Browse Source

test initial secrets and ciphers, interop with go

cl-refactor
subtly 10 years ago
parent
commit
53fda56158
  1. 2
      libdevcrypto/ECDHE.cpp
  2. 6
      libdevcrypto/ECDHE.h
  3. 200
      libp2p/RLPxHandshake.cpp
  4. 25
      libp2p/RLPxHandshake.h
  5. 93
      test/crypto.cpp
  6. 417
      test/rlpx.cpp

2
libdevcrypto/ECDHE.cpp

@ -34,7 +34,7 @@ void dev::crypto::ecdh::agree(Secret const& _s, Public const& _r, h256& o_s)
s_secp256k1.agree(_s, _r, o_s);
}
void ECDHE::agree(Public const& _remote, Secret& o_sharedSecret)
void ECDHE::agree(Public const& _remote, Secret& o_sharedSecret) const
{
if (m_remoteEphemeral)
// agreement can only occur once

6
libdevcrypto/ECDHE.h

@ -70,11 +70,11 @@ public:
Secret seckey() { return m_ephemeral.sec(); }
/// Input public key for dh agreement, output generated shared secret.
void agree(Public const& _remoteEphemeral, Secret& o_sharedSecret);
void agree(Public const& _remoteEphemeral, Secret& o_sharedSecret) const;
protected:
KeyPair m_ephemeral; ///< Ephemeral keypair; generated.
Public m_remoteEphemeral; ///< Public key of remote; parameter.
KeyPair m_ephemeral; ///< Ephemeral keypair; generated.
mutable Public m_remoteEphemeral; ///< Public key of remote; parameter. Set once when agree is called, otherwise immutable.
};
/**

200
libp2p/RLPxHandshake.cpp

@ -28,7 +28,7 @@ using namespace dev;
using namespace dev::p2p;
using namespace CryptoPP;
RLPXFrameIO::RLPXFrameIO(bool _originated, Secret const& _ephemeralShared, bytesConstRef _authCipher, bytesConstRef _ackCipher): m_keys(h128(), h128()), m_macUpdateEncryptor(sha3("test").data(), 16)
RLPXFrameIO::RLPXFrameIO(RLPXHandshake& _init): m_macEnc()
{
// we need:
// originated?
@ -39,37 +39,53 @@ RLPXFrameIO::RLPXFrameIO(bool _originated, Secret const& _ephemeralShared, bytes
bytes keyMaterialBytes(512);
bytesRef keyMaterial(&keyMaterialBytes);
// ecdhe.agree(remoteEphemeral, ess);
_ephemeralShared.ref().copyTo(keyMaterial.cropped(0, h256::size));
// ss.ref().copyTo(keyMaterial.cropped(h256::size, h256::size));
// // auto token = sha3(ssA);
// k->encryptK = sha3(keyMaterial);
// k->encryptK.ref().copyTo(keyMaterial.cropped(h256::size, h256::size));
// k->macK = sha3(keyMaterial);
//
// // Initiator egress-mac: sha3(mac-secret^recipient-nonce || auth-sent-init)
// // ingress-mac: sha3(mac-secret^initiator-nonce || auth-recvd-ack)
// // Recipient egress-mac: sha3(mac-secret^initiator-nonce || auth-sent-ack)
// // ingress-mac: sha3(mac-secret^recipient-nonce || auth-recvd-init)
//
// bytes const& egressCipher = _originated ? authCipher : ackCipher;
// keyMaterialBytes.resize(h256::size + egressCipher.size());
// keyMaterial.retarget(keyMaterialBytes.data(), keyMaterialBytes.size());
// (k->macK ^ remoteNonce).ref().copyTo(keyMaterial);
// bytesConstRef(&egressCipher).copyTo(keyMaterial.cropped(h256::size, egressCipher.size()));
// k->egressMac = sha3(keyMaterial);
//
// bytes const& ingressCipher = _originated ? ackCipher : authCipher;
// keyMaterialBytes.resize(h256::size + ingressCipher.size());
// keyMaterial.retarget(keyMaterialBytes.data(), keyMaterialBytes.size());
// (k->macK ^ nonce).ref().copyTo(keyMaterial);
// bytesConstRef(&ingressCipher).copyTo(keyMaterial.cropped(h256::size, ingressCipher.size()));
// k->ingressMac = sha3(keyMaterial);
// shared-secret = sha3(ecdhe-shared-secret || sha3(nonce || initiator-nonce))
Secret ephemeralShared;
_init.ecdhe.agree(_init.remoteEphemeral, ephemeralShared);
ephemeralShared.ref().copyTo(keyMaterial.cropped(0, h256::size));
h512 nonceMaterial;
h256& leftNonce = _init.originated ? _init.remoteNonce : _init.nonce;
h256& rightNonce = _init.originated ? _init.nonce : _init.remoteNonce;
leftNonce.ref().copyTo(nonceMaterial.ref().cropped(0, h256::size));
rightNonce.ref().copyTo(nonceMaterial.ref().cropped(h256::size, h256::size));
auto outRef(keyMaterial.cropped(h256::size, h256::size));
sha3(nonceMaterial.ref(), outRef); // output h(nonces)
sha3(keyMaterial, outRef); // output shared-secret
// token: sha3(outRef)
// aes-secret = sha3(ecdhe-shared-secret || shared-secret)
sha3(keyMaterial, outRef); // output aes-secret
m_frameEnc.SetKey(outRef.data(), h256::size);
// mac-secret = sha3(ecdhe-shared-secret || aes-secret)
sha3(keyMaterial, outRef); // output mac-secret
m_macEnc.SetKey(outRef.data(), h256::size);
// Initiator egress-mac: sha3(mac-secret^recipient-nonce || auth-sent-init)
// ingress-mac: sha3(mac-secret^initiator-nonce || auth-recvd-ack)
// Recipient egress-mac: sha3(mac-secret^initiator-nonce || auth-sent-ack)
// ingress-mac: sha3(mac-secret^recipient-nonce || auth-recvd-init)
(*(h256*)outRef.data() ^ _init.remoteNonce).ref().copyTo(keyMaterial);
bytes const& egressCipher = _init.originated ? _init.authCipher : _init.ackCipher;
keyMaterialBytes.resize(h256::size + egressCipher.size());
keyMaterial.retarget(keyMaterialBytes.data(), keyMaterialBytes.size());
bytesConstRef(&egressCipher).copyTo(keyMaterial.cropped(h256::size, egressCipher.size()));
m_egressMac.Update(keyMaterial.data(), keyMaterial.size());
// recover mac-secret by re-xoring remoteNonce
(*(h256*)outRef.data() ^ _init.remoteNonce ^ _init.nonce).ref().copyTo(keyMaterial);
bytes const& ingressCipher = _init.originated ? _init.ackCipher : _init.authCipher;
keyMaterialBytes.resize(h256::size + ingressCipher.size());
keyMaterial.retarget(keyMaterialBytes.data(), keyMaterialBytes.size());
bytesConstRef(&ingressCipher).copyTo(keyMaterial.cropped(h256::size, ingressCipher.size()));
m_ingressMac.Update(keyMaterial.data(), keyMaterial.size());
}
void RLPXFrameIO::writeFullPacketFrame(bytesConstRef _packet)
{
RLPStream header;
}
@ -135,7 +151,7 @@ void RLPXFrameIO::updateMAC(SHA3_256& _mac, h128 const& _seed)
prevDigest.TruncatedFinal(prevDigestOut.data(), h128::size);
h128 encDigest;
m_macUpdateEncryptor.ProcessData(encDigest.data(), prevDigestOut.data(), h128::size);
m_macEnc.ProcessData(encDigest.data(), prevDigestOut.data(), h128::size);
encDigest ^= (!!_seed ? _seed : prevDigestOut);
// update mac for final digest
@ -152,8 +168,8 @@ void RLPXHandshake::generateAuth()
bytesRef nonce(&auth[Signature::size + h256::size + Public::size], h256::size);
// E(remote-pubk, S(ecdhe-random, ecdh-shared-secret^nonce) || H(ecdhe-random-pubk) || pubk || nonce || 0x0)
crypto::ecdh::agree(host->m_alias.sec(), remote, ss);
sign(ecdhe.seckey(), ss ^ this->nonce).ref().copyTo(sig);
//crypto::ecdh::agree(host->m_alias.sec(), remote, ss);
//sign(ecdhe.seckey(), ss ^ this->nonce).ref().copyTo(sig);
sha3(ecdhe.pubkey().ref(), hepubk);
host->m_alias.pub().ref().copyTo(pubk);
this->nonce.ref().copyTo(nonce);
@ -178,8 +194,8 @@ bool RLPXHandshake::decodeAuth()
pubk.copyTo(remote.ref());
nonce.copyTo(remoteNonce.ref());
crypto::ecdh::agree(host->m_alias.sec(), remote, ss);
remoteEphemeral = recover(*(Signature*)sig.data(), ss ^ remoteNonce);
//crypto::ecdh::agree(host->m_alias.sec(), remote, ss);
//remoteEphemeral = recover(*(Signature*)sig.data(), ss ^ remoteNonce);
assert(sha3(remoteEphemeral) == *(h256*)hepubk.data());
return true;
}
@ -295,77 +311,49 @@ void RLPXHandshake::transition(boost::system::error_code _ech)
clog(NetConnect) << "p2p.connect.egress sending magic sequence";
else
clog(NetConnect) << "p2p.connect.ingress sending magic sequence";
PeerSecrets* k = new PeerSecrets;
bytes keyMaterialBytes(512);
bytesRef keyMaterial(&keyMaterialBytes);
ecdhe.agree(remoteEphemeral, ess);
ess.ref().copyTo(keyMaterial.cropped(0, h256::size));
ss.ref().copyTo(keyMaterial.cropped(h256::size, h256::size));
// auto token = sha3(ssA);
k->encryptK = sha3(keyMaterial);
k->encryptK.ref().copyTo(keyMaterial.cropped(h256::size, h256::size));
k->macK = sha3(keyMaterial);
// Initiator egress-mac: sha3(mac-secret^recipient-nonce || auth-sent-init)
// ingress-mac: sha3(mac-secret^initiator-nonce || auth-recvd-ack)
// Recipient egress-mac: sha3(mac-secret^initiator-nonce || auth-sent-ack)
// ingress-mac: sha3(mac-secret^recipient-nonce || auth-recvd-init)
bytes const& egressCipher = originated ? authCipher : ackCipher;
keyMaterialBytes.resize(h256::size + egressCipher.size());
keyMaterial.retarget(keyMaterialBytes.data(), keyMaterialBytes.size());
(k->macK ^ remoteNonce).ref().copyTo(keyMaterial);
bytesConstRef(&egressCipher).copyTo(keyMaterial.cropped(h256::size, egressCipher.size()));
k->egressMac = sha3(keyMaterial);
bytes const& ingressCipher = originated ? ackCipher : authCipher;
keyMaterialBytes.resize(h256::size + ingressCipher.size());
keyMaterial.retarget(keyMaterialBytes.data(), keyMaterialBytes.size());
(k->macK ^ nonce).ref().copyTo(keyMaterial);
bytesConstRef(&ingressCipher).copyTo(keyMaterial.cropped(h256::size, ingressCipher.size()));
k->ingressMac = sha3(keyMaterial);
// This test will be replaced with protocol-capabilities information (was Hello packet)
// TESTING: send encrypt magic sequence
bytes magic {0x22,0x40,0x08,0x91};
// rlpx encrypt
encryptSymNoAuth(k->encryptK, &magic, k->magicCipherAndMac, h128());
k->magicCipherAndMac.resize(k->magicCipherAndMac.size() + 32);
sha3mac(k->egressMac.ref(), &magic, k->egressMac.ref());
k->egressMac.ref().copyTo(bytesRef(&k->magicCipherAndMac).cropped(k->magicCipherAndMac.size() - 32, 32));
clog(NetConnect) << "p2p.connect.egress txrx magic sequence";
k->recvdMagicCipherAndMac.resize(k->magicCipherAndMac.size());
ba::async_write(*socket, ba::buffer(k->magicCipherAndMac), [this, self, k, magic](boost::system::error_code ec, std::size_t)
{
if (ec)
{
delete k;
transition(ec);
return;
}
ba::async_read(*socket, ba::buffer(k->recvdMagicCipherAndMac, k->magicCipherAndMac.size()), [this, self, k, magic](boost::system::error_code ec, std::size_t)
{
if (originated)
clog(NetNote) << "p2p.connect.egress recving magic sequence";
else
clog(NetNote) << "p2p.connect.ingress recving magic sequence";
RLPXFrameIO* io = new RLPXFrameIO(*this);
if (ec)
{
delete k;
transition(ec);
return;
}
/// capabilities handshake (encrypted magic sequence is placeholder)
bytes decryptedMagic;
decryptSymNoAuth(k->encryptK, h128(), &k->recvdMagicCipherAndMac, decryptedMagic);
if (decryptedMagic[0] == 0x22 && decryptedMagic[1] == 0x40 && decryptedMagic[2] == 0x08 && decryptedMagic[3] == 0x91)
{
// // This test will be replaced with protocol-capabilities information (was Hello packet)
// // TESTING: send encrypt magic sequence
// bytes magic {0x22,0x40,0x08,0x91};
// // rlpx encrypt
// encryptSymNoAuth(k->encryptK, &magic, k->magicCipherAndMac, h128());
// k->magicCipherAndMac.resize(k->magicCipherAndMac.size() + 32);
// sha3mac(k->egressMac.ref(), &magic, k->egressMac.ref());
// k->egressMac.ref().copyTo(bytesRef(&k->magicCipherAndMac).cropped(k->magicCipherAndMac.size() - 32, 32));
//
// clog(NetConnect) << "p2p.connect.egress txrx magic sequence";
// k->recvdMagicCipherAndMac.resize(k->magicCipherAndMac.size());
//
// ba::async_write(*socket, ba::buffer(k->magicCipherAndMac), [this, self, k, magic](boost::system::error_code ec, std::size_t)
// {
// if (ec)
// {
// delete k;
// transition(ec);
// return;
// }
//
// ba::async_read(*socket, ba::buffer(k->recvdMagicCipherAndMac, k->magicCipherAndMac.size()), [this, self, k, magic](boost::system::error_code ec, std::size_t)
// {
// if (originated)
// clog(NetNote) << "p2p.connect.egress recving magic sequence";
// else
// clog(NetNote) << "p2p.connect.ingress recving magic sequence";
//
// if (ec)
// {
// delete k;
// transition(ec);
// return;
// }
//
// /// capabilities handshake (encrypted magic sequence is placeholder)
// bytes decryptedMagic;
// decryptSymNoAuth(k->encryptK, h128(), &k->recvdMagicCipherAndMac, decryptedMagic);
// if (decryptedMagic[0] == 0x22 && decryptedMagic[1] == 0x40 && decryptedMagic[2] == 0x08 && decryptedMagic[3] == 0x91)
// {
shared_ptr<Peer> p;
p = host->m_peers[remote];
if (!p)
@ -380,11 +368,11 @@ void RLPXHandshake::transition(boost::system::error_code _ech)
auto ps = std::make_shared<Session>(host, move(*socket), p);
ps->start();
}
// }
// todo: PeerSession will take ownership of k and use it to encrypt wireline.
delete k;
});
});
delete io;
// });
// });
}
}

25
libp2p/RLPxHandshake.h

@ -35,10 +35,12 @@ namespace dev
namespace p2p
{
class RLPXHandshake;
class RLPXFrameIO
{
public:
RLPXFrameIO(bool _originated, Secret const& _ephemeralShared, bytesConstRef _authCipher, bytesConstRef _ackCipher);
RLPXFrameIO(RLPXHandshake& _init);
void writeFullPacketFrame(bytesConstRef _packet);
@ -61,29 +63,17 @@ public:
void updateIngressMACWithEndOfFrame(bytesConstRef _cipher);
private:
struct RLPXSecrets
{
// ideally this will be passed ecdhe-shared-secret, auth cipher, ack cpiher
RLPXSecrets(h128 const& encK, h128 const& macK): frameEnc(encK.data(), h128::size), macEnc(macK.data(), h128::size) {}
CryptoPP::CTR_Mode<CryptoPP::AES>::Encryption frameEnc;
CryptoPP::ECB_Mode<CryptoPP::AES>::Encryption macEnc;
CryptoPP::SHA3_256 egressMac;
CryptoPP::SHA3_256 ingressMac;
};
void updateMAC(CryptoPP::SHA3_256& _mac, h128 const& _seed = h128());
CryptoPP::ECB_Mode<CryptoPP::Rijndael>::Encryption m_macUpdateEncryptor;
CryptoPP::CTR_Mode<CryptoPP::AES>::Encryption m_frameEnc;
CryptoPP::ECB_Mode<CryptoPP::AES>::Encryption m_macEnc;
CryptoPP::SHA3_256 m_egressMac;
CryptoPP::SHA3_256 m_ingressMac;
RLPXSecrets m_keys;
};
struct RLPXHandshake: public std::enable_shared_from_this<RLPXHandshake>
{
friend class RLPXFrameIO;
friend class Host;
enum State
{
@ -132,9 +122,6 @@ private:
bytes ack;
bytes ackCipher;
Secret ss;
Secret ess;
crypto::ECDHE ecdhe;
h256 nonce;

93
test/crypto.cpp

@ -15,6 +15,7 @@
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file crypto.cpp
* @author Alex Leverington <nessence@gmail.com>
* @author Gav Wood <i@gavwood.com>
* @date 2014
* Crypto test functions.
@ -228,7 +229,7 @@ BOOST_AUTO_TEST_CASE(cryptopp_ecdsa_sipaseckp256k1)
}
}
BOOST_AUTO_TEST_CASE(rlpx_sha3_norestart)
BOOST_AUTO_TEST_CASE(sha3_norestart)
{
CryptoPP::SHA3_256 ctx;
bytes input(asBytes("test"));
@ -259,96 +260,6 @@ BOOST_AUTO_TEST_CASE(rlpx_sha3_norestart)
BOOST_REQUIRE(finalDigest2 != finalDigest3);
}
BOOST_AUTO_TEST_CASE(rlpx_updatemac_aesecb_sha3)
{
}
BOOST_AUTO_TEST_CASE(ecies_interop_test)
{
CryptoPP::SHA256 sha256ctx;
bytes emptyExpected(fromHex("0xe3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"));
bytes empty;
sha256ctx.Update(empty.data(), 0);
bytes emptyTestOut(32);
sha256ctx.Final(emptyTestOut.data());
BOOST_REQUIRE(emptyExpected == emptyTestOut);
bytes hash1Expected(fromHex("0x8949b278bbafb8da1aaa18cb724175c5952280f74be5d29ab4b37d1b45c84b08"));
bytes hash1input(fromHex("0x55a53b55afb12affff3c"));
sha256ctx.Update(hash1input.data(), hash1input.size());
bytes hash1Out(32);
sha256ctx.Final(hash1Out.data());
BOOST_REQUIRE(hash1Out == hash1Expected);
h128 hmack(fromHex("0x07a4b6dfa06369a570f2dcba2f11a18f"));
CryptoPP::HMAC<SHA256> hmacctx(hmack.data(), h128::size);
bytes input(fromHex("0x4dcb92ed4fc67fe86832"));
hmacctx.Update(input.data(), input.size());
bytes hmacExpected(fromHex("0xc90b62b1a673b47df8e395e671a68bfa68070d6e2ef039598bb829398b89b9a9"));
bytes hmacOut(hmacExpected.size());
hmacctx.Final(hmacOut.data());
BOOST_REQUIRE(hmacExpected == hmacOut);
// go messageTag
bytes tagSecret(fromHex("0xaf6623e52208c596e17c72cea6f1cb09"));
bytes tagInput(fromHex("0x3461282bcedace970df2"));
bytes tagExpected(fromHex("0xb3ce623bce08d5793677ba9441b22bb34d3e8a7de964206d26589df3e8eb5183"));
CryptoPP::HMAC<SHA256> hmactagctx(tagSecret.data(), tagSecret.size());
hmactagctx.Update(tagInput.data(), tagInput.size());
h256 mac;
hmactagctx.Final(mac.data());
BOOST_REQUIRE(mac.asBytes() == tagExpected);
Secret input1(fromHex("0x0de72f1223915fa8b8bf45dffef67aef8d89792d116eb61c9a1eb02c422a4663"));
bytes expect1(fromHex("0x1d0c446f9899a3426f2b89a8cb75c14b"));
bytes test1;
test1 = s_secp256k1.eciesKDF(input1, bytes(), 16);
BOOST_REQUIRE(test1 == expect1);
Secret kdfInput2(fromHex("0x961c065873443014e0371f1ed656c586c6730bf927415757f389d92acf8268df"));
bytes kdfExpect2(fromHex("0x4050c52e6d9c08755e5a818ac66fabe478b825b1836fd5efc4d44e40d04dabcc"));
bytes kdfTest2;
kdfTest2 = s_secp256k1.eciesKDF(kdfInput2, bytes(), 32);
BOOST_REQUIRE(kdfTest2 == kdfExpect2);
KeyPair k(Secret(fromHex("0x332143e9629eedff7d142d741f896258f5a1bfab54dab2121d3ec5000093d74b")));
Public p(fromHex("0xf0d2b97981bd0d415a843b5dfe8ab77a30300daab3658c578f2340308a2da1a07f0821367332598b6aa4e180a41e92f4ebbae3518da847f0b1c0bbfe20bcf4e1"));
Secret agreeExpected(fromHex("0xee1418607c2fcfb57fda40380e885a707f49000a5dda056d828b7d9bd1f29a08"));
Secret agreeTest;
s_secp256k1.agree(k.sec(), p, agreeTest);
BOOST_REQUIRE(agreeExpected == agreeTest);
KeyPair kmK(Secret(fromHex("0x57baf2c62005ddec64c357d96183ebc90bf9100583280e848aa31d683cad73cb")));
bytes kmCipher(fromHex("0x04ff2c874d0a47917c84eea0b2a4141ca95233720b5c70f81a8415bae1dc7b746b61df7558811c1d6054333907333ef9bb0cc2fbf8b34abb9730d14e0140f4553f4b15d705120af46cf653a1dc5b95b312cf8444714f95a4f7a0425b67fc064d18f4d0a528761565ca02d97faffdac23de10"));
bytes kmPlain = kmCipher;
bytes kmExpected(asBytes("a"));
BOOST_REQUIRE(s_secp256k1.decryptECIES(kmK.sec(), kmPlain));
BOOST_REQUIRE(kmExpected == kmPlain);
KeyPair kenc(Secret(fromHex("0x472413e97f1fd58d84e28a559479e6b6902d2e8a0cee672ef38a3a35d263886b")));
Public penc(Public(fromHex("0x7a2aa2951282279dc1171549a7112b07c38c0d97c0fe2c0ae6c4588ba15be74a04efc4f7da443f6d61f68a9279bc82b73e0cc8d090048e9f87e838ae65dd8d4c")));
BOOST_REQUIRE(penc == kenc.pub());
bytes cipher1(fromHex("0x046f647e1bd8a5cd1446d31513bac233e18bdc28ec0e59d46de453137a72599533f1e97c98154343420d5f16e171e5107999a7c7f1a6e26f57bcb0d2280655d08fb148d36f1d4b28642d3bb4a136f0e33e3dd2e3cffe4b45a03fb7c5b5ea5e65617250fdc89e1a315563c20504b9d3a72555"));
bytes plainTest1 = cipher1;
bytes expectedPlain1 = asBytes("a");
BOOST_REQUIRE(s_secp256k1.decryptECIES(kenc.sec(), plainTest1));
BOOST_REQUIRE(plainTest1 == expectedPlain1);
bytes cipher2(fromHex("0x0443c24d6ccef3ad095140760bb143078b3880557a06392f17c5e368502d79532bc18903d59ced4bbe858e870610ab0d5f8b7963dd5c9c4cf81128d10efd7c7aa80091563c273e996578403694673581829e25a865191bdc9954db14285b56eb0043b6288172e0d003c10f42fe413222e273d1d4340c38a2d8344d7aadcbc846ee"));
bytes plainTest2 = cipher2;
bytes expectedPlain2 = asBytes("aaaaaaaaaaaaaaaa");
BOOST_REQUIRE(s_secp256k1.decryptECIES(kenc.sec(), plainTest2));
BOOST_REQUIRE(plainTest2 == expectedPlain2);
bytes cipher3(fromHex("0x04c4e40c86bb5324e017e598c6d48c19362ae527af8ab21b077284a4656c8735e62d73fb3d740acefbec30ca4c024739a1fcdff69ecaf03301eebf156eb5f17cca6f9d7a7e214a1f3f6e34d1ee0ec00ce0ef7d2b242fbfec0f276e17941f9f1bfbe26de10a15a6fac3cda039904ddd1d7e06e7b96b4878f61860e47f0b84c8ceb64f6a900ff23844f4359ae49b44154980a626d3c73226c19e"));
bytes plainTest3 = cipher3;
bytes expectedPlain3 = asBytes("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa");
BOOST_REQUIRE(s_secp256k1.decryptECIES(kenc.sec(), plainTest3));
BOOST_REQUIRE(plainTest3 == expectedPlain3);
}
BOOST_AUTO_TEST_CASE(ecies_kdf)
{
KeyPair local = KeyPair::create();

417
test/rlpx.cpp

@ -0,0 +1,417 @@
/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file crypto.cpp
* @author Alex Leverington <nessence@gmail.com>
* @date 2015
* RLPx test functions.
*/
#include <random>
#include <secp256k1/secp256k1.h>
#include <libdevcore/Common.h>
#include <libdevcore/RLP.h>
#include <libdevcore/Log.h>
#include <libethereum/Transaction.h>
#include <boost/test/unit_test.hpp>
#include <libdevcrypto/SHA3.h>
#include <libdevcrypto/ECDHE.h>
#include <libdevcrypto/CryptoPP.h>
#include <libp2p/RLPxHandshake.h>
using namespace std;
using namespace dev;
using namespace dev::crypto;
using namespace CryptoPP;
BOOST_AUTO_TEST_SUITE(rlpx)
static Secp256k1 s_secp256k1;
static CryptoPP::AutoSeededRandomPool s_rng;
static CryptoPP::OID s_curveOID(CryptoPP::ASN1::secp256k1());
static CryptoPP::DL_GroupParameters_EC<CryptoPP::ECP> s_params(s_curveOID);
static CryptoPP::DL_GroupParameters_EC<CryptoPP::ECP>::EllipticCurve s_curve(s_params.GetCurve());
BOOST_AUTO_TEST_CASE(test_secrets_cpp_vectors)
{
KeyPair init(Secret(sha3("initiator")));
KeyPair initR(Secret(sha3("initiator-random")));
h256 initNonce(sha3("initiator-nonce"));
KeyPair recv(Secret(sha3("remote-recv")));
KeyPair recvR(Secret(sha3("remote-recv-random")));
h256 recvNonce(sha3("remote-recv-nonce"));
bytes authCipher(fromHex(""));
bytes ackCipher(fromHex(""));
CryptoPP::CTR_Mode<CryptoPP::AES>::Encryption m_frameEnc;
CryptoPP::CTR_Mode<CryptoPP::AES>::Encryption m_frameDec;
CryptoPP::ECB_Mode<CryptoPP::AES>::Encryption m_macEnc;
CryptoPP::SHA3_256 m_egressMac;
CryptoPP::SHA3_256 m_ingressMac;
// when originated is true, agreement is with init secrets
// when originated is true, remoteNonce = recvNonce
// when originated is true, nonce = initNonce
bool originated = true;
auto remoteNonce = recvNonce;
auto nonce = initNonce;
bytes keyMaterialBytes(64);
bytesRef keyMaterial(&keyMaterialBytes);
// shared-secret = sha3(ecdhe-shared-secret || sha3(nonce || initiator-nonce))
Secret ephemeralShared;
s_secp256k1.agree(initR.sec(), recvR.pub(), ephemeralShared);
Secret expected(fromHex("20d82c1092f351dc217bd66fa183e801234af14ead40423b6ee25112201c6e5a"));
BOOST_REQUIRE(expected == ephemeralShared);
ephemeralShared.ref().copyTo(keyMaterial.cropped(0, h256::size));
h512 nonceMaterial;
h256 const& leftNonce = originated ? remoteNonce : nonce;
h256 const& rightNonce = originated ? nonce : remoteNonce;
leftNonce.ref().copyTo(nonceMaterial.ref().cropped(0, h256::size));
rightNonce.ref().copyTo(nonceMaterial.ref().cropped(h256::size, h256::size));
auto outRef(keyMaterial.cropped(h256::size, h256::size));
sha3(nonceMaterial.ref(), outRef); // output h(nonces)
// test that keyMaterial = ecdhe-shared-secret || sha3(nonce || initiator-nonce)
{
BOOST_REQUIRE(ephemeralShared == *(Secret*)keyMaterialBytes.data());
SHA3_256 ctx;
ctx.Update(leftNonce.data(), h256::size);
ctx.Update(rightNonce.data(), h256::size);
bytes expected(32);
ctx.Final(expected.data());
bytes given(32);
outRef.copyTo(&given);
BOOST_REQUIRE(expected == given);
}
bytes preImage(keyMaterialBytes);
// shared-secret <- sha3(ecdhe-shared-secret || sha3(nonce || initiator-nonce))
// keyMaterial = ecdhe-shared-secret || shared-secret
sha3(keyMaterial, outRef);
bytes sharedSecret(32);
outRef.copyTo(&sharedSecret);
BOOST_REQUIRE(sharedSecret == fromHex("b65319ce56e00f3be75c4d0da92b5957d5583ca25eeeedac8e29b6dfc8b1ddf7"));
// test that keyMaterial = ecdhe-shared-secret || shared-secret
{
BOOST_REQUIRE(ephemeralShared == *(Secret*)keyMaterialBytes.data());
SHA3_256 ctx;
ctx.Update(preImage.data(), preImage.size());
bytes expected(32);
ctx.Final(expected.data());
bytes test(32);
outRef.copyTo(&test);
BOOST_REQUIRE(expected == test);
}
// token: sha3(outRef)
bytes token(32);
sha3(outRef, bytesRef(&token));
BOOST_REQUIRE(token == fromHex("db41fe0180f372983cf19fca7ee890f7fb5481079d44683d2c027be9e71bbca2"));
// aes-secret = sha3(ecdhe-shared-secret || shared-secret)
sha3(keyMaterial, outRef); // output aes-secret
bytes aesSecret(32);
outRef.copyTo(&aesSecret);
BOOST_REQUIRE(aesSecret == fromHex("12347b4784bcb4e74b84637940482852fe25d78e328cf5c6f7a396bf96cc20bb"));
m_frameEnc.SetKeyWithIV(outRef.data(), h128::size, h128().data());
m_frameDec.SetKeyWithIV(outRef.data(), h128::size, h128().data());
// mac-secret = sha3(ecdhe-shared-secret || aes-secret)
sha3(keyMaterial, outRef); // output mac-secret
bytes macSecret(32);
outRef.copyTo(&macSecret);
BOOST_REQUIRE(macSecret == fromHex("2ec149072353d54437422837c886b0538a9206e6c559f6b4a55f65a866867723"));
m_macEnc.SetKey(outRef.data(), h256::size);
// Initiator egress-mac: sha3(mac-secret^recipient-nonce || auth-sent-init)
// ingress-mac: sha3(mac-secret^initiator-nonce || auth-recvd-ack)
// Recipient egress-mac: sha3(mac-secret^initiator-nonce || auth-sent-ack)
// ingress-mac: sha3(mac-secret^recipient-nonce || auth-recvd-init)
(*(h256*)outRef.data() ^ remoteNonce).ref().copyTo(keyMaterial);
bytes const& egressCipher = originated ? authCipher : ackCipher;
keyMaterialBytes.resize(h256::size + egressCipher.size());
keyMaterial.retarget(keyMaterialBytes.data(), keyMaterialBytes.size());
bytesConstRef(&egressCipher).copyTo(keyMaterial.cropped(h256::size, egressCipher.size()));
m_egressMac.Update(keyMaterial.data(), keyMaterial.size());
{
bytes egressMac;
SHA3_256 h(m_egressMac);
bytes digest(16);
h.TruncatedFinal(digest.data(), 16);
BOOST_REQUIRE(digest == fromHex("23e5e8efb6e3765ecae1fca9160b18df"));
}
// recover mac-secret by re-xoring remoteNonce
(*(h256*)keyMaterial.data() ^ remoteNonce ^ nonce).ref().copyTo(keyMaterial);
bytes const& ingressCipher = originated ? ackCipher : authCipher;
keyMaterialBytes.resize(h256::size + ingressCipher.size());
keyMaterial.retarget(keyMaterialBytes.data(), keyMaterialBytes.size());
bytesConstRef(&ingressCipher).copyTo(keyMaterial.cropped(h256::size, ingressCipher.size()));
m_ingressMac.Update(keyMaterial.data(), keyMaterial.size());
{
bytes ingressMac;
SHA3_256 h(m_ingressMac);
bytes digest(16);
h.TruncatedFinal(digest.data(), 16);
BOOST_REQUIRE(digest == fromHex("ceed64135852064cbdde86e7ea05e8f5"));
}
}
BOOST_AUTO_TEST_CASE(test_secrets_from_go)
{
KeyPair init(Secret(fromHex("0x5e173f6ac3c669587538e7727cf19b782a4f2fda07c1eaa662c593e5e85e3051")));
KeyPair initR(Secret(fromHex("0x19c2185f4f40634926ebed3af09070ca9e029f2edd5fae6253074896205f5f6c")));
h256 initNonce(fromHex("0xcd26fecb93657d1cd9e9eaf4f8be720b56dd1d39f190c4e1c6b7ec66f077bb11"));
KeyPair recv(Secret(fromHex("0xc45f950382d542169ea207959ee0220ec1491755abe405cd7498d6b16adb6df8")));
KeyPair recvR(Secret(fromHex("0xd25688cf0ab10afa1a0e2dba7853ed5f1e5bf1c631757ed4e103b593ff3f5620")));
h256 recvNonce(fromHex("0xf37ec61d84cea03dcc5e8385db93248584e8af4b4d1c832d8c7453c0089687a7"));
bytes authCipher(fromHex("0x04a0274c5951e32132e7f088c9bdfdc76c9d91f0dc6078e848f8e3361193dbdc43b94351ea3d89e4ff33ddcefbc80070498824857f499656c4f79bbd97b6c51a514251d69fd1785ef8764bd1d262a883f780964cce6a14ff206daf1206aa073a2d35ce2697ebf3514225bef186631b2fd2316a4b7bcdefec8d75a1025ba2c5404a34e7795e1dd4bc01c6113ece07b0df13b69d3ba654a36e35e69ff9d482d88d2f0228e7d96fe11dccbb465a1831c7d4ad3a026924b182fc2bdfe016a6944312021da5cc459713b13b86a686cf34d6fe6615020e4acf26bf0d5b7579ba813e7723eb95b3cef9942f01a58bd61baee7c9bdd438956b426a4ffe238e61746a8c93d5e10680617c82e48d706ac4953f5e1c4c4f7d013c87d34a06626f498f34576dc017fdd3d581e83cfd26cf125b6d2bda1f1d56"));
bytes ackCipher(fromHex("0x049934a7b2d7f9af8fd9db941d9da281ac9381b5740e1f64f7092f3588d4f87f5ce55191a6653e5e80c1c5dd538169aa123e70dc6ffc5af1827e546c0e958e42dad355bcc1fcb9cdf2cf47ff524d2ad98cbf275e661bf4cf00960e74b5956b799771334f426df007350b46049adb21a6e78ab1408d5e6ccde6fb5e69f0f4c92bb9c725c02f99fa72b9cdc8dd53cff089e0e73317f61cc5abf6152513cb7d833f09d2851603919bf0fbe44d79a09245c6e8338eb502083dc84b846f2fee1cc310d2cc8b1b9334728f97220bb799376233e113"));
bytes authPlainExpected(fromHex("0x884c36f7ae6b406637c1f61b2f57e1d2cab813d24c6559aaf843c3f48962f32f46662c066d39669b7b2e3ba14781477417600e7728399278b1b5d801a519aa570034fdb5419558137e0d44cd13d319afe5629eeccb47fd9dfe55cc6089426e46cc762dd8a0636e07a54b31169eba0c7a20a1ac1ef68596f1f283b5c676bae4064abfcce24799d09f67e392632d3ffdc12e3d6430dcb0ea19c318343ffa7aae74d4cd26fecb93657d1cd9e9eaf4f8be720b56dd1d39f190c4e1c6b7ec66f077bb1100"));
bytes ackPlainExpected(fromHex("0x802b052f8b066640bba94a4fc39d63815c377fced6fcb84d27f791c9921ddf3e9bf0108e298f490812847109cbd778fae393e80323fd643209841a3b7f110397f37ec61d84cea03dcc5e8385db93248584e8af4b4d1c832d8c7453c0089687a700"));
bytes authPlain = authCipher;
BOOST_REQUIRE(s_secp256k1.decryptECIES(recv.sec(), authPlain));
bytes ackPlain = ackCipher;
BOOST_REQUIRE(s_secp256k1.decryptECIES(init.sec(), ackPlain));
CryptoPP::CTR_Mode<CryptoPP::AES>::Encryption m_frameEnc;
CryptoPP::CTR_Mode<CryptoPP::AES>::Encryption m_frameDec;
CryptoPP::ECB_Mode<CryptoPP::AES>::Encryption m_macEnc;
CryptoPP::SHA3_256 m_egressMac;
CryptoPP::SHA3_256 m_ingressMac;
// when originated is true, agreement is with init secrets
// when originated is true, remoteNonce = recvNonce
// when originated is true, nonce = initNonce
bool originated = true;
auto remoteNonce = recvNonce;
auto nonce = initNonce;
bytes keyMaterialBytes(64);
bytesRef keyMaterial(&keyMaterialBytes);
// shared-secret = sha3(ecdhe-shared-secret || sha3(nonce || initiator-nonce))
Secret ephemeralShared;
s_secp256k1.agree(initR.sec(), recvR.pub(), ephemeralShared);
Secret expected(fromHex("0xe3f407f83fc012470c26a93fdff534100f2c6f736439ce0ca90e9914f7d1c381"));
BOOST_REQUIRE(expected == ephemeralShared);
ephemeralShared.ref().copyTo(keyMaterial.cropped(0, h256::size));
h512 nonceMaterial;
h256 const& leftNonce = originated ? remoteNonce : nonce;
h256 const& rightNonce = originated ? nonce : remoteNonce;
leftNonce.ref().copyTo(nonceMaterial.ref().cropped(0, h256::size));
rightNonce.ref().copyTo(nonceMaterial.ref().cropped(h256::size, h256::size));
auto outRef(keyMaterial.cropped(h256::size, h256::size));
sha3(nonceMaterial.ref(), outRef); // output h(nonces)
// test that keyMaterial = ecdhe-shared-secret || sha3(nonce || initiator-nonce)
{
BOOST_REQUIRE(ephemeralShared == *(Secret*)keyMaterialBytes.data());
SHA3_256 ctx;
ctx.Update(leftNonce.data(), h256::size);
ctx.Update(rightNonce.data(), h256::size);
bytes expected(32);
ctx.Final(expected.data());
bytes given(32);
outRef.copyTo(&given);
BOOST_REQUIRE(expected == given);
}
bytes preImage(keyMaterialBytes);
// shared-secret <- sha3(ecdhe-shared-secret || sha3(nonce || initiator-nonce))
// keyMaterial = ecdhe-shared-secret || shared-secret
sha3(keyMaterial, outRef);
// test that keyMaterial = ecdhe-shared-secret || shared-secret
{
BOOST_REQUIRE(ephemeralShared == *(Secret*)keyMaterialBytes.data());
SHA3_256 ctx;
ctx.Update(preImage.data(), preImage.size());
bytes expected(32);
ctx.Final(expected.data());
bytes test(32);
outRef.copyTo(&test);
BOOST_REQUIRE(expected == test);
}
// token: sha3(outRef)
bytes token(32);
sha3(outRef, bytesRef(&token));
BOOST_REQUIRE(token == fromHex("0x3f9ec2592d1554852b1f54d228f042ed0a9310ea86d038dc2b401ba8cd7fdac4"));
// aes-secret = sha3(ecdhe-shared-secret || shared-secret)
sha3(keyMaterial, outRef); // output aes-secret
bytes aesSecret(32);
outRef.copyTo(&aesSecret);
BOOST_REQUIRE(aesSecret == fromHex("0xc0458fa97a5230830e05f4f20b7c755c1d4e54b1ce5cf43260bb191eef4e418d"));
m_frameEnc.SetKeyWithIV(outRef.data(), h128::size, h128().data());
m_frameDec.SetKeyWithIV(outRef.data(), h128::size, h128().data());
// mac-secret = sha3(ecdhe-shared-secret || aes-secret)
sha3(keyMaterial, outRef); // output mac-secret
bytes macSecret(32);
outRef.copyTo(&macSecret);
BOOST_REQUIRE(macSecret == fromHex("0x48c938884d5067a1598272fcddaa4b833cd5e7d92e8228c0ecdfabbe68aef7f1"));
m_macEnc.SetKey(outRef.data(), h256::size);
// Initiator egress-mac: sha3(mac-secret^recipient-nonce || auth-sent-init)
// ingress-mac: sha3(mac-secret^initiator-nonce || auth-recvd-ack)
// Recipient egress-mac: sha3(mac-secret^initiator-nonce || auth-sent-ack)
// ingress-mac: sha3(mac-secret^recipient-nonce || auth-recvd-init)
(*(h256*)outRef.data() ^ remoteNonce).ref().copyTo(keyMaterial);
bytes const& egressCipher = originated ? authCipher : ackCipher;
keyMaterialBytes.resize(h256::size + egressCipher.size());
keyMaterial.retarget(keyMaterialBytes.data(), keyMaterialBytes.size());
bytesConstRef(&egressCipher).copyTo(keyMaterial.cropped(h256::size, egressCipher.size()));
m_egressMac.Update(keyMaterialBytes.data(), keyMaterialBytes.size());
{
bytes egressMac;
SHA3_256 h(m_egressMac);
bytes digest(32);
h.Final(digest.data());
BOOST_REQUIRE(digest == fromHex("0x09771e93b1a6109e97074cbe2d2b0cf3d3878efafe68f53c41bb60c0ec49097e"));
}
// recover mac-secret by re-xoring remoteNonce
bytes recoverMacSecretTest(32);
(*(h256*)keyMaterial.data() ^ remoteNonce).ref().copyTo(&recoverMacSecretTest);
BOOST_REQUIRE(recoverMacSecretTest == macSecret);
(*(h256*)keyMaterial.data() ^ remoteNonce ^ nonce).ref().copyTo(keyMaterial);
bytes const& ingressCipher = originated ? ackCipher : authCipher;
keyMaterialBytes.resize(h256::size + ingressCipher.size());
keyMaterial.retarget(keyMaterialBytes.data(), keyMaterialBytes.size());
bytesConstRef(&ingressCipher).copyTo(keyMaterial.cropped(h256::size, ingressCipher.size()));
m_ingressMac.Update(keyMaterial.data(), keyMaterial.size());
{
bytes ingressMac;
SHA3_256 h(m_ingressMac);
bytes digest(32);
h.Final(digest.data());
BOOST_CHECK(digest == fromHex("0x75823d96e23136c89666ee025fb21a432be906512b3dd4a3049e898adb433847"));
}
// bytes initHello(fromHex("6ef23fcf1cec7312df623f9ae701e63b550cdb8517fefd8dd398fc2acd1d935e6e0434a2b96769078477637347b7b01924fff9ff1c06df2f804df3b0402bbb9f87365b3c6856b45e1e2b6470986813c3816a71bff9d69dd297a5dbd935ab578f6e5d7e93e4506a44f307c332d95e8a4b102585fd8ef9fc9e3e055537a5cec2e9"));
//
// bytes recvHello(fromHex("6ef23fcf1cec7312df623f9ae701e63be36a1cdd1b19179146019984f3625d4a6e0434a2b96769050577657247b7b02bc6c314470eca7e3ef650b98c83e9d7dd4830b3f718ff562349aead2530a8d28a8484604f92e5fced2c6183f304344ab0e7c301a0c05559f4c25db65e36820b4b909a226171a60ac6cb7beea09376d6d8"));
}
BOOST_AUTO_TEST_CASE(ecies_interop_test_primitives)
{
CryptoPP::SHA256 sha256ctx;
bytes emptyExpected(fromHex("0xe3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"));
bytes empty;
sha256ctx.Update(empty.data(), 0);
bytes emptyTestOut(32);
sha256ctx.Final(emptyTestOut.data());
BOOST_REQUIRE(emptyExpected == emptyTestOut);
bytes hash1Expected(fromHex("0x8949b278bbafb8da1aaa18cb724175c5952280f74be5d29ab4b37d1b45c84b08"));
bytes hash1input(fromHex("0x55a53b55afb12affff3c"));
sha256ctx.Update(hash1input.data(), hash1input.size());
bytes hash1Out(32);
sha256ctx.Final(hash1Out.data());
BOOST_REQUIRE(hash1Out == hash1Expected);
h128 hmack(fromHex("0x07a4b6dfa06369a570f2dcba2f11a18f"));
CryptoPP::HMAC<SHA256> hmacctx(hmack.data(), h128::size);
bytes input(fromHex("0x4dcb92ed4fc67fe86832"));
hmacctx.Update(input.data(), input.size());
bytes hmacExpected(fromHex("0xc90b62b1a673b47df8e395e671a68bfa68070d6e2ef039598bb829398b89b9a9"));
bytes hmacOut(hmacExpected.size());
hmacctx.Final(hmacOut.data());
BOOST_REQUIRE(hmacExpected == hmacOut);
// go messageTag
bytes tagSecret(fromHex("0xaf6623e52208c596e17c72cea6f1cb09"));
bytes tagInput(fromHex("0x3461282bcedace970df2"));
bytes tagExpected(fromHex("0xb3ce623bce08d5793677ba9441b22bb34d3e8a7de964206d26589df3e8eb5183"));
CryptoPP::HMAC<SHA256> hmactagctx(tagSecret.data(), tagSecret.size());
hmactagctx.Update(tagInput.data(), tagInput.size());
h256 mac;
hmactagctx.Final(mac.data());
BOOST_REQUIRE(mac.asBytes() == tagExpected);
Secret input1(fromHex("0x0de72f1223915fa8b8bf45dffef67aef8d89792d116eb61c9a1eb02c422a4663"));
bytes expect1(fromHex("0x1d0c446f9899a3426f2b89a8cb75c14b"));
bytes test1;
test1 = s_secp256k1.eciesKDF(input1, bytes(), 16);
BOOST_REQUIRE(test1 == expect1);
Secret kdfInput2(fromHex("0x961c065873443014e0371f1ed656c586c6730bf927415757f389d92acf8268df"));
bytes kdfExpect2(fromHex("0x4050c52e6d9c08755e5a818ac66fabe478b825b1836fd5efc4d44e40d04dabcc"));
bytes kdfTest2;
kdfTest2 = s_secp256k1.eciesKDF(kdfInput2, bytes(), 32);
BOOST_REQUIRE(kdfTest2 == kdfExpect2);
KeyPair k(Secret(fromHex("0x332143e9629eedff7d142d741f896258f5a1bfab54dab2121d3ec5000093d74b")));
Public p(fromHex("0xf0d2b97981bd0d415a843b5dfe8ab77a30300daab3658c578f2340308a2da1a07f0821367332598b6aa4e180a41e92f4ebbae3518da847f0b1c0bbfe20bcf4e1"));
Secret agreeExpected(fromHex("0xee1418607c2fcfb57fda40380e885a707f49000a5dda056d828b7d9bd1f29a08"));
Secret agreeTest;
s_secp256k1.agree(k.sec(), p, agreeTest);
BOOST_REQUIRE(agreeExpected == agreeTest);
KeyPair kmK(Secret(fromHex("0x57baf2c62005ddec64c357d96183ebc90bf9100583280e848aa31d683cad73cb")));
bytes kmCipher(fromHex("0x04ff2c874d0a47917c84eea0b2a4141ca95233720b5c70f81a8415bae1dc7b746b61df7558811c1d6054333907333ef9bb0cc2fbf8b34abb9730d14e0140f4553f4b15d705120af46cf653a1dc5b95b312cf8444714f95a4f7a0425b67fc064d18f4d0a528761565ca02d97faffdac23de10"));
bytes kmPlain = kmCipher;
bytes kmExpected(asBytes("a"));
BOOST_REQUIRE(s_secp256k1.decryptECIES(kmK.sec(), kmPlain));
BOOST_REQUIRE(kmExpected == kmPlain);
KeyPair kenc(Secret(fromHex("0x472413e97f1fd58d84e28a559479e6b6902d2e8a0cee672ef38a3a35d263886b")));
Public penc(Public(fromHex("0x7a2aa2951282279dc1171549a7112b07c38c0d97c0fe2c0ae6c4588ba15be74a04efc4f7da443f6d61f68a9279bc82b73e0cc8d090048e9f87e838ae65dd8d4c")));
BOOST_REQUIRE(penc == kenc.pub());
bytes cipher1(fromHex("0x046f647e1bd8a5cd1446d31513bac233e18bdc28ec0e59d46de453137a72599533f1e97c98154343420d5f16e171e5107999a7c7f1a6e26f57bcb0d2280655d08fb148d36f1d4b28642d3bb4a136f0e33e3dd2e3cffe4b45a03fb7c5b5ea5e65617250fdc89e1a315563c20504b9d3a72555"));
bytes plainTest1 = cipher1;
bytes expectedPlain1 = asBytes("a");
BOOST_REQUIRE(s_secp256k1.decryptECIES(kenc.sec(), plainTest1));
BOOST_REQUIRE(plainTest1 == expectedPlain1);
bytes cipher2(fromHex("0x0443c24d6ccef3ad095140760bb143078b3880557a06392f17c5e368502d79532bc18903d59ced4bbe858e870610ab0d5f8b7963dd5c9c4cf81128d10efd7c7aa80091563c273e996578403694673581829e25a865191bdc9954db14285b56eb0043b6288172e0d003c10f42fe413222e273d1d4340c38a2d8344d7aadcbc846ee"));
bytes plainTest2 = cipher2;
bytes expectedPlain2 = asBytes("aaaaaaaaaaaaaaaa");
BOOST_REQUIRE(s_secp256k1.decryptECIES(kenc.sec(), plainTest2));
BOOST_REQUIRE(plainTest2 == expectedPlain2);
bytes cipher3(fromHex("0x04c4e40c86bb5324e017e598c6d48c19362ae527af8ab21b077284a4656c8735e62d73fb3d740acefbec30ca4c024739a1fcdff69ecaf03301eebf156eb5f17cca6f9d7a7e214a1f3f6e34d1ee0ec00ce0ef7d2b242fbfec0f276e17941f9f1bfbe26de10a15a6fac3cda039904ddd1d7e06e7b96b4878f61860e47f0b84c8ceb64f6a900ff23844f4359ae49b44154980a626d3c73226c19e"));
bytes plainTest3 = cipher3;
bytes expectedPlain3 = asBytes("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa");
BOOST_REQUIRE(s_secp256k1.decryptECIES(kenc.sec(), plainTest3));
BOOST_REQUIRE(plainTest3 == expectedPlain3);
}
BOOST_AUTO_TEST_SUITE_END()
Loading…
Cancel
Save