operator == Token::BIT_NOT)
return true;
if (isHash())
return false;
return _operator == Token::ADD || _operator == Token::SUB ||
_operator == Token::INC || _operator == Token::DEC;
}
bool IntegerType::operator==(Type const& _other) const
{
if (_other.getCategory() != getCategory())
return false;
IntegerType const& other = dynamic_cast<IntegerType const&>(_other);
return other.m_bits == m_bits && other.m_modifier == m_modifier;
}
std::string IntegerType::toString() const
@ -140,11 +159,21 @@ std::string IntegerType::toString() const
return prefix + dev::toString(m_bits);
}
bytes IntegerType::literalToBigEndian(Literal const& _literal) const
{
bigint value(_literal.getValue());
if (!isSigned() && value < 0)
return bytes(); // @todo this should already be caught by "smallestTypeforLiteral"
//@todo check that the number of bits is correct
//@todo does "toCompactBigEndian" work for signed numbers?
return toCompactBigEndian(value);
}
bool BoolType::isExplicitlyConvertibleTo(Type const& _convertTo) const
{
// conversion to integer is fine, but not to address
// this is an example of explicit conversions being not transitive (though implicit should be)
if (_convertTo.getCategory() == Category::INTEGER)
if (_convertTo.getCategory() == getCategory())
{
IntegerType const& convertTo = dynamic_cast<IntegerType const&>(_convertTo);
if (!convertTo.isAddress())
@ -153,22 +182,55 @@ bool BoolType::isExplicitlyConvertibleTo(Type const& _convertTo) const
return isImplicitlyConvertibleTo(_convertTo);
}
bool ContractType::isImplicitlyConvertibleTo(Type const& _convertTo) const
bytes BoolType::literalToBigEndian(Literal const& _literal) const
{
if (_convertTo.getCategory() != Category::CONTRACT)
if (_literal.getToken() == Token::TRUE_LITERAL)
return bytes(1, 1);
else if (_literal.getToken() == Token::FALSE_LITERAL)
return bytes(1, 0);
else
return NullBytes;
}
bool ContractType::operator==(Type const& _other) const
{
if (_other.getCategory() != getCategory())
return false;
ContractType const& convertTo = dynamic_cast<ContractType const&>(_convertTo);
return &m_contract == &convertTo.m_contract;
ContractType const& other = dynamic_cast<ContractType const&>(_other);
return other.m_contract == m_contract;
}
bool StructType::isImplicitlyConvertibleTo(Type const& _convertTo) const
bool StructType::operator==(Type const& _other) const
{
if (_convertTo.getCategory() != Category::STRUCT)
if (_other.getCategory() != getCategory())
return false;
StructType const& convertTo = dynamic_cast<StructType const&>(_convertTo);
return &m_struct == &convertTo.m_struct;
StructType const& other = dynamic_cast<StructType const&>(_other);
return other.m_struct == m_struct;
}
bool FunctionType::operator==(Type const& _other) const
{
if (_other.getCategory() != getCategory())
return false;
FunctionType const& other = dynamic_cast<FunctionType const&>(_other);
return other.m_function == m_function;
}
bool MappingType::operator==(Type const& _other) const
{
if (_other.getCategory() != getCategory())
return false;
MappingType const& other = dynamic_cast<MappingType const&>(_other);
return *other.m_keyType == *m_keyType && *other.m_valueType == *m_valueType;
}
bool TypeType::operator==(Type const& _other) const
{
if (_other.getCategory() != getCategory())
return false;
TypeType const& other = dynamic_cast<TypeType const&>(_other);
return *getActualType() == *other.getActualType();
}
}
}

68
libsolidity/Types.h

@ -25,7 +25,7 @@
#include <memory>
#include <string>
#include <boost/noncopyable.hpp>
#include <boost/assert.hpp>
#include <libdevcore/Common.h>
#include <libsolidity/ASTForward.h>
#include <libsolidity/Token.h>
@ -36,6 +36,9 @@ namespace solidity
// @todo realMxN, string<N>, mapping
/**
* Abstract base class that forms the root of the type hierarchy.
*/
class Type: private boost::noncopyable
{
public:
@ -44,15 +47,19 @@ public:
INTEGER, BOOL, REAL, STRING, CONTRACT, STRUCT, FUNCTION, MAPPING, VOID, TYPE
};
//! factory functions that convert an AST TypeName to a Type.
///@{
///@name Factory functions
/// Factory functions that convert an AST @ref TypeName to a Type.
static std::shared_ptr<Type> fromElementaryTypeName(Token::Value _typeToken);
static std::shared_ptr<Type> fromUserDefinedTypeName(UserDefinedTypeName const& _typeName);
static std::shared_ptr<Type> fromMapping(Mapping const& _typeName);
/// @}
/// Auto-detect the proper type for a literal
static std::shared_ptr<Type> forLiteral(Literal const& _literal);
virtual Category getCategory() const = 0;
virtual bool isImplicitlyConvertibleTo(Type const&) const { return false; }
virtual bool isImplicitlyConvertibleTo(Type const& _other) const { return *this == _other; }
virtual bool isExplicitlyConvertibleTo(Type const& _convertTo) const
{
return isImplicitlyConvertibleTo(_convertTo);
@ -60,9 +67,16 @@ public:
virtual bool acceptsBinaryOperator(Token::Value) const { return false; }
virtual bool acceptsUnaryOperator(Token::Value) const { return false; }
virtual bool operator==(Type const& _other) const { return getCategory() == _other.getCategory(); }
virtual bool operator!=(Type const& _other) const { return !this->operator ==(_other); }
virtual std::string toString() const = 0;
virtual bytes literalToBigEndian(Literal const&) const { return NullBytes; }
};
/**
* Any kind of integer type including hash and address.
*/
class IntegerType: public Type
{
public:
@ -81,7 +95,10 @@ public:
virtual bool acceptsBinaryOperator(Token::Value _operator) const override;
virtual bool acceptsUnaryOperator(Token::Value _operator) const override;
virtual bool operator==(Type const& _other) const override;
virtual std::string toString() const override;
virtual bytes literalToBigEndian(Literal const& _literal) const override;
int getNumBits() const { return m_bits; }
bool isHash() const { return m_modifier == Modifier::HASH || m_modifier == Modifier::ADDRESS; }
@ -93,14 +110,13 @@ private:
Modifier m_modifier;
};
/**
* The boolean type.
*/
class BoolType: public Type
{
public:
virtual Category getCategory() const { return Category::BOOL; }
virtual bool isImplicitlyConvertibleTo(Type const& _convertTo) const override
{
return _convertTo.getCategory() == Category::BOOL;
}
virtual bool isExplicitlyConvertibleTo(Type const& _convertTo) const override;
virtual bool acceptsBinaryOperator(Token::Value _operator) const override
{
@ -110,15 +126,21 @@ public:
{
return _operator == Token::NOT || _operator == Token::DELETE;
}
virtual std::string toString() const override { return "bool"; }
virtual bytes literalToBigEndian(Literal const& _literal) const override;
};
/**
* The type of a contract instance, there is one distinct type for each contract definition.
*/
class ContractType: public Type
{
public:
virtual Category getCategory() const override { return Category::CONTRACT; }
ContractType(ContractDefinition const& _contract): m_contract(_contract) {}
virtual bool isImplicitlyConvertibleTo(Type const& _convertTo) const;
virtual bool operator==(Type const& _other) const override;
virtual std::string toString() const override { return "contract{...}"; }
@ -126,17 +148,20 @@ private:
ContractDefinition const& m_contract;
};
/**
* The type of a struct instance, there is one distinct type per struct definition.
*/
class StructType: public Type
{
public:
virtual Category getCategory() const override { return Category::STRUCT; }
StructType(StructDefinition const& _struct): m_struct(_struct) {}
virtual bool isImplicitlyConvertibleTo(Type const& _convertTo) const;
virtual bool acceptsUnaryOperator(Token::Value _operator) const override
{
return _operator == Token::DELETE;
}
virtual bool operator==(Type const& _other) const override;
virtual std::string toString() const override { return "struct{...}"; }
@ -144,6 +169,9 @@ private:
StructDefinition const& m_struct;
};
/**
* The type of a function, there is one distinct type per function definition.
*/
class FunctionType: public Type
{
public:
@ -154,10 +182,15 @@ public:
virtual std::string toString() const override { return "function(...)returns(...)"; }
virtual bool operator==(Type const& _other) const override;
private:
FunctionDefinition const& m_function;
};
/**
* The type of a mapping, there is one distinct type per key/value type pair.
*/
class MappingType: public Type
{
public:
@ -165,19 +198,30 @@ public:
MappingType() {}
virtual std::string toString() const override { return "mapping(...=>...)"; }
virtual bool operator==(Type const& _other) const override;
private:
//@todo
std::shared_ptr<Type const> m_keyType;
std::shared_ptr<Type const> m_valueType;
};
//@todo should be changed into "empty anonymous struct"
/**
* The void type, can only be implicitly used as the type that is returned by functions without
* return parameters.
*/
class VoidType: public Type
{
public:
virtual Category getCategory() const override { return Category::VOID; }
VoidType() {}
virtual std::string toString() const override { return "void"; }
};
/**
* The type of a type reference. The type of "uint32" when used in "a = uint32(2)" is an example
* of a TypeType.
*/
class TypeType: public Type
{
public:
@ -186,6 +230,8 @@ public:
std::shared_ptr<Type const> const& getActualType() const { return m_actualType; }
virtual bool operator==(Type const& _other) const override;
virtual std::string toString() const override { return "type(" + m_actualType->toString() + ")"; }
private:

43
solc/main.cpp

@ -31,6 +31,7 @@
#include <libsolidity/ASTPrinter.h>
#include <libsolidity/NameAndTypeResolver.h>
#include <libsolidity/Exceptions.h>
#include <libsolidity/Compiler.h>
#include <libsolidity/SourceReferenceFormatter.h>
using namespace dev;
@ -55,6 +56,37 @@ void version()
exit(0);
}
/**
* Helper class that extracts the first expression in an AST.
*/
class FirstExpressionExtractor: private ASTVisitor
{
public:
FirstExpressionExtractor(ASTNode& _node): m_expression(nullptr) { _node.accept(*this); }
Expression* getExpression() const { return m_expression; }
private:
virtual bool visit(Expression& _expression) override { return checkExpression(_expression); }
virtual bool visit(Assignment& _expression) override { return checkExpression(_expression); }
virtual bool visit(UnaryOperation& _expression) override { return checkExpression(_expression); }
virtual bool visit(BinaryOperation& _expression) override { return checkExpression(_expression); }
virtual bool visit(FunctionCall& _expression) override { return checkExpression(_expression); }
virtual bool visit(MemberAccess& _expression) override { return checkExpression(_expression); }
virtual bool visit(IndexAccess& _expression) override { return checkExpression(_expression); }
virtual bool visit(PrimaryExpression& _expression) override { return checkExpression(_expression); }
virtual bool visit(Identifier& _expression) override { return checkExpression(_expression); }
virtual bool visit(ElementaryTypeNameExpression& _expression) override { return checkExpression(_expression); }
virtual bool visit(Literal& _expression) override { return checkExpression(_expression); }
bool checkExpression(Expression& _expression)
{
if (m_expression == nullptr)
m_expression = &_expression;
return false;
}
private:
Expression* m_expression;
};
int main(int argc, char** argv)
{
std::string infile;
@ -113,5 +145,16 @@ int main(int argc, char** argv)
std::cout << "Syntax tree for the contract:" << std::endl;
dev::solidity::ASTPrinter printer(ast, sourceCode);
printer.print(std::cout);
FirstExpressionExtractor extractor(*ast);
CompilerContext context;
ExpressionCompiler compiler(context);
compiler.compile(*extractor.getExpression());
bytes instructions = compiler.getAssembledBytecode();
// debug
std::cout << "Bytecode for the first expression: " << std::endl;
std::cout << eth::disassemble(instructions) << std::endl;
return 0;
}

229
test/solidityCompiler.cpp

@ -0,0 +1,229 @@
/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @author Christian <c@ethdev.com>
* @date 2014
* Unit tests for the name and type resolution of the solidity parser.
*/
#include <string>
#include <libdevcore/Log.h>
#include <libsolidity/Scanner.h>
#include <libsolidity/Parser.h>
#include <libsolidity/NameAndTypeResolver.h>
#include <libsolidity/Compiler.h>
#include <libsolidity/AST.h>
#include <boost/test/unit_test.hpp>
namespace dev
{
namespace solidity
{
namespace test
{
namespace
{
/**
* Helper class that extracts the first expression in an AST.
*/
class FirstExpressionExtractor: private ASTVisitor
{
public:
FirstExpressionExtractor(ASTNode& _node): m_expression(nullptr) { _node.accept(*this); }
Expression* getExpression() const { return m_expression; }
private:
virtual bool visit(Expression& _expression) override { return checkExpression(_expression); }
virtual bool visit(Assignment& _expression) override { return checkExpression(_expression); }
virtual bool visit(UnaryOperation& _expression) override { return checkExpression(_expression); }
virtual bool visit(BinaryOperation& _expression) override { return checkExpression(_expression); }
virtual bool visit(FunctionCall& _expression) override { return checkExpression(_expression); }
virtual bool visit(MemberAccess& _expression) override { return checkExpression(_expression); }
virtual bool visit(IndexAccess& _expression) override { return checkExpression(_expression); }
virtual bool visit(PrimaryExpression& _expression) override { return checkExpression(_expression); }
virtual bool visit(Identifier& _expression) override { return checkExpression(_expression); }
virtual bool visit(ElementaryTypeNameExpression& _expression) override { return checkExpression(_expression); }
virtual bool visit(Literal& _expression) override { return checkExpression(_expression); }
bool checkExpression(Expression& _expression)
{
if (m_expression == nullptr)
m_expression = &_expression;
return false;
}
private:
Expression* m_expression;
};
bytes compileFirstExpression(std::string const& _sourceCode)
{
Parser parser;
ASTPointer<ContractDefinition> contract;
BOOST_REQUIRE_NO_THROW(contract = parser.parse(std::make_shared<Scanner>(CharStream(_sourceCode))));
NameAndTypeResolver resolver;
BOOST_REQUIRE_NO_THROW(resolver.resolveNamesAndTypes(*contract));
FirstExpressionExtractor extractor(*contract);
BOOST_REQUIRE(extractor.getExpression() != nullptr);
CompilerContext context;
ExpressionCompiler compiler(context);
compiler.compile(*extractor.getExpression());
bytes instructions = compiler.getAssembledBytecode();
// debug
//std::cout << eth::disassemble(instructions) << std::endl;
return instructions;
}
} // end anonymous namespace
BOOST_AUTO_TEST_SUITE(SolidityExpressionCompiler)
BOOST_AUTO_TEST_CASE(literal_true)
{
char const* sourceCode = "contract test {\n"
" function f() { var x = true; }"
"}\n";
bytes code = compileFirstExpression(sourceCode);
bytes expectation({byte(eth::Instruction::PUSH1), 0x1});
BOOST_CHECK_EQUAL_COLLECTIONS(code.begin(), code.end(), expectation.begin(), expectation.end());
}
BOOST_AUTO_TEST_CASE(literal_false)
{
char const* sourceCode = "contract test {\n"
" function f() { var x = false; }"
"}\n";
bytes code = compileFirstExpression(sourceCode);
bytes expectation({byte(eth::Instruction::PUSH1), 0x0});
BOOST_CHECK_EQUAL_COLLECTIONS(code.begin(), code.end(), expectation.begin(), expectation.end());
}
BOOST_AUTO_TEST_CASE(int_literal)
{
char const* sourceCode = "contract test {\n"
" function f() { var x = 0x12345678901234567890; }"
"}\n";
bytes code = compileFirstExpression(sourceCode);
bytes expectation({byte(eth::Instruction::PUSH10), 0x12, 0x34, 0x56, 0x78, 0x90,
0x12, 0x34, 0x56, 0x78, 0x90});
BOOST_CHECK_EQUAL_COLLECTIONS(code.begin(), code.end(), expectation.begin(), expectation.end());
}
BOOST_AUTO_TEST_CASE(comparison)
{
char const* sourceCode = "contract test {\n"
" function f() { var x = (0x10aa < 0x11aa) != true; }"
"}\n";
bytes code = compileFirstExpression(sourceCode);
bytes expectation({byte(eth::Instruction::PUSH2), 0x10, 0xaa,
byte(eth::Instruction::PUSH2), 0x11, 0xaa,
byte(eth::Instruction::GT),
byte(eth::Instruction::PUSH1), 0x1,
byte(eth::Instruction::EQ),
byte(eth::Instruction::NOT)});
BOOST_CHECK_EQUAL_COLLECTIONS(code.begin(), code.end(), expectation.begin(), expectation.end());
}
BOOST_AUTO_TEST_CASE(short_circuiting)
{
char const* sourceCode = "contract test {\n"
" function f() { var x = (10 + 8 >= 4 || 2 != 9) != true; }"
"}\n";
bytes code = compileFirstExpression(sourceCode);
bytes expectation({byte(eth::Instruction::PUSH1), 0xa,
byte(eth::Instruction::PUSH1), 0x8,
byte(eth::Instruction::ADD),
byte(eth::Instruction::PUSH1), 0x4,
byte(eth::Instruction::GT),
byte(eth::Instruction::NOT), // after this we have 10 + 8 >= 4
byte(eth::Instruction::DUP1),
byte(eth::Instruction::PUSH1), 0x14,
byte(eth::Instruction::JUMPI), // short-circuit if it is true
byte(eth::Instruction::PUSH1), 0x2,
byte(eth::Instruction::PUSH1), 0x9,
byte(eth::Instruction::EQ),
byte(eth::Instruction::NOT), // after this we have 2 != 9
byte(eth::Instruction::JUMPDEST),
byte(eth::Instruction::PUSH1), 0x1,
byte(eth::Instruction::EQ),
byte(eth::Instruction::NOT)});
BOOST_CHECK_EQUAL_COLLECTIONS(code.begin(), code.end(), expectation.begin(), expectation.end());
}
BOOST_AUTO_TEST_CASE(arithmetics)
{
char const* sourceCode = "contract test {\n"
" function f() { var x = (1 * (2 / (3 % (4 + (5 - (6 | (7 & (8 ^ 9)))))))); }"
"}\n";
bytes code = compileFirstExpression(sourceCode);
bytes expectation({byte(eth::Instruction::PUSH1), 0x1,
byte(eth::Instruction::PUSH1), 0x2,
byte(eth::Instruction::PUSH1), 0x3,
byte(eth::Instruction::PUSH1), 0x4,
byte(eth::Instruction::PUSH1), 0x5,
byte(eth::Instruction::PUSH1), 0x6,
byte(eth::Instruction::PUSH1), 0x7,
byte(eth::Instruction::PUSH1), 0x8,
byte(eth::Instruction::PUSH1), 0x9,
byte(eth::Instruction::XOR),
byte(eth::Instruction::AND),
byte(eth::Instruction::OR),
byte(eth::Instruction::SWAP1),
byte(eth::Instruction::SUB),
byte(eth::Instruction::ADD),
byte(eth::Instruction::MOD),
byte(eth::Instruction::DIV),
byte(eth::Instruction::MUL)});
BOOST_CHECK_EQUAL_COLLECTIONS(code.begin(), code.end(), expectation.begin(), expectation.end());
}
BOOST_AUTO_TEST_CASE(unary_operators)
{
char const* sourceCode = "contract test {\n"
" function f() { var x = !(~+-(--(++1++)--) == 2); }"
"}\n";
bytes code = compileFirstExpression(sourceCode);
bytes expectation({byte(eth::Instruction::PUSH1), 0x1,
byte(eth::Instruction::PUSH1), 0x1,
byte(eth::Instruction::ADD),
byte(eth::Instruction::PUSH1), 0x1,
byte(eth::Instruction::SWAP1),
byte(eth::Instruction::SUB),
byte(eth::Instruction::PUSH1), 0x0,
byte(eth::Instruction::SUB),
byte(eth::Instruction::BNOT),
byte(eth::Instruction::PUSH1), 0x2,
byte(eth::Instruction::EQ),
byte(eth::Instruction::NOT)});
BOOST_CHECK_EQUAL_COLLECTIONS(code.begin(), code.end(), expectation.begin(), expectation.end());
}
BOOST_AUTO_TEST_SUITE_END()
}
}
} // end namespaces

2
test/solidityNameAndTypeResolution.cpp

@ -38,7 +38,7 @@ namespace test
namespace
{
void parseTextAndResolveNames(const std::string& _source)
void parseTextAndResolveNames(std::string const& _source)
{
Parser parser;
ASTPointer<ContractDefinition> contract = parser.parse(

2
test/solidityParser.cpp

@ -37,7 +37,7 @@ namespace test
namespace
{
ASTPointer<ASTNode> parseText(const std::string& _source)
ASTPointer<ASTNode> parseText(std::string const& _source)
{
Parser parser;
return parser.parse(std::make_shared<Scanner>(CharStream(_source)));

Loading…
Cancel
Save