Browse Source

Big int support.

Repotting.
Tests.
cl-refactor
Gav Wood 11 years ago
parent
commit
877d9edbb2
  1. 1
      CMakeLists.txt
  2. 2
      Common.cpp
  3. 14
      Common.h
  4. 2
      RLP.cpp
  5. 170
      RLP.h
  6. 50
      foreign.h
  7. 230
      main.cpp

1
CMakeLists.txt

@ -21,6 +21,5 @@ else ()
message(FATAL_ERROR "Your C++ compiler does not support C++11.") message(FATAL_ERROR "Your C++ compiler does not support C++11.")
endif () endif ()
aux_source_directory(. SRC_LIST) aux_source_directory(. SRC_LIST)
add_executable(${PROJECT_NAME} ${SRC_LIST}) add_executable(${PROJECT_NAME} ${SRC_LIST})

2
Common.cpp

@ -0,0 +1,2 @@
#include "Common.h"

14
Common.h

@ -0,0 +1,14 @@
#pragma once
#include <sstream>
#include "foreign.h"
namespace eth
{
typedef uint8_t byte;
typedef foreign<byte> Bytes;
template <class _T> std::string toString(_T const& _t) { std::ostringstream o; o << _t; return o.str(); }
}

2
RLP.cpp

@ -0,0 +1,2 @@
#include "RLP.h"

170
RLP.h

@ -0,0 +1,170 @@
#pragma once
#include <cassert>
#include <iostream>
#include <cstdint>
#include <boost/multiprecision/cpp_int.hpp>
#include "foreign.h"
#include "Common.h"
namespace eth
{
class RLP;
typedef std::vector<RLP> RLPs;
using bigint = boost::multiprecision::cpp_int;
using uint = uint64_t;
using sint = int64_t;
class RLP
{
public:
RLP() {}
RLP(Bytes _d): m_data(_d) {}
explicit operator bool() const { return !isNull(); }
/// No value.
bool isNull() const { return m_data.size() == 0; }
/// String value.
bool isString() const { assert(!isNull()); return m_data[0] >= 0x40 && m_data[0] < 0x80; }
/// List value.
bool isList() const { assert(!isNull()); return m_data[0] >= 0x80 && m_data[0] < 0xc0; }
/// Integer value. Either isNormalInt() or isBigInt().
bool isInt() const { assert(!isNull()); return m_data[0] < 0x40; }
/// Fits into eth::uint type. Can use toInt() to read.
bool isNormalInt() const { assert(!isNull()); return m_data[0] < 0x18; }
/// Fits only into eth::bigint type. Use only toBigInt() to read.
bool isBigInt() const { assert(!isNull()); return m_data[0] < 0x40 && m_data[0] >= 0x18; }
std::string toString() const
{
if (!isString())
return std::string();
return payload().cropped(0, items()).toString();
}
uint toInt(uint _def = 0) const
{
if (!isInt())
return _def;
if (isDirectValueInt())
return m_data[0];
uint ret = 0;
auto s = intSize();
for (uint i = 0; i < s; ++i)
ret = (ret << 8) | m_data[i + 1];
return ret;
}
bigint toBigInt(bigint _def = 0) const
{
if (!isInt())
return _def;
if (isDirectValueInt())
return m_data[0];
bigint ret = 0;
auto s = intSize() - intLengthSize();
uint l = 1 + intLengthSize();
for (uint i = 0; i < s; ++i)
ret = (ret << 8) | m_data[i + l];
return ret;
}
RLPs toList() const
{
RLPs ret;
if (!isList())
return ret;
uint64_t c = items();
Bytes d = payload();
for (uint64_t i = 0; i < c; ++i, d = d.cropped(RLP(d).size()))
ret.push_back(RLP(d));
return ret;
}
private:
/// Direct value integer.
bool isDirectValueInt() const { assert(!isNull()); return m_data[0] < 0x18; }
/// Indirect-value integer.
bool isIndirectValueInt() const { assert(!isNull()); return m_data[0] >= 0x18 && m_data[0] < 0x38; }
/// Indirect addressed integer.
bool isIndirectAddressedInt() const { assert(!isNull()); return m_data[0] < 0x40 && m_data[0] >= 0x38; }
/// Direct-length string.
bool isSmallString() const { assert(!isNull()); return m_data[0] >= 0x40 && m_data[0] < 0x78; }
/// Direct-length list.
bool isSmallList() const { assert(!isNull()); return m_data[0] >= 0x80 && m_data[0] < 0xb8; }
uint size() const
{
if (isInt())
return 1 + intSize();
if (isString())
return payload().data() - m_data.data() + items();
if (isList())
{
Bytes d = payload();
uint64_t c = items();
for (uint64_t i = 0; i < c; ++i, d = d.cropped(RLP(d).size())) {}
return d.data() - m_data.data();
}
return 0;
}
uint intLengthSize() const { return isIndirectAddressedInt() ? m_data[0] - 0x37 : 0; }
uint intSize() const { return (!isInt() || isDirectValueInt()) ? 0 : isIndirectAddressedInt() ? intLengthSize() + items() : (m_data[0] - 0x17); }
uint items() const
{
auto n = (m_data[0] & 0x3f);
if (n < 0x38)
return n;
uint ret = 0;
for (int i = 0; i < n - 0x37; ++i)
ret = (ret << 8) | m_data[i + 1];
return ret;
}
Bytes payload() const
{
assert(isString() || isList());
auto n = (m_data[0] & 0x3f);
return m_data.cropped(1 + (n < 0x38 ? 0 : (n - 0x37)));
}
Bytes m_data;
};
}
inline std::ostream& operator<<(std::ostream& _out, eth::RLP _d)
{
if (_d.isNull())
_out << "null";
else if (_d.isBigInt())
_out << _d.toBigInt();
else if (_d.isInt())
_out << _d.toInt();
else if (_d.isString())
_out << "\"" << _d.toString() << "\"";
else if (_d.isList())
{
_out << "[";
int j = 0;
for (auto i: _d.toList())
_out << (j++ ? ", " : " ") << i;
_out << " ]";
}
return _out;
}

50
foreign.h

@ -0,0 +1,50 @@
#pragma once
#include <cassert>
#include <vector>
#include <string>
namespace eth
{
template <class _T>
class foreign
{
public:
typedef _T value_type;
typedef _T element_type;
foreign(): m_data(nullptr), m_count(0) {}
foreign(std::vector<typename std::remove_const<_T>::type>* _data): m_data(_data->data()), m_count(_data->size()) {}
foreign(_T* _data, unsigned _count): m_data(_data), m_count(_count) {}
explicit operator bool() const { return m_data && m_count; }
std::vector<_T> toVector() const { return std::vector<_T>(m_data, m_data + m_count); }
std::string toString() const { return std::string((char const*)m_data, ((char const*)m_data) + m_count); }
template <class _T2> operator foreign<_T2>() const { assert(m_count * sizeof(_T) / sizeof(_T2) * sizeof(_T2) / sizeof(_T) == m_count); return foreign<_T2>((_T2*)m_data, m_count * sizeof(_T) / sizeof(_T2)); }
_T* data() const { return m_data; }
unsigned count() const { return m_count; }
unsigned size() const { return m_count; }
foreign<_T> next() const { return foreign<_T>(m_data + m_count, m_count); }
foreign<_T> cropped(unsigned _begin, int _count = -1) const { if (m_data && _begin + std::max(0, _count) <= m_count) return foreign<_T>(m_data + _begin, _count < 0 ? m_count - _begin : _count); else return foreign<_T>(); }
void retarget(_T const* _d, size_t _s) { m_data = _d; m_count = _s; }
void retarget(std::vector<_T> const& _t) { m_data = _t.data(); m_count = _t.size(); }
_T* begin() { return m_data; }
_T* end() { return m_data + m_count; }
_T const* begin() const { return m_data; }
_T const* end() const { return m_data + m_count; }
_T& operator[](unsigned _i) { assert(m_data); assert(_i < m_count); return m_data[_i]; }
_T const& operator[](unsigned _i) const { assert(m_data); assert(_i < m_count); return m_data[_i]; }
void reset() { m_data = nullptr; m_count = 0; }
private:
_T* m_data;
unsigned m_count;
};
}

230
main.cpp

@ -1,233 +1,45 @@
#include <iostream> #include "RLP.h"
#include <cstdint>
#include <cassert>
#include <type_traits>
#include <vector>
#include <string>
#include <memory>
typedef uint8_t byte;
template <class _T>
class foreign
{
public:
typedef _T value_type;
typedef _T element_type;
foreign(): m_data(nullptr), m_count(0) {}
foreign(std::vector<typename std::remove_const<_T>::type>* _data): m_data(_data->data()), m_count(_data->size()) {}
foreign(_T* _data, unsigned _count): m_data(_data), m_count(_count) {}
foreign(std::shared_ptr<std::vector<typename std::remove_const<_T>::type> > const& _data): m_data(_data->data()), m_count(_data->size()) {}
explicit operator bool() const { return m_data && m_count; }
std::vector<_T> toVector() const { return std::vector<_T>(m_data, m_data + m_count); }
std::string toString() const { return std::string((char const*)m_data, ((char const*)m_data) + m_count); }
template <class _T2> operator foreign<_T2>() const { assert(m_count * sizeof(_T) / sizeof(_T2) * sizeof(_T2) / sizeof(_T) == m_count); return foreign<_T2>((_T2*)m_data, m_count * sizeof(_T) / sizeof(_T2)); }
_T* data() const { return m_data; }
unsigned count() const { return m_count; }
unsigned size() const { return m_count; }
foreign<_T> next() const { return foreign<_T>(m_data + m_count, m_count); }
foreign<_T> cropped(unsigned _begin, int _count = -1) const { if (m_data && _begin + std::max(0, _count) <= m_count) return foreign<_T>(m_data + _begin, _count < 0 ? m_count - _begin : _count); else return foreign<_T>(); }
void retarget(_T const* _d, size_t _s) { m_data = _d; m_count = _s; }
void retarget(std::vector<_T> const& _t) { m_data = _t.data(); m_count = _t.size(); }
_T* begin() { return m_data; }
_T* end() { return m_data + m_count; }
_T const* begin() const { return m_data; }
_T const* end() const { return m_data + m_count; }
_T& operator[](unsigned _i) { assert(m_data); assert(_i < m_count); return m_data[_i]; }
_T const& operator[](unsigned _i) const { assert(m_data); assert(_i < m_count); return m_data[_i]; }
void reset() { m_data = nullptr; m_count = 0; }
private:
_T* m_data;
unsigned m_count;
};
typedef foreign<byte> Bytes;
class RLP;
typedef std::vector<RLP> RLPs;
class RLP
{
public:
RLP() {}
RLP(Bytes _d): m_data(_d) {}
explicit operator bool() const { return !isNull(); }
bool isNull() const { return m_data.size() == 0; }
bool isString() const { assert(!isNull()); return m_data[0] >= 0x40 && m_data[0] < 0x80; }
bool isList() const { assert(!isNull()); return m_data[0] >= 0x80 && m_data[0] < 0xc0; }
bool isInt() const { assert(!isNull()); return m_data[0] < 0x40; }
bool isSmallString() const { assert(!isNull()); return m_data[0] >= 0x40 && m_data[0] < 0x78; }
bool isSmallList() const { assert(!isNull()); return m_data[0] >= 0x80 && m_data[0] < 0xb8; }
bool isSmallInt() const { assert(!isNull()); return m_data[0] < 0x20; }
int intSize() const { return (!isInt() || isSmallInt()) ? 0 : (m_data[0] - 0x1f); }
uint64_t size() const
{
if (isInt())
return 1 + intSize();
if (isString())
return payload().data() - m_data.data() + items();
if (isList())
{
Bytes d = payload();
uint64_t c = items();
for (uint64_t i = 0; i < c; ++i, d = d.cropped(RLP(d).size())) {}
return d.data() - m_data.data();
}
return 0;
}
std::string toString() const
{
if (!isString())
return std::string();
return payload().cropped(0, items()).toString();
}
uint64_t toInt(uint64_t _def = 0) const
{
if (!isInt())
return _def;
if (isSmallInt())
return m_data[0];
uint64_t ret = 0;
auto s = intSize();
for (int i = 0; i < s; ++i)
ret = (ret << 8) | m_data[i + 1];
return ret;
}
RLPs toList() const
{
RLPs ret;
if (!isList())
return ret;
uint64_t c = items();
Bytes d = payload();
for (uint64_t i = 0; i < c; ++i, d = d.cropped(RLP(d).size()))
ret.push_back(RLP(d));
return ret;
}
/* static uint64_t intLength(Bytes _b)
{
return _b[0] < 253 ? 1 : _b[0] == 253 ? 3 : _b[0] == 254 ? 5 : 9;
}
static uint64_t toInt(Bytes _b)
{
return _b[0] < 253 ?
_b[0] :
_b[0] == 253 ?
(((uint64_t)_b[1]) << 8) |
_b[2] :
_b[0] == 254 ?
(((uint64_t)_b[1]) << 24) |
(((uint64_t)_b[2]) << 16) |
(((uint64_t)_b[3]) << 8) |
_b[4]
: (
(((uint64_t)_b[1]) << 56) |
(((uint64_t)_b[2]) << 48) |
(((uint64_t)_b[3]) << 40) |
(((uint64_t)_b[4]) << 32) |
(((uint64_t)_b[5]) << 24) |
(((uint64_t)_b[6]) << 16) |
(((uint64_t)_b[7]) << 8) |
_b[8]
);
}*/
private:
uint64_t items() const
{
assert(isString() || isList());
auto n = (m_data[0] & 0x3f);
if (n < 0x38)
return n;
uint64_t ret = 0;
for (int i = 0; i < n - 0x37; ++i)
ret = (ret << 8) | m_data[i + 1];
return ret;
}
Bytes payload() const
{
assert(isString() || isList());
auto n = (m_data[0] & 0x3f);
return m_data.cropped(1 + (n < 0x38 ? 0 : (n - 0x37)));
}
Bytes m_data;
};
std::ostream& operator<<(std::ostream& _out, RLP _d)
{
if (_d.isNull())
_out << "null";
else if (_d.isInt())
_out << _d.toInt();
else if (_d.isString())
_out << "\"" << _d.toString() << "\"";
else if (_d.isList())
{
_out << "[";
int j = 0;
for (auto i: _d.toList())
_out << (j++ ? ", " : " ") << i;
_out << " ]";
}
return _out;
}
using namespace std; using namespace std;
using namespace eth;
int main() int main()
{ {
{ {
string t = "\x0f"; string t = "\x0f";
cout << RLP(Bytes((byte*)t.data(), t.size())) << endl; assert(toString(RLP(Bytes((byte*)t.data(), t.size()))) == "15");
// 15
} }
{ {
string t = "\x43""dog"; string t = "\x43""dog";
cout << RLP(Bytes((byte*)t.data(), t.size())) << endl; assert(toString(RLP(Bytes((byte*)t.data(), t.size()))) == "\"dog\"");
// "dog"
} }
{ {
string t = "\x82\x0f\x43""dog"; string t = "\x82\x0f\x43""dog";
cout << RLP(Bytes((byte*)t.data(), t.size())) << endl; assert(toString(RLP(Bytes((byte*)t.data(), t.size()))) == "[ 15, \"dog\" ]");
// [ 15, "dog" ] }
{
string t = "\x18\x45";
assert(toString(RLP(Bytes((byte*)t.data(), t.size()))) == "69");
} }
{ {
string t = "\x20\x45"; string t = "\x19\x01\x01";
cout << RLP(Bytes((byte*)t.data(), t.size())) << endl; assert(toString(RLP(Bytes((byte*)t.data(), t.size()))) == "257");
// 69
} }
{ {
string t = "\x21\x2a\x45"; string t = "\x37\x10\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
cout << hex << RLP(Bytes((byte*)t.data(), t.size())) << endl; ostringstream o;
// 2a45 o << hex << RLP(Bytes((byte*)t.data(), t.size()));
assert(o.str() == "100102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F");
} }
{ {
string t = "\x3f\x01\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f"; // 33-byte int
cout << hex << RLP(Bytes((byte*)t.data(), t.size())) << endl; string t = "\x38\x21\x20\x10\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
// 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f ostringstream o;
// Well... not yet - we can only have 64-bit ints currently - need a bigint class. o << hex << RLP(Bytes((byte*)t.data(), t.size()));
assert(o.str() == "20100102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F");
} }
{ {
string t = "\x78\x38""Lorem ipsum dolor sit amet, consectetur adipisicing elit"; string t = "\x78\x38""Lorem ipsum dolor sit amet, consectetur adipisicing elit";
cout << RLP(Bytes((byte*)t.data(), t.size())) << endl; assert(toString(RLP(Bytes((byte*)t.data(), t.size()))) == "\"Lorem ipsum dolor sit amet, consectetur adipisicing elit\"");
// "Lorem ipsum dolor sit amet, consectetur adipisicing elit"
} }
return 0; return 0;
} }

Loading…
Cancel
Save