Browse Source

Added SECP256k1 project.

cl-refactor
Gav Wood 11 years ago
parent
commit
c54a81f92c
  1. 17
      CMakeLists.txt
  2. 1
      eth/CMakeLists.txt
  3. 30
      eth/main.cpp
  4. 2
      libethereum/CMakeLists.txt
  5. 7
      libethereum/State.cpp
  6. 13
      secp256k1/CMakeLists.txt
  7. 19
      secp256k1/COPYING
  8. 28
      secp256k1/ecdsa.h
  9. 19
      secp256k1/ecmult.h
  10. 99
      secp256k1/field.h
  11. 19
      secp256k1/field_10x26.h
  12. 19
      secp256k1/field_5x52.h
  13. 463
      secp256k1/field_5x52_asm.asm
  14. 16
      secp256k1/field_gmp.h
  15. 110
      secp256k1/group.h
  16. 307
      secp256k1/impl/ecdsa.h
  17. 259
      secp256k1/impl/ecmult.h
  18. 173
      secp256k1/impl/field.h
  19. 487
      secp256k1/impl/field_10x26.h
  20. 196
      secp256k1/impl/field_5x52.h
  21. 11
      secp256k1/impl/field_5x52_asm.h
  22. 105
      secp256k1/impl/field_5x52_int128.h
  23. 155
      secp256k1/impl/field_gmp.h
  24. 403
      secp256k1/impl/group.h
  25. 18
      secp256k1/impl/num.h
  26. 346
      secp256k1/impl/num_gmp.h
  27. 145
      secp256k1/impl/num_openssl.h
  28. 45
      secp256k1/impl/util.h
  29. 93
      secp256k1/num.h
  30. 18
      secp256k1/num_gmp.h
  31. 14
      secp256k1/num_openssl.h
  32. 269
      secp256k1/secp256k1.c
  33. 121
      secp256k1/secp256k1.h
  34. 19
      secp256k1/util.h
  35. 1
      test/CMakeLists.txt

17
CMakeLists.txt

@ -27,12 +27,15 @@ endif ()
#set(CRYPTOPP_INCLUDE_DIR "../cryptopp562" CACHE FILEPATH "" FORCE)
#set(CRYPTOPP_LIBRARIES "../cryptopp562" CACHE FILEPATH "" FORCE)
set(CRYPTOPP_INCLUDE_DIR CACHE FILEPATH "" FORCE)
set(CRYPTOPP_LIBRARIES CACHE FILEPATH "" FORCE)
# Look for availabe Crypto++ version and if it is >= 5.6.2
#if(CRYPTOPP_INCLUDE_DIR AND CRYPTOPP_LIBRARIES)
# set(CRYPTOPP_FOUND TRUE)
# message(STATUS "Found Crypto++: ${CRYPTOPP_INCLUDE_DIR}, ${CRYPTOPP_LIBRARIES}")
#else()
find_path(CRYPTOPP_INCLUDE_DIR cryptlib.h
find_path(ID cryptlib.h
/usr/include/cryptopp
/usr/include/crypto++
/usr/local/include/cryptopp
@ -40,16 +43,17 @@ endif ()
/opt/local/include/cryptopp
/opt/local/include/crypto++
)
find_library(CRYPTOPP_LIBRARIES NAMES cryptoppeth cryptopp
find_library(LS NAMES cryptoppeth cryptopp
PATHS
/usr/lib
/usr/local/lib
/opt/local/lib
)
if(CRYPTOPP_INCLUDE_DIR AND CRYPTOPP_LIBRARIES)
if(ID AND LS)
set(CRYPTOPP_FOUND TRUE)
message(STATUS "Found Crypto++: ${CRYPTOPP_INCLUDE_DIR}, ${CRYPTOPP_LIBRARIES}")
set(_CRYPTOPP_VERSION_HEADER ${CRYPTOPP_INCLUDE_DIR}/config.h)
message(STATUS "Found Crypto++: ${ID}, ${LS}")
set(_CRYPTOPP_VERSION_HEADER ${ID}/config.h)
if(EXISTS ${_CRYPTOPP_VERSION_HEADER})
file(STRINGS ${_CRYPTOPP_VERSION_HEADER} _CRYPTOPP_VERSION REGEX "^#define CRYPTOPP_VERSION[ \t]+[0-9]+$")
string(REGEX REPLACE "^#define CRYPTOPP_VERSION[ \t]+([0-9]+)" "\\1" _CRYPTOPP_VERSION ${_CRYPTOPP_VERSION})
@ -58,6 +62,8 @@ endif ()
set(CRYPTOPP_INCLUDE_DIR "../cryptopp562" CACHE FILEPATH "" FORCE)
set(CRYPTOPP_LIBRARIES "../cryptopp562" CACHE FILEPATH "" FORCE)
else()
set(CRYPTOPP_INCLUDE_DIR ${ID} CACHE FILEPATH "" FORCE)
set(CRYPTOPP_LIBRARIES ${LS} CACHE FILEPATH "" FORCE)
message(STATUS "Crypto++ found and version greater or equal to 5.6.2")
endif()
endif()
@ -75,6 +81,7 @@ if(CRYPTOPP_FOUND)
link_directories(${CRYPTOPP_LIBRARIES})
endif()
add_subdirectory(secp256k1)
add_subdirectory(libethereum)
add_subdirectory(test)
add_subdirectory(eth)

1
eth/CMakeLists.txt

@ -12,7 +12,6 @@ find_package(Threads REQUIRED)
target_link_libraries(eth ethereum)
target_link_libraries(eth miniupnpc)
target_link_libraries(eth leveldb)
target_link_libraries(eth secp256k1)
target_link_libraries(eth ${CRYPTOPP_LIBRARIES})
target_link_libraries(eth gmp)
target_link_libraries(eth boost_system)

30
eth/main.cpp

@ -48,6 +48,16 @@ void writeFile(std::string const& _file, bytes const& _data)
ofstream(_file, ios::trunc).write((char const*)_data.data(), _data.size());
}
bool isTrue(std::string const& _m)
{
return _m == "on" || _m == "yes" || _m == "true" || _m == "1";
}
bool isFalse(std::string const& _m)
{
return _m == "off" || _m == "no" || _m == "false" || _m == "0";
}
int main(int argc, char** argv)
{
short listenPort = 30303;
@ -95,13 +105,13 @@ int main(int argc, char** argv)
else if ((arg == "-n" || arg == "--upnp") && i + 1 < argc)
{
string m = argv[++i];
if (m == "on")
if (isTrue(m))
upnp = true;
else if (m == "off")
else if (isFalse(m))
upnp = false;
else
{
cerr << "Invalid UPnP option: " << argv[i] << endl;
cerr << "Invalid UPnP option: " << m << endl;
return -1;
}
}
@ -114,12 +124,20 @@ int main(int argc, char** argv)
else if ((arg == "-d" || arg == "--path" || arg == "--db-path") && i + 1 < argc)
dbPath = argv[++i];
else if ((arg == "-m" || arg == "--mining") && i + 1 < argc)
if (string(argv[++i]) == "on")
{
string m = argv[++i];
if (isTrue(m))
mining = ~(eth::uint)0;
else if (string(argv[i]) == "off")
else if (isFalse(m))
mining = 0;
else if (int i = stoi(m))
mining = i;
else
mining = atoi(argv[i]);
{
cerr << "Unknown mining option: " << m << endl;
return -1;
}
}
else if ((arg == "-v" || arg == "--verbosity") && i + 1 < argc)
verbosity = atoi(argv[++i]);
else if ((arg == "-x" || arg == "--peers") && i + 1 < argc)

2
libethereum/CMakeLists.txt

@ -6,6 +6,8 @@ file(GLOB HEADERS "*.h")
find_package(Threads REQUIRED)
include_directories(../secp256k1)
target_link_libraries(ethereum secp256k1)
target_link_libraries(ethereum miniupnpc)
target_link_libraries(ethereum leveldb)

7
libethereum/State.cpp

@ -96,6 +96,13 @@ State::State(Address _coinbaseAddress, Overlay const& _db): m_db(_db), m_state(&
cout << "State::State: state root initialised to " << m_state.root() << endl;
m_previousBlock = BlockInfo::genesis();
cnote << "Genesis headerhash-nononce:" << m_previousBlock.headerHashWithoutNonce();
{
RLPStream s;
m_previousBlock.fillStream(s, false);
cnote << RLP(s.out());
cnote << asHex(s.out());
}
resetCurrent();
assert(m_state.root() == m_previousBlock.stateRoot);

13
secp256k1/CMakeLists.txt

@ -0,0 +1,13 @@
cmake_policy(SET CMP0015 NEW)
set(CMAKE_ASM_COMPILER "yasm")
#aux_source_directory(. SRC_LIST)
add_library(secp256k1 secp256k1.c field_5x52_asm.asm)
#set(CMAKE_C_FLAGS "-DUSE_FIELD_5X52 -DUSE_FIELD_5X52_ASM -DUSE_NUM_OPENSSL -DUSE_FIELD_INV_BUILTIN")
#target_link_libraries(secp256k1 crypto)
set(CMAKE_C_FLAGS "-std=c99 -DUSE_FIELD_GMP -DUSE_NUM_GMP -DUSE_FIELD_INV_NUM")
target_link_libraries(secp256k1 gmp)

19
secp256k1/COPYING

@ -0,0 +1,19 @@
Copyright (c) 2013 Pieter Wuille
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

28
secp256k1/ecdsa.h

@ -0,0 +1,28 @@
// Copyright (c) 2013 Pieter Wuille
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef _SECP256K1_ECDSA_
#define _SECP256K1_ECDSA_
#include "num.h"
typedef struct {
secp256k1_num_t r, s;
} secp256k1_ecdsa_sig_t;
void static secp256k1_ecdsa_sig_init(secp256k1_ecdsa_sig_t *r);
void static secp256k1_ecdsa_sig_free(secp256k1_ecdsa_sig_t *r);
int static secp256k1_ecdsa_pubkey_parse(secp256k1_ge_t *elem, const unsigned char *pub, int size);
void static secp256k1_ecdsa_pubkey_serialize(secp256k1_ge_t *elem, unsigned char *pub, int *size, int compressed);
int static secp256k1_ecdsa_sig_parse(secp256k1_ecdsa_sig_t *r, const unsigned char *sig, int size);
int static secp256k1_ecdsa_sig_serialize(unsigned char *sig, int *size, const secp256k1_ecdsa_sig_t *a);
int static secp256k1_ecdsa_sig_verify(const secp256k1_ecdsa_sig_t *sig, const secp256k1_ge_t *pubkey, const secp256k1_num_t *message);
int static secp256k1_ecdsa_sig_sign(secp256k1_ecdsa_sig_t *sig, const secp256k1_num_t *seckey, const secp256k1_num_t *message, const secp256k1_num_t *nonce, int *recid);
int static secp256k1_ecdsa_sig_recover(const secp256k1_ecdsa_sig_t *sig, secp256k1_ge_t *pubkey, const secp256k1_num_t *message, int recid);
void static secp256k1_ecdsa_sig_set_rs(secp256k1_ecdsa_sig_t *sig, const secp256k1_num_t *r, const secp256k1_num_t *s);
int static secp256k1_ecdsa_privkey_parse(secp256k1_num_t *key, const unsigned char *privkey, int privkeylen);
int static secp256k1_ecdsa_privkey_serialize(unsigned char *privkey, int *privkeylen, const secp256k1_num_t *key, int compressed);
#endif

19
secp256k1/ecmult.h

@ -0,0 +1,19 @@
// Copyright (c) 2013 Pieter Wuille
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef _SECP256K1_ECMULT_
#define _SECP256K1_ECMULT_
#include "num.h"
#include "group.h"
static void secp256k1_ecmult_start(void);
static void secp256k1_ecmult_stop(void);
/** Multiply with the generator: R = a*G */
static void secp256k1_ecmult_gen(secp256k1_gej_t *r, const secp256k1_num_t *a);
/** Double multiply: R = na*A + ng*G */
static void secp256k1_ecmult(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_num_t *na, const secp256k1_num_t *ng);
#endif

99
secp256k1/field.h

@ -0,0 +1,99 @@
// Copyright (c) 2013 Pieter Wuille
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef _SECP256K1_FIELD_
#define _SECP256K1_FIELD_
/** Field element module.
*
* Field elements can be represented in several ways, but code accessing
* it (and implementations) need to take certain properaties into account:
* - Each field element can be normalized or not.
* - Each field element has a magnitude, which represents how far away
* its representation is away from normalization. Normalized elements
* always have a magnitude of 1, but a magnitude of 1 doesn't imply
* normality.
*/
#if defined(USE_FIELD_GMP)
#include "field_gmp.h"
#elif defined(USE_FIELD_10X26)
#include "field_10x26.h"
#elif defined(USE_FIELD_5X52)
#include "field_5x52.h"
#else
#error "Please select field implementation"
#endif
typedef struct {
secp256k1_num_t p;
} secp256k1_fe_consts_t;
static const secp256k1_fe_consts_t *secp256k1_fe_consts = NULL;
/** Initialize field element precomputation data. */
void static secp256k1_fe_start(void);
/** Unload field element precomputation data. */
void static secp256k1_fe_stop(void);
/** Normalize a field element. */
void static secp256k1_fe_normalize(secp256k1_fe_t *r);
/** Set a field element equal to a small integer. Resulting field element is normalized. */
void static secp256k1_fe_set_int(secp256k1_fe_t *r, int a);
/** Verify whether a field element is zero. Requires the input to be normalized. */
int static secp256k1_fe_is_zero(const secp256k1_fe_t *a);
/** Check the "oddness" of a field element. Requires the input to be normalized. */
int static secp256k1_fe_is_odd(const secp256k1_fe_t *a);
/** Compare two field elements. Requires both inputs to be normalized */
int static secp256k1_fe_equal(const secp256k1_fe_t *a, const secp256k1_fe_t *b);
/** Set a field element equal to 32-byte big endian value. Resulting field element is normalized. */
void static secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a);
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
void static secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a);
/** Set a field element equal to the additive inverse of another. Takes a maximum magnitude of the input
* as an argument. The magnitude of the output is one higher. */
void static secp256k1_fe_negate(secp256k1_fe_t *r, const secp256k1_fe_t *a, int m);
/** Multiplies the passed field element with a small integer constant. Multiplies the magnitude by that
* small integer. */
void static secp256k1_fe_mul_int(secp256k1_fe_t *r, int a);
/** Adds a field element to another. The result has the sum of the inputs' magnitudes as magnitude. */
void static secp256k1_fe_add(secp256k1_fe_t *r, const secp256k1_fe_t *a);
/** Sets a field element to be the product of two others. Requires the inputs' magnitudes to be at most 8.
* The output magnitude is 1 (but not guaranteed to be normalized). */
void static secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const secp256k1_fe_t *b);
/** Sets a field element to be the square of another. Requires the input's magnitude to be at most 8.
* The output magnitude is 1 (but not guaranteed to be normalized). */
void static secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a);
/** Sets a field element to be the (modular) square root of another. Requires the inputs' magnitude to
* be at most 8. The output magnitude is 1 (but not guaranteed to be normalized). */
void static secp256k1_fe_sqrt(secp256k1_fe_t *r, const secp256k1_fe_t *a);
/** Sets a field element to be the (modular) inverse of another. Requires the input's magnitude to be
* at most 8. The output magnitude is 1 (but not guaranteed to be normalized). */
void static secp256k1_fe_inv(secp256k1_fe_t *r, const secp256k1_fe_t *a);
/** Potentially faster version of secp256k1_fe_inv, without constant-time guarantee. */
void static secp256k1_fe_inv_var(secp256k1_fe_t *r, const secp256k1_fe_t *a);
/** Convert a field element to a hexadecimal string. */
void static secp256k1_fe_get_hex(char *r, int *rlen, const secp256k1_fe_t *a);
/** Convert a hexadecimal string to a field element. */
void static secp256k1_fe_set_hex(secp256k1_fe_t *r, const char *a, int alen);
#endif

19
secp256k1/field_10x26.h

@ -0,0 +1,19 @@
// Copyright (c) 2013 Pieter Wuille
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef _SECP256K1_FIELD_REPR_
#define _SECP256K1_FIELD_REPR_
#include <stdint.h>
typedef struct {
// X = sum(i=0..9, elem[i]*2^26) mod n
uint32_t n[10];
#ifdef VERIFY
int magnitude;
int normalized;
#endif
} secp256k1_fe_t;
#endif

19
secp256k1/field_5x52.h

@ -0,0 +1,19 @@
// Copyright (c) 2013 Pieter Wuille
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef _SECP256K1_FIELD_REPR_
#define _SECP256K1_FIELD_REPR_
#include <stdint.h>
typedef struct {
// X = sum(i=0..4, elem[i]*2^52) mod n
uint64_t n[5];
#ifdef VERIFY
int magnitude;
int normalized;
#endif
} secp256k1_fe_t;
#endif

463
secp256k1/field_5x52_asm.asm

@ -0,0 +1,463 @@
;; Added by Diederik Huys, March 2013
;;
;; Provided public procedures:
;; secp256k1_fe_mul_inner
;; secp256k1_fe_sqr_inner
;;
;; Needed tools: YASM (http://yasm.tortall.net)
;;
;;
BITS 64
;; Procedure ExSetMult
;; Register Layout:
;; INPUT: rdi = a->n
;; rsi = b->n
;; rdx = r->a
;;
;; INTERNAL: rdx:rax = multiplication accumulator
;; r9:r8 = c
;; r10-r13 = t0-t3
;; r14 = b.n[0] / t4
;; r15 = b.n[1] / t5
;; rbx = b.n[2] / t6
;; rcx = b.n[3] / t7
;; rbp = Constant 0FFFFFFFFFFFFFh / t8
;; rsi = b.n / b.n[4] / t9
GLOBAL secp256k1_fe_mul_inner
ALIGN 32
secp256k1_fe_mul_inner:
push rbp
push rbx
push r12
push r13
push r14
push r15
push rdx
mov r14,[rsi+8*0] ; preload b.n[0]. This will be the case until
; b.n[0] is no longer needed, then we reassign
; r14 to t4
;; c=a.n[0] * b.n[0]
mov rax,[rdi+0*8] ; load a.n[0]
mov rbp,0FFFFFFFFFFFFFh
mul r14 ; rdx:rax=a.n[0]*b.n[0]
mov r15,[rsi+1*8]
mov r10,rbp ; load modulus into target register for t0
mov r8,rax
and r10,rax ; only need lower qword of c
shrd r8,rdx,52
xor r9,r9 ; c < 2^64, so we ditch the HO part
;; c+=a.n[0] * b.n[1] + a.n[1] * b.n[0]
mov rax,[rdi+0*8]
mul r15
add r8,rax
adc r9,rdx
mov rax,[rdi+1*8]
mul r14
mov r11,rbp
mov rbx,[rsi+2*8]
add r8,rax
adc r9,rdx
and r11,r8
shrd r8,r9,52
xor r9,r9
;; c+=a.n[0 1 2] * b.n[2 1 0]
mov rax,[rdi+0*8]
mul rbx
add r8,rax
adc r9,rdx
mov rax,[rdi+1*8]
mul r15
add r8,rax
adc r9,rdx
mov rax,[rdi+2*8]
mul r14
mov r12,rbp
mov rcx,[rsi+3*8]
add r8,rax
adc r9,rdx
and r12,r8
shrd r8,r9,52
xor r9,r9
;; c+=a.n[0 1 2 3] * b.n[3 2 1 0]
mov rax,[rdi+0*8]
mul rcx
add r8,rax
adc r9,rdx
mov rax,[rdi+1*8]
mul rbx
add r8,rax
adc r9,rdx
mov rax,[rdi+2*8]
mul r15
add r8,rax
adc r9,rdx
mov rax,[rdi+3*8]
mul r14
mov r13,rbp
mov rsi,[rsi+4*8] ; load b.n[4] and destroy pointer
add r8,rax
adc r9,rdx
and r13,r8
shrd r8,r9,52
xor r9,r9
;; c+=a.n[0 1 2 3 4] * b.n[4 3 2 1 0]
mov rax,[rdi+0*8]
mul rsi
add r8,rax
adc r9,rdx
mov rax,[rdi+1*8]
mul rcx
add r8,rax
adc r9,rdx
mov rax,[rdi+2*8]
mul rbx
add r8,rax
adc r9,rdx
mov rax,[rdi+3*8]
mul r15
add r8,rax
adc r9,rdx
mov rax,[rdi+4*8]
mul r14
mov r14,rbp ; load modulus into t4 and destroy a.n[0]
add r8,rax
adc r9,rdx
and r14,r8
shrd r8,r9,52
xor r9,r9
;; c+=a.n[1 2 3 4] * b.n[4 3 2 1]
mov rax,[rdi+1*8]
mul rsi
add r8,rax
adc r9,rdx
mov rax,[rdi+2*8]
mul rcx
add r8,rax
adc r9,rdx
mov rax,[rdi+3*8]
mul rbx
add r8,rax
adc r9,rdx
mov rax,[rdi+4*8]
mul r15
mov r15,rbp
add r8,rax
adc r9,rdx
and r15,r8
shrd r8,r9,52
xor r9,r9
;; c+=a.n[2 3 4] * b.n[4 3 2]
mov rax,[rdi+2*8]
mul rsi
add r8,rax
adc r9,rdx
mov rax,[rdi+3*8]
mul rcx
add r8,rax
adc r9,rdx
mov rax,[rdi+4*8]
mul rbx
mov rbx,rbp
add r8,rax
adc r9,rdx
and rbx,r8
shrd r8,r9,52
xor r9,r9
;; c+=a.n[3 4] * b.n[4 3]
mov rax,[rdi+3*8]
mul rsi
add r8,rax
adc r9,rdx
mov rax,[rdi+4*8]
mul rcx
mov rcx,rbp
add r8,rax
adc r9,rdx
and rcx,r8
shrd r8,r9,52
xor r9,r9
;; c+=a.n[4] * b.n[4]
mov rax,[rdi+4*8]
mul rsi
;; mov rbp,rbp ; modulus already there!
add r8,rax
adc r9,rdx
and rbp,r8
shrd r8,r9,52
xor r9,r9
mov rsi,r8 ; load c into t9 and destroy b.n[4]
;; *******************************************************
common_exit_norm:
mov rdi,01000003D10h ; load constant
mov rax,r15 ; get t5
mul rdi
add rax,r10 ; +t0
adc rdx,0
mov r10,0FFFFFFFFFFFFFh ; modulus. Sadly, we ran out of registers!
mov r8,rax ; +c
and r10,rax
shrd r8,rdx,52
xor r9,r9
mov rax,rbx ; get t6
mul rdi
add rax,r11 ; +t1
adc rdx,0
mov r11,0FFFFFFFFFFFFFh ; modulus
add r8,rax ; +c
adc r9,rdx
and r11,r8
shrd r8,r9,52
xor r9,r9
mov rax,rcx ; get t7
mul rdi
add rax,r12 ; +t2
adc rdx,0
pop rbx ; retrieve pointer to this.n
mov r12,0FFFFFFFFFFFFFh ; modulus
add r8,rax ; +c
adc r9,rdx
and r12,r8
mov [rbx+2*8],r12 ; mov into this.n[2]
shrd r8,r9,52
xor r9,r9
mov rax,rbp ; get t8
mul rdi
add rax,r13 ; +t3
adc rdx,0
mov r13,0FFFFFFFFFFFFFh ; modulus
add r8,rax ; +c
adc r9,rdx
and r13,r8
mov [rbx+3*8],r13 ; -> this.n[3]
shrd r8,r9,52
xor r9,r9
mov rax,rsi ; get t9
mul rdi
add rax,r14 ; +t4
adc rdx,0
mov r14,0FFFFFFFFFFFFh ; !!!
add r8,rax ; +c
adc r9,rdx
and r14,r8
mov [rbx+4*8],r14 ; -> this.n[4]
shrd r8,r9,48 ; !!!
xor r9,r9
mov rax,01000003D1h
mul r8
add rax,r10
adc rdx,0
mov r10,0FFFFFFFFFFFFFh ; modulus
mov r8,rax
and rax,r10
shrd r8,rdx,52
mov [rbx+0*8],rax ; -> this.n[0]
add r8,r11
mov [rbx+1*8],r8 ; -> this.n[1]
pop r15
pop r14
pop r13
pop r12
pop rbx
pop rbp
ret
;; PROC ExSetSquare
;; Register Layout:
;; INPUT: rdi = a.n
;; rsi = this.a
;; INTERNAL: rdx:rax = multiplication accumulator
;; r9:r8 = c
;; r10-r13 = t0-t3
;; r14 = a.n[0] / t4
;; r15 = a.n[1] / t5
;; rbx = a.n[2] / t6
;; rcx = a.n[3] / t7
;; rbp = 0FFFFFFFFFFFFFh / t8
;; rsi = a.n[4] / t9
GLOBAL secp256k1_fe_sqr_inner
ALIGN 32
secp256k1_fe_sqr_inner:
push rbp
push rbx
push r12
push r13
push r14
push r15
push rsi
mov rbp,0FFFFFFFFFFFFFh
;; c=a.n[0] * a.n[0]
mov r14,[rdi+0*8] ; r14=a.n[0]
mov r10,rbp ; modulus
mov rax,r14
mul rax
mov r15,[rdi+1*8] ; a.n[1]
add r14,r14 ; r14=2*a.n[0]
mov r8,rax
and r10,rax ; only need lower qword
shrd r8,rdx,52
xor r9,r9
;; c+=2*a.n[0] * a.n[1]
mov rax,r14 ; r14=2*a.n[0]
mul r15
mov rbx,[rdi+2*8] ; rbx=a.n[2]
mov r11,rbp ; modulus
add r8,rax
adc r9,rdx
and r11,r8
shrd r8,r9,52
xor r9,r9
;; c+=2*a.n[0]*a.n[2]+a.n[1]*a.n[1]
mov rax,r14
mul rbx
add r8,rax
adc r9,rdx
mov rax,r15
mov r12,rbp ; modulus
mul rax
mov rcx,[rdi+3*8] ; rcx=a.n[3]
add r15,r15 ; r15=a.n[1]*2
add r8,rax
adc r9,rdx
and r12,r8 ; only need lower dword
shrd r8,r9,52
xor r9,r9
;; c+=2*a.n[0]*a.n[3]+2*a.n[1]*a.n[2]
mov rax,r14
mul rcx
add r8,rax
adc r9,rdx
mov rax,r15 ; rax=2*a.n[1]
mov r13,rbp ; modulus
mul rbx
mov rsi,[rdi+4*8] ; rsi=a.n[4]
add r8,rax
adc r9,rdx
and r13,r8
shrd r8,r9,52
xor r9,r9
;; c+=2*a.n[0]*a.n[4]+2*a.n[1]*a.n[3]+a.n[2]*a.n[2]
mov rax,r14 ; last time we need 2*a.n[0]
mul rsi
add r8,rax
adc r9,rdx
mov rax,r15
mul rcx
mov r14,rbp ; modulus
add r8,rax
adc r9,rdx
mov rax,rbx
mul rax
add rbx,rbx ; rcx=2*a.n[2]
add r8,rax
adc r9,rdx
and r14,r8
shrd r8,r9,52
xor r9,r9
;; c+=2*a.n[1]*a.n[4]+2*a.n[2]*a.n[3]
mov rax,r15 ; last time we need 2*a.n[1]
mul rsi
add r8,rax
adc r9,rdx
mov rax,rbx
mul rcx
mov r15,rbp ; modulus
add r8,rax
adc r9,rdx
and r15,r8
shrd r8,r9,52
xor r9,r9
;; c+=2*a.n[2]*a.n[4]+a.n[3]*a.n[3]
mov rax,rbx ; last time we need 2*a.n[2]
mul rsi
add r8,rax
adc r9,rdx
mov rax,rcx ; a.n[3]
mul rax
mov rbx,rbp ; modulus
add r8,rax
adc r9,rdx
and rbx,r8 ; only need lower dword
lea rax,[2*rcx]
shrd r8,r9,52
xor r9,r9
;; c+=2*a.n[3]*a.n[4]
mul rsi
mov rcx,rbp ; modulus
add r8,rax
adc r9,rdx
and rcx,r8 ; only need lower dword
shrd r8,r9,52
xor r9,r9
;; c+=a.n[4]*a.n[4]
mov rax,rsi
mul rax
;; mov rbp,rbp ; modulus is already there!
add r8,rax
adc r9,rdx
and rbp,r8
shrd r8,r9,52
xor r9,r9
mov rsi,r8
;; *******************************************************
jmp common_exit_norm
end

16
secp256k1/field_gmp.h

@ -0,0 +1,16 @@
// Copyright (c) 2013 Pieter Wuille
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef _SECP256K1_FIELD_REPR_
#define _SECP256K1_FIELD_REPR_
#include <gmp.h>
#define FIELD_LIMBS ((256 + GMP_NUMB_BITS - 1) / GMP_NUMB_BITS)
typedef struct {
mp_limb_t n[FIELD_LIMBS+1];
} secp256k1_fe_t;
#endif

110
secp256k1/group.h

@ -0,0 +1,110 @@
// Copyright (c) 2013 Pieter Wuille
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef _SECP256K1_GROUP_
#define _SECP256K1_GROUP_
#include "num.h"
#include "field.h"
/** A group element of the secp256k1 curve, in affine coordinates. */
typedef struct {
secp256k1_fe_t x;
secp256k1_fe_t y;
int infinity; // whether this represents the point at infinity
} secp256k1_ge_t;
/** A group element of the secp256k1 curve, in jacobian coordinates. */
typedef struct {
secp256k1_fe_t x; // actual X: x/z^2
secp256k1_fe_t y; // actual Y: y/z^3
secp256k1_fe_t z;
int infinity; // whether this represents the point at infinity
} secp256k1_gej_t;
/** Global constants related to the group */
typedef struct {
secp256k1_num_t order; // the order of the curve (= order of its generator)
secp256k1_num_t half_order; // half the order of the curve (= order of its generator)
secp256k1_ge_t g; // the generator point
// constants related to secp256k1's efficiently computable endomorphism
secp256k1_fe_t beta;
secp256k1_num_t lambda, a1b2, b1, a2;
} secp256k1_ge_consts_t;
static const secp256k1_ge_consts_t *secp256k1_ge_consts = NULL;
/** Initialize the group module. */
void static secp256k1_ge_start(void);
/** De-initialize the group module. */
void static secp256k1_ge_stop(void);
/** Set a group element equal to the point at infinity */
void static secp256k1_ge_set_infinity(secp256k1_ge_t *r);
/** Set a group element equal to the point with given X and Y coordinates */
void static secp256k1_ge_set_xy(secp256k1_ge_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y);
/** Set a group element (jacobian) equal to the point with given X coordinate, and given oddness for Y.
The result is not guaranteed to be valid. */
void static secp256k1_ge_set_xo(secp256k1_ge_t *r, const secp256k1_fe_t *x, int odd);
/** Check whether a group element is the point at infinity. */
int static secp256k1_ge_is_infinity(const secp256k1_ge_t *a);
/** Check whether a group element is valid (i.e., on the curve). */
int static secp256k1_ge_is_valid(const secp256k1_ge_t *a);
void static secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a);
/** Get a hex representation of a point. *rlen will be overwritten with the real length. */
void static secp256k1_ge_get_hex(char *r, int *rlen, const secp256k1_ge_t *a);
/** Set a group element equal to another which is given in jacobian coordinates */
void static secp256k1_ge_set_gej(secp256k1_ge_t *r, secp256k1_gej_t *a);
/** Set a group element (jacobian) equal to the point at infinity. */
void static secp256k1_gej_set_infinity(secp256k1_gej_t *r);
/** Set a group element (jacobian) equal to the point with given X and Y coordinates. */
void static secp256k1_gej_set_xy(secp256k1_gej_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y);
/** Set a group element (jacobian) equal to another which is given in affine coordinates. */
void static secp256k1_gej_set_ge(secp256k1_gej_t *r, const secp256k1_ge_t *a);
/** Get the X coordinate of a group element (jacobian). */
void static secp256k1_gej_get_x(secp256k1_fe_t *r, const secp256k1_gej_t *a);
/** Set r equal to the inverse of a (i.e., mirrored around the X axis) */
void static secp256k1_gej_neg(secp256k1_gej_t *r, const secp256k1_gej_t *a);
/** Check whether a group element is the point at infinity. */
int static secp256k1_gej_is_infinity(const secp256k1_gej_t *a);
/** Set r equal to the double of a. */
void static secp256k1_gej_double(secp256k1_gej_t *r, const secp256k1_gej_t *a);
/** Set r equal to the sum of a and b. */
void static secp256k1_gej_add(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_gej_t *b);
/** Set r equal to the sum of a and b (with b given in jacobian coordinates). This is more efficient
than secp256k1_gej_add. */
void static secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b);
/** Get a hex representation of a point. *rlen will be overwritten with the real length. */
void static secp256k1_gej_get_hex(char *r, int *rlen, const secp256k1_gej_t *a);
#ifdef USE_ENDOMORPHISM
/** Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast. */
void static secp256k1_gej_mul_lambda(secp256k1_gej_t *r, const secp256k1_gej_t *a);
/** Find r1 and r2 such that r1+r2*lambda = a, and r1 and r2 are maximum 128 bits long (given that a is
not more than 256 bits). */
void static secp256k1_gej_split_exp(secp256k1_num_t *r1, secp256k1_num_t *r2, const secp256k1_num_t *a);
#endif
#endif

307
secp256k1/impl/ecdsa.h

@ -0,0 +1,307 @@
// Copyright (c) 2013 Pieter Wuille
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef _SECP256K1_ECDSA_IMPL_H_
#define _SECP256K1_ECDSA_IMPL_H_
#include "../num.h"
#include "../field.h"
#include "../group.h"
#include "../ecmult.h"
#include "../ecdsa.h"
void static secp256k1_ecdsa_sig_init(secp256k1_ecdsa_sig_t *r) {
secp256k1_num_init(&r->r);
secp256k1_num_init(&r->s);
}
void static secp256k1_ecdsa_sig_free(secp256k1_ecdsa_sig_t *r) {
secp256k1_num_free(&r->r);
secp256k1_num_free(&r->s);
}
int static secp256k1_ecdsa_pubkey_parse(secp256k1_ge_t *elem, const unsigned char *pub, int size) {
if (size == 33 && (pub[0] == 0x02 || pub[0] == 0x03)) {
secp256k1_fe_t x;
secp256k1_fe_set_b32(&x, pub+1);
secp256k1_ge_set_xo(elem, &x, pub[0] == 0x03);
} else if (size == 65 && (pub[0] == 0x04 || pub[0] == 0x06 || pub[0] == 0x07)) {
secp256k1_fe_t x, y;
secp256k1_fe_set_b32(&x, pub+1);
secp256k1_fe_set_b32(&y, pub+33);
secp256k1_ge_set_xy(elem, &x, &y);
if ((pub[0] == 0x06 || pub[0] == 0x07) && secp256k1_fe_is_odd(&y) != (pub[0] == 0x07))
return 0;
} else {
return 0;
}
return secp256k1_ge_is_valid(elem);
}
int static secp256k1_ecdsa_sig_parse(secp256k1_ecdsa_sig_t *r, const unsigned char *sig, int size) {
if (sig[0] != 0x30) return 0;
int lenr = sig[3];
if (5+lenr >= size) return 0;
int lens = sig[lenr+5];
if (sig[1] != lenr+lens+4) return 0;
if (lenr+lens+6 > size) return 0;
if (sig[2] != 0x02) return 0;
if (lenr == 0) return 0;
if (sig[lenr+4] != 0x02) return 0;
if (lens == 0) return 0;
secp256k1_num_set_bin(&r->r, sig+4, lenr);
secp256k1_num_set_bin(&r->s, sig+6+lenr, lens);
return 1;
}
int static secp256k1_ecdsa_sig_serialize(unsigned char *sig, int *size, const secp256k1_ecdsa_sig_t *a) {
int lenR = (secp256k1_num_bits(&a->r) + 7)/8;
if (lenR == 0 || secp256k1_num_get_bit(&a->r, lenR*8-1))
lenR++;
int lenS = (secp256k1_num_bits(&a->s) + 7)/8;
if (lenS == 0 || secp256k1_num_get_bit(&a->s, lenS*8-1))
lenS++;
if (*size < 6+lenS+lenR)
return 0;
*size = 6 + lenS + lenR;
sig[0] = 0x30;
sig[1] = 4 + lenS + lenR;
sig[2] = 0x02;
sig[3] = lenR;
secp256k1_num_get_bin(sig+4, lenR, &a->r);
sig[4+lenR] = 0x02;
sig[5+lenR] = lenS;
secp256k1_num_get_bin(sig+lenR+6, lenS, &a->s);
return 1;
}
int static secp256k1_ecdsa_sig_recompute(secp256k1_num_t *r2, const secp256k1_ecdsa_sig_t *sig, const secp256k1_ge_t *pubkey, const secp256k1_num_t *message) {
const secp256k1_ge_consts_t *c = secp256k1_ge_consts;
if (secp256k1_num_is_neg(&sig->r) || secp256k1_num_is_neg(&sig->s))
return 0;
if (secp256k1_num_is_zero(&sig->r) || secp256k1_num_is_zero(&sig->s))
return 0;
if (secp256k1_num_cmp(&sig->r, &c->order) >= 0 || secp256k1_num_cmp(&sig->s, &c->order) >= 0)
return 0;
int ret = 0;
secp256k1_num_t sn, u1, u2;
secp256k1_num_init(&sn);
secp256k1_num_init(&u1);
secp256k1_num_init(&u2);
secp256k1_num_mod_inverse(&sn, &sig->s, &c->order);
secp256k1_num_mod_mul(&u1, &sn, message, &c->order);
secp256k1_num_mod_mul(&u2, &sn, &sig->r, &c->order);
secp256k1_gej_t pubkeyj; secp256k1_gej_set_ge(&pubkeyj, pubkey);
secp256k1_gej_t pr; secp256k1_ecmult(&pr, &pubkeyj, &u2, &u1);
if (!secp256k1_gej_is_infinity(&pr)) {
secp256k1_fe_t xr; secp256k1_gej_get_x(&xr, &pr);
secp256k1_fe_normalize(&xr);
unsigned char xrb[32]; secp256k1_fe_get_b32(xrb, &xr);
secp256k1_num_set_bin(r2, xrb, 32);
secp256k1_num_mod(r2, &c->order);
ret = 1;
}
secp256k1_num_free(&sn);
secp256k1_num_free(&u1);
secp256k1_num_free(&u2);
return ret;
}
int static secp256k1_ecdsa_sig_recover(const secp256k1_ecdsa_sig_t *sig, secp256k1_ge_t *pubkey, const secp256k1_num_t *message, int recid) {
const secp256k1_ge_consts_t *c = secp256k1_ge_consts;
if (secp256k1_num_is_neg(&sig->r) || secp256k1_num_is_neg(&sig->s))
return 0;
if (secp256k1_num_is_zero(&sig->r) || secp256k1_num_is_zero(&sig->s))
return 0;
if (secp256k1_num_cmp(&sig->r, &c->order) >= 0 || secp256k1_num_cmp(&sig->s, &c->order) >= 0)
return 0;
secp256k1_num_t rx;
secp256k1_num_init(&rx);
secp256k1_num_copy(&rx, &sig->r);
if (recid & 2) {
secp256k1_num_add(&rx, &rx, &c->order);
if (secp256k1_num_cmp(&rx, &secp256k1_fe_consts->p) >= 0)
return 0;
}
unsigned char brx[32];
secp256k1_num_get_bin(brx, 32, &rx);
secp256k1_num_free(&rx);
secp256k1_fe_t fx;
secp256k1_fe_set_b32(&fx, brx);
secp256k1_ge_t x;
secp256k1_ge_set_xo(&x, &fx, recid & 1);
if (!secp256k1_ge_is_valid(&x))
return 0;
secp256k1_gej_t xj;
secp256k1_gej_set_ge(&xj, &x);
secp256k1_num_t rn, u1, u2;
secp256k1_num_init(&rn);
secp256k1_num_init(&u1);
secp256k1_num_init(&u2);
secp256k1_num_mod_inverse(&rn, &sig->r, &c->order);
secp256k1_num_mod_mul(&u1, &rn, message, &c->order);
secp256k1_num_sub(&u1, &c->order, &u1);
secp256k1_num_mod_mul(&u2, &rn, &sig->s, &c->order);
secp256k1_gej_t qj;
secp256k1_ecmult(&qj, &xj, &u2, &u1);
secp256k1_ge_set_gej(pubkey, &qj);
secp256k1_num_free(&rn);
secp256k1_num_free(&u1);
secp256k1_num_free(&u2);
return 1;
}
int static secp256k1_ecdsa_sig_verify(const secp256k1_ecdsa_sig_t *sig, const secp256k1_ge_t *pubkey, const secp256k1_num_t *message) {
secp256k1_num_t r2;
secp256k1_num_init(&r2);
int ret = 0;
ret = secp256k1_ecdsa_sig_recompute(&r2, sig, pubkey, message) && secp256k1_num_cmp(&sig->r, &r2) == 0;
secp256k1_num_free(&r2);
return ret;
}
int static secp256k1_ecdsa_sig_sign(secp256k1_ecdsa_sig_t *sig, const secp256k1_num_t *seckey, const secp256k1_num_t *message, const secp256k1_num_t *nonce, int *recid) {
const secp256k1_ge_consts_t *c = secp256k1_ge_consts;
secp256k1_gej_t rp;
secp256k1_ecmult_gen(&rp, nonce);
secp256k1_ge_t r;
secp256k1_ge_set_gej(&r, &rp);
unsigned char b[32];
secp256k1_fe_normalize(&r.x);
secp256k1_fe_normalize(&r.y);
secp256k1_fe_get_b32(b, &r.x);
secp256k1_num_set_bin(&sig->r, b, 32);
if (recid)
*recid = (secp256k1_num_cmp(&sig->r, &c->order) >= 0 ? 2 : 0) | (secp256k1_fe_is_odd(&r.y) ? 1 : 0);
secp256k1_num_mod(&sig->r, &c->order);
secp256k1_num_t n;
secp256k1_num_init(&n);
secp256k1_num_mod_mul(&n, &sig->r, seckey, &c->order);
secp256k1_num_add(&n, &n, message);
secp256k1_num_mod(&n, &c->order);
secp256k1_num_mod_inverse(&sig->s, nonce, &c->order);
secp256k1_num_mod_mul(&sig->s, &sig->s, &n, &c->order);
secp256k1_num_free(&n);
if (secp256k1_num_is_zero(&sig->s))
return 0;
if (secp256k1_num_cmp(&sig->s, &c->half_order) > 0) {
secp256k1_num_sub(&sig->s, &c->order, &sig->s);
if (recid)
*recid ^= 1;
}
return 1;
}
void static secp256k1_ecdsa_sig_set_rs(secp256k1_ecdsa_sig_t *sig, const secp256k1_num_t *r, const secp256k1_num_t *s) {
secp256k1_num_copy(&sig->r, r);
secp256k1_num_copy(&sig->s, s);
}
void static secp256k1_ecdsa_pubkey_serialize(secp256k1_ge_t *elem, unsigned char *pub, int *size, int compressed) {
secp256k1_fe_normalize(&elem->x);
secp256k1_fe_normalize(&elem->y);
secp256k1_fe_get_b32(&pub[1], &elem->x);
if (compressed) {
*size = 33;
pub[0] = 0x02 | (secp256k1_fe_is_odd(&elem->y) ? 0x01 : 0x00);
} else {
*size = 65;
pub[0] = 0x04;
secp256k1_fe_get_b32(&pub[33], &elem->y);
}
}
int static secp256k1_ecdsa_privkey_parse(secp256k1_num_t *key, const unsigned char *privkey, int privkeylen) {
const unsigned char *end = privkey + privkeylen;
// sequence header
if (end < privkey+1 || *privkey != 0x30)
return 0;
privkey++;
// sequence length constructor
int lenb = 0;
if (end < privkey+1 || !(*privkey & 0x80))
return 0;
lenb = *privkey & ~0x80; privkey++;
if (lenb < 1 || lenb > 2)
return 0;
if (end < privkey+lenb)
return 0;
// sequence length
int len = 0;
len = privkey[lenb-1] | (lenb > 1 ? privkey[lenb-2] << 8 : 0);
privkey += lenb;
if (end < privkey+len)
return 0;
// sequence element 0: version number (=1)
if (end < privkey+3 || privkey[0] != 0x02 || privkey[1] != 0x01 || privkey[2] != 0x01)
return 0;
privkey += 3;
// sequence element 1: octet string, up to 32 bytes
if (end < privkey+2 || privkey[0] != 0x04 || privkey[1] > 0x20 || end < privkey+2+privkey[1])
return 0;
secp256k1_num_set_bin(key, privkey+2, privkey[1]);
return 1;
}
int static secp256k1_ecdsa_privkey_serialize(unsigned char *privkey, int *privkeylen, const secp256k1_num_t *key, int compressed) {
secp256k1_gej_t rp;
secp256k1_ecmult_gen(&rp, key);
secp256k1_ge_t r;
secp256k1_ge_set_gej(&r, &rp);
if (compressed) {
static const unsigned char begin[] = {
0x30,0x81,0xD3,0x02,0x01,0x01,0x04,0x20
};
static const unsigned char middle[] = {
0xA0,0x81,0x85,0x30,0x81,0x82,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
0x21,0x02,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
0x17,0x98,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x24,0x03,0x22,0x00
};
unsigned char *ptr = privkey;
memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
secp256k1_num_get_bin(ptr, 32, key); ptr += 32;
memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
int pubkeylen = 0;
secp256k1_ecdsa_pubkey_serialize(&r, ptr, &pubkeylen, 1); ptr += pubkeylen;
*privkeylen = ptr - privkey;
} else {
static const unsigned char begin[] = {
0x30,0x82,0x01,0x13,0x02,0x01,0x01,0x04,0x20
};
static const unsigned char middle[] = {
0xA0,0x81,0xA5,0x30,0x81,0xA2,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
0x41,0x04,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
0x17,0x98,0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65,0x5D,0xA4,0xFB,0xFC,0x0E,0x11,
0x08,0xA8,0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19,0x9C,0x47,0xD0,0x8F,0xFB,0x10,
0xD4,0xB8,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x44,0x03,0x42,0x00
};
unsigned char *ptr = privkey;
memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
secp256k1_num_get_bin(ptr, 32, key); ptr += 32;
memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
int pubkeylen = 0;
secp256k1_ecdsa_pubkey_serialize(&r, ptr, &pubkeylen, 0); ptr += pubkeylen;
*privkeylen = ptr - privkey;
}
return 1;
}
#endif

259
secp256k1/impl/ecmult.h

@ -0,0 +1,259 @@
// Copyright (c) 2013 Pieter Wuille
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef _SECP256K1_ECMULT_IMPL_H_
#define _SECP256K1_ECMULT_IMPL_H_
#include "../num.h"
#include "../group.h"
#include "../ecmult.h"
// optimal for 128-bit and 256-bit exponents.
#define WINDOW_A 5
// larger numbers may result in slightly better performance, at the cost of
// exponentially larger precomputed tables. WINDOW_G == 14 results in 640 KiB.
#define WINDOW_G 14
/** Fill a table 'pre' with precomputed odd multiples of a. W determines the size of the table.
* pre will contains the values [1*a,3*a,5*a,...,(2^(w-1)-1)*a], so it needs place for
* 2^(w-2) entries.
*
* There are two versions of this function:
* - secp256k1_ecmult_precomp_wnaf_gej, which operates on group elements in jacobian notation,
* fast to precompute, but slower to use in later additions.
* - secp256k1_ecmult_precomp_wnaf_ge, which operates on group elements in affine notations,
* (much) slower to precompute, but a bit faster to use in later additions.
* To compute a*P + b*G, we use the jacobian version for P, and the affine version for G, as
* G is constant, so it only needs to be done once in advance.
*/
void static secp256k1_ecmult_table_precomp_gej(secp256k1_gej_t *pre, const secp256k1_gej_t *a, int w) {
pre[0] = *a;
secp256k1_gej_t d; secp256k1_gej_double(&d, &pre[0]);
for (int i=1; i<(1 << (w-2)); i++)
secp256k1_gej_add(&pre[i], &d, &pre[i-1]);
}
void static secp256k1_ecmult_table_precomp_ge(secp256k1_ge_t *pre, const secp256k1_ge_t *a, int w) {
pre[0] = *a;
secp256k1_gej_t x; secp256k1_gej_set_ge(&x, a);
secp256k1_gej_t d; secp256k1_gej_double(&d, &x);
for (int i=1; i<(1 << (w-2)); i++) {
secp256k1_gej_add_ge(&x, &d, &pre[i-1]);
secp256k1_ge_set_gej(&pre[i], &x);
}
}
/** The number of entries a table with precomputed multiples needs to have. */
#define ECMULT_TABLE_SIZE(w) (1 << ((w)-2))
/** The following two macro retrieves a particular odd multiple from a table
* of precomputed multiples. */
#define ECMULT_TABLE_GET(r,pre,n,w,neg) do { \
assert(((n) & 1) == 1); \
assert((n) >= -((1 << ((w)-1)) - 1)); \
assert((n) <= ((1 << ((w)-1)) - 1)); \
if ((n) > 0) \
*(r) = (pre)[((n)-1)/2]; \
else \
(neg)((r), &(pre)[(-(n)-1)/2]); \
} while(0)
#define ECMULT_TABLE_GET_GEJ(r,pre,n,w) ECMULT_TABLE_GET((r),(pre),(n),(w),secp256k1_gej_neg)
#define ECMULT_TABLE_GET_GE(r,pre,n,w) ECMULT_TABLE_GET((r),(pre),(n),(w),secp256k1_ge_neg)
typedef struct {
secp256k1_ge_t pre_g[ECMULT_TABLE_SIZE(WINDOW_G)]; // odd multiples of the generator
secp256k1_ge_t pre_g_128[ECMULT_TABLE_SIZE(WINDOW_G)]; // odd multiples of 2^128*generator
secp256k1_ge_t prec[64][16]; // prec[j][i] = 16^j * (i+1) * G
secp256k1_ge_t fin; // -(sum(prec[j][0], j=0..63))
} secp256k1_ecmult_consts_t;
static const secp256k1_ecmult_consts_t *secp256k1_ecmult_consts = NULL;
static void secp256k1_ecmult_start(void) {
if (secp256k1_ecmult_consts != NULL)
return;
secp256k1_ecmult_consts_t *ret = (secp256k1_ecmult_consts_t*)malloc(sizeof(secp256k1_ecmult_consts_t));
secp256k1_ecmult_consts = ret;
// get the generator
const secp256k1_ge_t *g = &secp256k1_ge_consts->g;
// calculate 2^128*generator
secp256k1_gej_t g_128j; secp256k1_gej_set_ge(&g_128j, g);
for (int i=0; i<128; i++)
secp256k1_gej_double(&g_128j, &g_128j);
secp256k1_ge_t g_128; secp256k1_ge_set_gej(&g_128, &g_128j);
// precompute the tables with odd multiples
secp256k1_ecmult_table_precomp_ge(ret->pre_g, g, WINDOW_G);
secp256k1_ecmult_table_precomp_ge(ret->pre_g_128, &g_128, WINDOW_G);
// compute prec and fin
secp256k1_gej_t gg; secp256k1_gej_set_ge(&gg, g);
secp256k1_ge_t ad = *g;
secp256k1_gej_t fn; secp256k1_gej_set_infinity(&fn);
for (int j=0; j<64; j++) {
secp256k1_ge_set_gej(&ret->prec[j][0], &gg);
secp256k1_gej_add(&fn, &fn, &gg);
for (int i=1; i<16; i++) {
secp256k1_gej_add_ge(&gg, &gg, &ad);
secp256k1_ge_set_gej(&ret->prec[j][i], &gg);
}
ad = ret->prec[j][15];
}
secp256k1_ge_set_gej(&ret->fin, &fn);
secp256k1_ge_neg(&ret->fin, &ret->fin);
}
static void secp256k1_ecmult_stop(void) {
if (secp256k1_ecmult_consts == NULL)
return;
secp256k1_ecmult_consts_t *c = (secp256k1_ecmult_consts_t*)secp256k1_ecmult_consts;
free(c);
secp256k1_ecmult_consts = NULL;
}
/** Convert a number to WNAF notation. The number becomes represented by sum(2^i * wnaf[i], i=0..bits),
* with the following guarantees:
* - each wnaf[i] is either 0, or an odd integer between -(1<<(w-1) - 1) and (1<<(w-1) - 1)
* - two non-zero entries in wnaf are separated by at least w-1 zeroes.
* - the index of the highest non-zero entry in wnaf (=return value-1) is at most bits, where
* bits is the number of bits necessary to represent the absolute value of the input.
*/
static int secp256k1_ecmult_wnaf(int *wnaf, const secp256k1_num_t *a, int w) {
int ret = 0;
int zeroes = 0;
secp256k1_num_t x;
secp256k1_num_init(&x);
secp256k1_num_copy(&x, a);
int sign = 1;
if (secp256k1_num_is_neg(&x)) {
sign = -1;
secp256k1_num_negate(&x);
}
while (!secp256k1_num_is_zero(&x)) {
while (!secp256k1_num_is_odd(&x)) {
zeroes++;
secp256k1_num_shift(&x, 1);
}
int word = secp256k1_num_shift(&x, w);
while (zeroes) {
wnaf[ret++] = 0;
zeroes--;
}
if (word & (1 << (w-1))) {
secp256k1_num_inc(&x);
wnaf[ret++] = sign * (word - (1 << w));
} else {
wnaf[ret++] = sign * word;
}
zeroes = w-1;
}
secp256k1_num_free(&x);
return ret;
}
void static secp256k1_ecmult_gen(secp256k1_gej_t *r, const secp256k1_num_t *gn) {
secp256k1_num_t n;
secp256k1_num_init(&n);
secp256k1_num_copy(&n, gn);
const secp256k1_ecmult_consts_t *c = secp256k1_ecmult_consts;
secp256k1_gej_set_ge(r, &c->prec[0][secp256k1_num_shift(&n, 4)]);
for (int j=1; j<64; j++)
secp256k1_gej_add_ge(r, r, &c->prec[j][secp256k1_num_shift(&n, 4)]);
secp256k1_num_free(&n);
secp256k1_gej_add_ge(r, r, &c->fin);
}
void static secp256k1_ecmult(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_num_t *na, const secp256k1_num_t *ng) {
const secp256k1_ecmult_consts_t *c = secp256k1_ecmult_consts;
#ifdef USE_ENDOMORPHISM
secp256k1_num_t na_1, na_lam;
secp256k1_num_init(&na_1);
secp256k1_num_init(&na_lam);
// split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit)
secp256k1_gej_split_exp(&na_1, &na_lam, na);
// build wnaf representation for na_1 and na_lam.
int wnaf_na_1[129]; int bits_na_1 = secp256k1_ecmult_wnaf(wnaf_na_1, &na_1, WINDOW_A);
int wnaf_na_lam[129]; int bits_na_lam = secp256k1_ecmult_wnaf(wnaf_na_lam, &na_lam, WINDOW_A);
int bits = bits_na_1;
if (bits_na_lam > bits) bits = bits_na_lam;
// calculate a_lam = a*lambda
secp256k1_gej_t a_lam; secp256k1_gej_mul_lambda(&a_lam, a);
// calculate odd multiples of a_lam
secp256k1_gej_t pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
secp256k1_ecmult_table_precomp_gej(pre_a_lam, &a_lam, WINDOW_A);
#else
// build wnaf representation for na.
int wnaf_na[257]; int bits_na = secp256k1_ecmult_wnaf(wnaf_na, na, WINDOW_A);
int bits = bits_na;
#endif
// calculate odd multiples of a
secp256k1_gej_t pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
secp256k1_ecmult_table_precomp_gej(pre_a, a, WINDOW_A);
// Splitted G factors.
secp256k1_num_t ng_1, ng_128;
secp256k1_num_init(&ng_1);
secp256k1_num_init(&ng_128);
// split ng into ng_1 and ng_128 (where gn = gn_1 + gn_128*2^128, and gn_1 and gn_128 are ~128 bit)
secp256k1_num_split(&ng_1, &ng_128, ng, 128);
// Build wnaf representation for ng_1 and ng_128
int wnaf_ng_1[129]; int bits_ng_1 = secp256k1_ecmult_wnaf(wnaf_ng_1, &ng_1, WINDOW_G);
int wnaf_ng_128[129]; int bits_ng_128 = secp256k1_ecmult_wnaf(wnaf_ng_128, &ng_128, WINDOW_G);
if (bits_ng_1 > bits) bits = bits_ng_1;
if (bits_ng_128 > bits) bits = bits_ng_128;
secp256k1_gej_set_infinity(r);
secp256k1_gej_t tmpj;
secp256k1_ge_t tmpa;
for (int i=bits-1; i>=0; i--) {
secp256k1_gej_double(r, r);
int n;
#ifdef USE_ENDOMORPHISM
if (i < bits_na_1 && (n = wnaf_na_1[i])) {
ECMULT_TABLE_GET_GEJ(&tmpj, pre_a, n, WINDOW_A);
secp256k1_gej_add(r, r, &tmpj);
}
if (i < bits_na_lam && (n = wnaf_na_lam[i])) {
ECMULT_TABLE_GET_GEJ(&tmpj, pre_a_lam, n, WINDOW_A);
secp256k1_gej_add(r, r, &tmpj);
}
#else
if (i < bits_na && (n = wnaf_na[i])) {
ECMULT_TABLE_GET_GEJ(&tmpj, pre_a, n, WINDOW_A);
secp256k1_gej_add(r, r, &tmpj);
}
#endif
if (i < bits_ng_1 && (n = wnaf_ng_1[i])) {
ECMULT_TABLE_GET_GE(&tmpa, c->pre_g, n, WINDOW_G);
secp256k1_gej_add_ge(r, r, &tmpa);
}
if (i < bits_ng_128 && (n = wnaf_ng_128[i])) {
ECMULT_TABLE_GET_GE(&tmpa, c->pre_g_128, n, WINDOW_G);
secp256k1_gej_add_ge(r, r, &tmpa);
}
}
#ifdef USE_ENDOMORPHISM
secp256k1_num_free(&na_1);
secp256k1_num_free(&na_lam);
#endif
secp256k1_num_free(&ng_1);
secp256k1_num_free(&ng_128);
}
#endif

173
secp256k1/impl/field.h

@ -0,0 +1,173 @@
// Copyright (c) 2013 Pieter Wuille
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef _SECP256K1_FIELD_IMPL_H_
#define _SECP256K1_FIELD_IMPL_H_
#if defined(USE_FIELD_GMP)
#include "field_gmp.h"
#elif defined(USE_FIELD_10X26)
#include "field_10x26.h"
#elif defined(USE_FIELD_5X52)
#include "field_5x52.h"
#else
#error "Please select field implementation"
#endif
void static secp256k1_fe_get_hex(char *r, int *rlen, const secp256k1_fe_t *a) {
if (*rlen < 65) {
*rlen = 65;
return;
}
*rlen = 65;
unsigned char tmp[32];
secp256k1_fe_t b = *a;
secp256k1_fe_normalize(&b);
secp256k1_fe_get_b32(tmp, &b);
for (int i=0; i<32; i++) {
static const char *c = "0123456789ABCDEF";
r[2*i] = c[(tmp[i] >> 4) & 0xF];
r[2*i+1] = c[(tmp[i]) & 0xF];
}
r[64] = 0x00;
}
void static secp256k1_fe_set_hex(secp256k1_fe_t *r, const char *a, int alen) {
unsigned char tmp[32] = {};
static const int cvt[256] = {0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 1, 2, 3, 4, 5, 6,7,8,9,0,0,0,0,0,0,
0,10,11,12,13,14,15,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0,10,11,12,13,14,15,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0};
for (int i=0; i<32; i++) {
if (alen > i*2)
tmp[32 - alen/2 + i] = (cvt[(unsigned char)a[2*i]] << 4) + cvt[(unsigned char)a[2*i+1]];
}
secp256k1_fe_set_b32(r, tmp);
}
void static secp256k1_fe_sqrt(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
// calculate a^p, with p={15,780,1022,1023}
secp256k1_fe_t a2; secp256k1_fe_sqr(&a2, a);
secp256k1_fe_t a3; secp256k1_fe_mul(&a3, &a2, a);
secp256k1_fe_t a6; secp256k1_fe_sqr(&a6, &a3);
secp256k1_fe_t a12; secp256k1_fe_sqr(&a12, &a6);
secp256k1_fe_t a15; secp256k1_fe_mul(&a15, &a12, &a3);
secp256k1_fe_t a30; secp256k1_fe_sqr(&a30, &a15);
secp256k1_fe_t a60; secp256k1_fe_sqr(&a60, &a30);
secp256k1_fe_t a120; secp256k1_fe_sqr(&a120, &a60);
secp256k1_fe_t a240; secp256k1_fe_sqr(&a240, &a120);
secp256k1_fe_t a255; secp256k1_fe_mul(&a255, &a240, &a15);
secp256k1_fe_t a510; secp256k1_fe_sqr(&a510, &a255);
secp256k1_fe_t a750; secp256k1_fe_mul(&a750, &a510, &a240);
secp256k1_fe_t a780; secp256k1_fe_mul(&a780, &a750, &a30);
secp256k1_fe_t a1020; secp256k1_fe_sqr(&a1020, &a510);
secp256k1_fe_t a1022; secp256k1_fe_mul(&a1022, &a1020, &a2);
secp256k1_fe_t a1023; secp256k1_fe_mul(&a1023, &a1022, a);
secp256k1_fe_t x = a15;
for (int i=0; i<21; i++) {
for (int j=0; j<10; j++) secp256k1_fe_sqr(&x, &x);
secp256k1_fe_mul(&x, &x, &a1023);
}
for (int j=0; j<10; j++) secp256k1_fe_sqr(&x, &x);
secp256k1_fe_mul(&x, &x, &a1022);
for (int i=0; i<2; i++) {
for (int j=0; j<10; j++) secp256k1_fe_sqr(&x, &x);
secp256k1_fe_mul(&x, &x, &a1023);
}
for (int j=0; j<10; j++) secp256k1_fe_sqr(&x, &x);
secp256k1_fe_mul(r, &x, &a780);
}
void static secp256k1_fe_inv(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
// calculate a^p, with p={45,63,1019,1023}
secp256k1_fe_t a2; secp256k1_fe_sqr(&a2, a);
secp256k1_fe_t a3; secp256k1_fe_mul(&a3, &a2, a);
secp256k1_fe_t a4; secp256k1_fe_sqr(&a4, &a2);
secp256k1_fe_t a5; secp256k1_fe_mul(&a5, &a4, a);
secp256k1_fe_t a10; secp256k1_fe_sqr(&a10, &a5);
secp256k1_fe_t a11; secp256k1_fe_mul(&a11, &a10, a);
secp256k1_fe_t a21; secp256k1_fe_mul(&a21, &a11, &a10);
secp256k1_fe_t a42; secp256k1_fe_sqr(&a42, &a21);
secp256k1_fe_t a45; secp256k1_fe_mul(&a45, &a42, &a3);
secp256k1_fe_t a63; secp256k1_fe_mul(&a63, &a42, &a21);
secp256k1_fe_t a126; secp256k1_fe_sqr(&a126, &a63);
secp256k1_fe_t a252; secp256k1_fe_sqr(&a252, &a126);
secp256k1_fe_t a504; secp256k1_fe_sqr(&a504, &a252);
secp256k1_fe_t a1008; secp256k1_fe_sqr(&a1008, &a504);
secp256k1_fe_t a1019; secp256k1_fe_mul(&a1019, &a1008, &a11);
secp256k1_fe_t a1023; secp256k1_fe_mul(&a1023, &a1019, &a4);
secp256k1_fe_t x = a63;
for (int i=0; i<21; i++) {
for (int j=0; j<10; j++) secp256k1_fe_sqr(&x, &x);
secp256k1_fe_mul(&x, &x, &a1023);
}
for (int j=0; j<10; j++) secp256k1_fe_sqr(&x, &x);
secp256k1_fe_mul(&x, &x, &a1019);
for (int i=0; i<2; i++) {
for (int j=0; j<10; j++) secp256k1_fe_sqr(&x, &x);
secp256k1_fe_mul(&x, &x, &a1023);
}
for (int j=0; j<10; j++) secp256k1_fe_sqr(&x, &x);
secp256k1_fe_mul(r, &x, &a45);
}
void static secp256k1_fe_inv_var(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
#if defined(USE_FIELD_INV_BUILTIN)
secp256k1_fe_inv(r, a);
#elif defined(USE_FIELD_INV_NUM)
unsigned char b[32];
secp256k1_fe_t c = *a;
secp256k1_fe_normalize(&c);
secp256k1_fe_get_b32(b, &c);
secp256k1_num_t n;
secp256k1_num_init(&n);
secp256k1_num_set_bin(&n, b, 32);
secp256k1_num_mod_inverse(&n, &n, &secp256k1_fe_consts->p);
secp256k1_num_get_bin(b, 32, &n);
secp256k1_num_free(&n);
secp256k1_fe_set_b32(r, b);
#else
#error "Please select field inverse implementation"
#endif
}
void static secp256k1_fe_start(void) {
static const unsigned char secp256k1_fe_consts_p[] = {
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F
};
if (secp256k1_fe_consts == NULL) {
secp256k1_fe_inner_start();
secp256k1_fe_consts_t *ret = (secp256k1_fe_consts_t*)malloc(sizeof(secp256k1_fe_consts_t));
secp256k1_num_init(&ret->p);
secp256k1_num_set_bin(&ret->p, secp256k1_fe_consts_p, sizeof(secp256k1_fe_consts_p));
secp256k1_fe_consts = ret;
}
}
void static secp256k1_fe_stop(void) {
if (secp256k1_fe_consts != NULL) {
secp256k1_fe_consts_t *c = (secp256k1_fe_consts_t*)secp256k1_fe_consts;
secp256k1_num_free(&c->p);
free((void*)c);
secp256k1_fe_consts = NULL;
secp256k1_fe_inner_stop();
}
}
#endif

487
secp256k1/impl/field_10x26.h

@ -0,0 +1,487 @@
// Copyright (c) 2013 Pieter Wuille
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef _SECP256K1_FIELD_REPR_IMPL_H_
#define _SECP256K1_FIELD_REPR_IMPL_H_
#include <stdio.h>
#include <assert.h>
#include <string.h>
#include "../num.h"
#include "../field.h"
void static secp256k1_fe_inner_start(void) {}
void static secp256k1_fe_inner_stop(void) {}
void static secp256k1_fe_normalize(secp256k1_fe_t *r) {
// fog("normalize in: ", r);
uint32_t c;
c = r->n[0];
uint32_t t0 = c & 0x3FFFFFFUL;
c = (c >> 26) + r->n[1];
uint32_t t1 = c & 0x3FFFFFFUL;
c = (c >> 26) + r->n[2];
uint32_t t2 = c & 0x3FFFFFFUL;
c = (c >> 26) + r->n[3];
uint32_t t3 = c & 0x3FFFFFFUL;
c = (c >> 26) + r->n[4];
uint32_t t4 = c & 0x3FFFFFFUL;
c = (c >> 26) + r->n[5];
uint32_t t5 = c & 0x3FFFFFFUL;
c = (c >> 26) + r->n[6];
uint32_t t6 = c & 0x3FFFFFFUL;
c = (c >> 26) + r->n[7];
uint32_t t7 = c & 0x3FFFFFFUL;
c = (c >> 26) + r->n[8];
uint32_t t8 = c & 0x3FFFFFFUL;
c = (c >> 26) + r->n[9];
uint32_t t9 = c & 0x03FFFFFUL;
c >>= 22;
/* r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
r->n[5] = t5; r->n[6] = t6; r->n[7] = t7; r->n[8] = t8; r->n[9] = t9;
fog(" tm1: ", r);
fprintf(stderr, "out c= %08lx\n", (unsigned long)c);*/
// The following code will not modify the t's if c is initially 0.
uint32_t d = c * 0x3D1UL + t0;
t0 = d & 0x3FFFFFFULL;
d = (d >> 26) + t1 + c*0x40;
t1 = d & 0x3FFFFFFULL;
d = (d >> 26) + t2;
t2 = d & 0x3FFFFFFULL;
d = (d >> 26) + t3;
t3 = d & 0x3FFFFFFULL;
d = (d >> 26) + t4;
t4 = d & 0x3FFFFFFULL;
d = (d >> 26) + t5;
t5 = d & 0x3FFFFFFULL;
d = (d >> 26) + t6;
t6 = d & 0x3FFFFFFULL;
d = (d >> 26) + t7;
t7 = d & 0x3FFFFFFULL;
d = (d >> 26) + t8;
t8 = d & 0x3FFFFFFULL;
d = (d >> 26) + t9;
t9 = d & 0x03FFFFFULL;
assert((d >> 22) == 0);
/* r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
r->n[5] = t5; r->n[6] = t6; r->n[7] = t7; r->n[8] = t8; r->n[9] = t9;
fog(" tm2: ", r); */
// Subtract p if result >= p
uint64_t low = ((uint64_t)t1 << 26) | t0;
uint64_t mask = -(int64_t)((t9 < 0x03FFFFFUL) | (t8 < 0x3FFFFFFUL) | (t7 < 0x3FFFFFFUL) | (t6 < 0x3FFFFFFUL) | (t5 < 0x3FFFFFFUL) | (t4 < 0x3FFFFFFUL) | (t3 < 0x3FFFFFFUL) | (t2 < 0x3FFFFFFUL) | (low < 0xFFFFEFFFFFC2FULL));
t9 &= mask;
t8 &= mask;
t7 &= mask;
t6 &= mask;
t5 &= mask;
t4 &= mask;
t3 &= mask;
t2 &= mask;
low -= (~mask & 0xFFFFEFFFFFC2FULL);
// push internal variables back
r->n[0] = low & 0x3FFFFFFUL; r->n[1] = (low >> 26) & 0x3FFFFFFUL; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
r->n[5] = t5; r->n[6] = t6; r->n[7] = t7; r->n[8] = t8; r->n[9] = t9;
/* fog(" out: ", r);*/
#ifdef VERIFY
r->magnitude = 1;
r->normalized = 1;
#endif
}
void static inline secp256k1_fe_set_int(secp256k1_fe_t *r, int a) {
r->n[0] = a;
r->n[1] = r->n[2] = r->n[3] = r->n[4] = r->n[5] = r->n[6] = r->n[7] = r->n[8] = r->n[9] = 0;
#ifdef VERIFY
r->magnitude = 1;
r->normalized = 1;
#endif
}
// TODO: not constant time!
int static inline secp256k1_fe_is_zero(const secp256k1_fe_t *a) {
#ifdef VERIFY
assert(a->normalized);
#endif
return (a->n[0] == 0 && a->n[1] == 0 && a->n[2] == 0 && a->n[3] == 0 && a->n[4] == 0 && a->n[5] == 0 && a->n[6] == 0 && a->n[7] == 0 && a->n[8] == 0 && a->n[9] == 0);
}
int static inline secp256k1_fe_is_odd(const secp256k1_fe_t *a) {
#ifdef VERIFY
assert(a->normalized);
#endif
return a->n[0] & 1;
}
// TODO: not constant time!
int static inline secp256k1_fe_equal(const secp256k1_fe_t *a, const secp256k1_fe_t *b) {
#ifdef VERIFY
assert(a->normalized);
assert(b->normalized);
#endif
return (a->n[0] == b->n[0] && a->n[1] == b->n[1] && a->n[2] == b->n[2] && a->n[3] == b->n[3] && a->n[4] == b->n[4] &&
a->n[5] == b->n[5] && a->n[6] == b->n[6] && a->n[7] == b->n[7] && a->n[8] == b->n[8] && a->n[9] == b->n[9]);
}
void static secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a) {
r->n[0] = r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
r->n[5] = r->n[6] = r->n[7] = r->n[8] = r->n[9] = 0;
for (int i=0; i<32; i++) {
for (int j=0; j<4; j++) {
int limb = (8*i+2*j)/26;
int shift = (8*i+2*j)%26;
r->n[limb] |= (uint32_t)((a[31-i] >> (2*j)) & 0x3) << shift;
}
}
#ifdef VERIFY
r->magnitude = 1;
r->normalized = 1;
#endif
}
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
void static secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a) {
#ifdef VERIFY
assert(a->normalized);
#endif
for (int i=0; i<32; i++) {
int c = 0;
for (int j=0; j<4; j++) {
int limb = (8*i+2*j)/26;
int shift = (8*i+2*j)%26;
c |= ((a->n[limb] >> shift) & 0x3) << (2 * j);
}
r[31-i] = c;
}
}
void static inline secp256k1_fe_negate(secp256k1_fe_t *r, const secp256k1_fe_t *a, int m) {
#ifdef VERIFY
assert(a->magnitude <= m);
r->magnitude = m + 1;
r->normalized = 0;
#endif
r->n[0] = 0x3FFFC2FUL * (m + 1) - a->n[0];
r->n[1] = 0x3FFFFBFUL * (m + 1) - a->n[1];
r->n[2] = 0x3FFFFFFUL * (m + 1) - a->n[2];
r->n[3] = 0x3FFFFFFUL * (m + 1) - a->n[3];
r->n[4] = 0x3FFFFFFUL * (m + 1) - a->n[4];
r->n[5] = 0x3FFFFFFUL * (m + 1) - a->n[5];
r->n[6] = 0x3FFFFFFUL * (m + 1) - a->n[6];
r->n[7] = 0x3FFFFFFUL * (m + 1) - a->n[7];
r->n[8] = 0x3FFFFFFUL * (m + 1) - a->n[8];
r->n[9] = 0x03FFFFFUL * (m + 1) - a->n[9];
}
void static inline secp256k1_fe_mul_int(secp256k1_fe_t *r, int a) {
#ifdef VERIFY
r->magnitude *= a;
r->normalized = 0;
#endif
r->n[0] *= a;
r->n[1] *= a;
r->n[2] *= a;
r->n[3] *= a;
r->n[4] *= a;
r->n[5] *= a;
r->n[6] *= a;
r->n[7] *= a;
r->n[8] *= a;
r->n[9] *= a;
}
void static inline secp256k1_fe_add(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
#ifdef VERIFY
r->magnitude += a->magnitude;
r->normalized = 0;
#endif
r->n[0] += a->n[0];
r->n[1] += a->n[1];
r->n[2] += a->n[2];
r->n[3] += a->n[3];
r->n[4] += a->n[4];
r->n[5] += a->n[5];
r->n[6] += a->n[6];
r->n[7] += a->n[7];
r->n[8] += a->n[8];
r->n[9] += a->n[9];
}
void static inline secp256k1_fe_mul_inner(const uint32_t *a, const uint32_t *b, uint32_t *r) {
uint64_t c = (uint64_t)a[0] * b[0];
uint32_t t0 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)a[0] * b[1] +
(uint64_t)a[1] * b[0];
uint32_t t1 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)a[0] * b[2] +
(uint64_t)a[1] * b[1] +
(uint64_t)a[2] * b[0];
uint32_t t2 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)a[0] * b[3] +
(uint64_t)a[1] * b[2] +
(uint64_t)a[2] * b[1] +
(uint64_t)a[3] * b[0];
uint32_t t3 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)a[0] * b[4] +
(uint64_t)a[1] * b[3] +
(uint64_t)a[2] * b[2] +
(uint64_t)a[3] * b[1] +
(uint64_t)a[4] * b[0];
uint32_t t4 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)a[0] * b[5] +
(uint64_t)a[1] * b[4] +
(uint64_t)a[2] * b[3] +
(uint64_t)a[3] * b[2] +
(uint64_t)a[4] * b[1] +
(uint64_t)a[5] * b[0];
uint32_t t5 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)a[0] * b[6] +
(uint64_t)a[1] * b[5] +
(uint64_t)a[2] * b[4] +
(uint64_t)a[3] * b[3] +
(uint64_t)a[4] * b[2] +
(uint64_t)a[5] * b[1] +
(uint64_t)a[6] * b[0];
uint32_t t6 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)a[0] * b[7] +
(uint64_t)a[1] * b[6] +
(uint64_t)a[2] * b[5] +
(uint64_t)a[3] * b[4] +
(uint64_t)a[4] * b[3] +
(uint64_t)a[5] * b[2] +
(uint64_t)a[6] * b[1] +
(uint64_t)a[7] * b[0];
uint32_t t7 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)a[0] * b[8] +
(uint64_t)a[1] * b[7] +
(uint64_t)a[2] * b[6] +
(uint64_t)a[3] * b[5] +
(uint64_t)a[4] * b[4] +
(uint64_t)a[5] * b[3] +
(uint64_t)a[6] * b[2] +
(uint64_t)a[7] * b[1] +
(uint64_t)a[8] * b[0];
uint32_t t8 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)a[0] * b[9] +
(uint64_t)a[1] * b[8] +
(uint64_t)a[2] * b[7] +
(uint64_t)a[3] * b[6] +
(uint64_t)a[4] * b[5] +
(uint64_t)a[5] * b[4] +
(uint64_t)a[6] * b[3] +
(uint64_t)a[7] * b[2] +
(uint64_t)a[8] * b[1] +
(uint64_t)a[9] * b[0];
uint32_t t9 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)a[1] * b[9] +
(uint64_t)a[2] * b[8] +
(uint64_t)a[3] * b[7] +
(uint64_t)a[4] * b[6] +
(uint64_t)a[5] * b[5] +
(uint64_t)a[6] * b[4] +
(uint64_t)a[7] * b[3] +
(uint64_t)a[8] * b[2] +
(uint64_t)a[9] * b[1];
uint32_t t10 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)a[2] * b[9] +
(uint64_t)a[3] * b[8] +
(uint64_t)a[4] * b[7] +
(uint64_t)a[5] * b[6] +
(uint64_t)a[6] * b[5] +
(uint64_t)a[7] * b[4] +
(uint64_t)a[8] * b[3] +
(uint64_t)a[9] * b[2];
uint32_t t11 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)a[3] * b[9] +
(uint64_t)a[4] * b[8] +
(uint64_t)a[5] * b[7] +
(uint64_t)a[6] * b[6] +
(uint64_t)a[7] * b[5] +
(uint64_t)a[8] * b[4] +
(uint64_t)a[9] * b[3];
uint32_t t12 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)a[4] * b[9] +
(uint64_t)a[5] * b[8] +
(uint64_t)a[6] * b[7] +
(uint64_t)a[7] * b[6] +
(uint64_t)a[8] * b[5] +
(uint64_t)a[9] * b[4];
uint32_t t13 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)a[5] * b[9] +
(uint64_t)a[6] * b[8] +
(uint64_t)a[7] * b[7] +
(uint64_t)a[8] * b[6] +
(uint64_t)a[9] * b[5];
uint32_t t14 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)a[6] * b[9] +
(uint64_t)a[7] * b[8] +
(uint64_t)a[8] * b[7] +
(uint64_t)a[9] * b[6];
uint32_t t15 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)a[7] * b[9] +
(uint64_t)a[8] * b[8] +
(uint64_t)a[9] * b[7];
uint32_t t16 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)a[8] * b[9] +
(uint64_t)a[9] * b[8];
uint32_t t17 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)a[9] * b[9];
uint32_t t18 = c & 0x3FFFFFFUL; c = c >> 26;
uint32_t t19 = c;
c = t0 + (uint64_t)t10 * 0x3D10UL;
t0 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + t1 + (uint64_t)t10*0x400UL + (uint64_t)t11 * 0x3D10UL;
t1 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + t2 + (uint64_t)t11*0x400UL + (uint64_t)t12 * 0x3D10UL;
t2 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + t3 + (uint64_t)t12*0x400UL + (uint64_t)t13 * 0x3D10UL;
r[3] = c & 0x3FFFFFFUL; c = c >> 26;
c = c + t4 + (uint64_t)t13*0x400UL + (uint64_t)t14 * 0x3D10UL;
r[4] = c & 0x3FFFFFFUL; c = c >> 26;
c = c + t5 + (uint64_t)t14*0x400UL + (uint64_t)t15 * 0x3D10UL;
r[5] = c & 0x3FFFFFFUL; c = c >> 26;
c = c + t6 + (uint64_t)t15*0x400UL + (uint64_t)t16 * 0x3D10UL;
r[6] = c & 0x3FFFFFFUL; c = c >> 26;
c = c + t7 + (uint64_t)t16*0x400UL + (uint64_t)t17 * 0x3D10UL;
r[7] = c & 0x3FFFFFFUL; c = c >> 26;
c = c + t8 + (uint64_t)t17*0x400UL + (uint64_t)t18 * 0x3D10UL;
r[8] = c & 0x3FFFFFFUL; c = c >> 26;
c = c + t9 + (uint64_t)t18*0x400UL + (uint64_t)t19 * 0x1000003D10ULL;
r[9] = c & 0x03FFFFFUL; c = c >> 22;
uint64_t d = t0 + c * 0x3D1UL;
r[0] = d & 0x3FFFFFFUL; d = d >> 26;
d = d + t1 + c*0x40;
r[1] = d & 0x3FFFFFFUL; d = d >> 26;
r[2] = t2 + d;
}
void static inline secp256k1_fe_sqr_inner(const uint32_t *a, uint32_t *r) {
uint64_t c = (uint64_t)a[0] * a[0];
uint32_t t0 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)(a[0]*2) * a[1];
uint32_t t1 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)(a[0]*2) * a[2] +
(uint64_t)a[1] * a[1];
uint32_t t2 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)(a[0]*2) * a[3] +
(uint64_t)(a[1]*2) * a[2];
uint32_t t3 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)(a[0]*2) * a[4] +
(uint64_t)(a[1]*2) * a[3] +
(uint64_t)a[2] * a[2];
uint32_t t4 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)(a[0]*2) * a[5] +
(uint64_t)(a[1]*2) * a[4] +
(uint64_t)(a[2]*2) * a[3];
uint32_t t5 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)(a[0]*2) * a[6] +
(uint64_t)(a[1]*2) * a[5] +
(uint64_t)(a[2]*2) * a[4] +
(uint64_t)a[3] * a[3];
uint32_t t6 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)(a[0]*2) * a[7] +
(uint64_t)(a[1]*2) * a[6] +
(uint64_t)(a[2]*2) * a[5] +
(uint64_t)(a[3]*2) * a[4];
uint32_t t7 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)(a[0]*2) * a[8] +
(uint64_t)(a[1]*2) * a[7] +
(uint64_t)(a[2]*2) * a[6] +
(uint64_t)(a[3]*2) * a[5] +
(uint64_t)a[4] * a[4];
uint32_t t8 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)(a[0]*2) * a[9] +
(uint64_t)(a[1]*2) * a[8] +
(uint64_t)(a[2]*2) * a[7] +
(uint64_t)(a[3]*2) * a[6] +
(uint64_t)(a[4]*2) * a[5];
uint32_t t9 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)(a[1]*2) * a[9] +
(uint64_t)(a[2]*2) * a[8] +
(uint64_t)(a[3]*2) * a[7] +
(uint64_t)(a[4]*2) * a[6] +
(uint64_t)a[5] * a[5];
uint32_t t10 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)(a[2]*2) * a[9] +
(uint64_t)(a[3]*2) * a[8] +
(uint64_t)(a[4]*2) * a[7] +
(uint64_t)(a[5]*2) * a[6];
uint32_t t11 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)(a[3]*2) * a[9] +
(uint64_t)(a[4]*2) * a[8] +
(uint64_t)(a[5]*2) * a[7] +
(uint64_t)a[6] * a[6];
uint32_t t12 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)(a[4]*2) * a[9] +
(uint64_t)(a[5]*2) * a[8] +
(uint64_t)(a[6]*2) * a[7];
uint32_t t13 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)(a[5]*2) * a[9] +
(uint64_t)(a[6]*2) * a[8] +
(uint64_t)a[7] * a[7];
uint32_t t14 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)(a[6]*2) * a[9] +
(uint64_t)(a[7]*2) * a[8];
uint32_t t15 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)(a[7]*2) * a[9] +
(uint64_t)a[8] * a[8];
uint32_t t16 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)(a[8]*2) * a[9];
uint32_t t17 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + (uint64_t)a[9] * a[9];
uint32_t t18 = c & 0x3FFFFFFUL; c = c >> 26;
uint32_t t19 = c;
c = t0 + (uint64_t)t10 * 0x3D10UL;
t0 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + t1 + (uint64_t)t10*0x400UL + (uint64_t)t11 * 0x3D10UL;
t1 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + t2 + (uint64_t)t11*0x400UL + (uint64_t)t12 * 0x3D10UL;
t2 = c & 0x3FFFFFFUL; c = c >> 26;
c = c + t3 + (uint64_t)t12*0x400UL + (uint64_t)t13 * 0x3D10UL;
r[3] = c & 0x3FFFFFFUL; c = c >> 26;
c = c + t4 + (uint64_t)t13*0x400UL + (uint64_t)t14 * 0x3D10UL;
r[4] = c & 0x3FFFFFFUL; c = c >> 26;
c = c + t5 + (uint64_t)t14*0x400UL + (uint64_t)t15 * 0x3D10UL;
r[5] = c & 0x3FFFFFFUL; c = c >> 26;
c = c + t6 + (uint64_t)t15*0x400UL + (uint64_t)t16 * 0x3D10UL;
r[6] = c & 0x3FFFFFFUL; c = c >> 26;
c = c + t7 + (uint64_t)t16*0x400UL + (uint64_t)t17 * 0x3D10UL;
r[7] = c & 0x3FFFFFFUL; c = c >> 26;
c = c + t8 + (uint64_t)t17*0x400UL + (uint64_t)t18 * 0x3D10UL;
r[8] = c & 0x3FFFFFFUL; c = c >> 26;
c = c + t9 + (uint64_t)t18*0x400UL + (uint64_t)t19 * 0x1000003D10ULL;
r[9] = c & 0x03FFFFFUL; c = c >> 22;
uint64_t d = t0 + c * 0x3D1UL;
r[0] = d & 0x3FFFFFFUL; d = d >> 26;
d = d + t1 + c*0x40;
r[1] = d & 0x3FFFFFFUL; d = d >> 26;
r[2] = t2 + d;
}
void static secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const secp256k1_fe_t *b) {
#ifdef VERIFY
assert(a->magnitude <= 8);
assert(b->magnitude <= 8);
r->magnitude = 1;
r->normalized = 0;
#endif
secp256k1_fe_mul_inner(a->n, b->n, r->n);
}
void static secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
#ifdef VERIFY
assert(a->magnitude <= 8);
r->magnitude = 1;
r->normalized = 0;
#endif
secp256k1_fe_sqr_inner(a->n, r->n);
}
#endif

196
secp256k1/impl/field_5x52.h

@ -0,0 +1,196 @@
// Copyright (c) 2013 Pieter Wuille
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef _SECP256K1_FIELD_REPR_IMPL_H_
#define _SECP256K1_FIELD_REPR_IMPL_H_
#include <assert.h>
#include <string.h>
#include "../num.h"
#include "../field.h"
#if defined(USE_FIELD_5X52_ASM)
#include "field_5x52_asm.h"
#elif defined(USE_FIELD_5X52_INT128)
#include "field_5x52_int128.h"
#else
#error "Please select field_5x52 implementation"
#endif
/** Implements arithmetic modulo FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F,
* represented as 5 uint64_t's in base 2^52. The values are allowed to contain >52 each. In particular,
* each FieldElem has a 'magnitude' associated with it. Internally, a magnitude M means each element
* is at most M*(2^53-1), except the most significant one, which is limited to M*(2^49-1). All operations
* accept any input with magnitude at most M, and have different rules for propagating magnitude to their
* output.
*/
void static secp256k1_fe_inner_start(void) {}
void static secp256k1_fe_inner_stop(void) {}
void static secp256k1_fe_normalize(secp256k1_fe_t *r) {
uint64_t c;
c = r->n[0];
uint64_t t0 = c & 0xFFFFFFFFFFFFFULL;
c = (c >> 52) + r->n[1];
uint64_t t1 = c & 0xFFFFFFFFFFFFFULL;
c = (c >> 52) + r->n[2];
uint64_t t2 = c & 0xFFFFFFFFFFFFFULL;
c = (c >> 52) + r->n[3];
uint64_t t3 = c & 0xFFFFFFFFFFFFFULL;
c = (c >> 52) + r->n[4];
uint64_t t4 = c & 0x0FFFFFFFFFFFFULL;
c >>= 48;
// The following code will not modify the t's if c is initially 0.
c = c * 0x1000003D1ULL + t0;
t0 = c & 0xFFFFFFFFFFFFFULL;
c = (c >> 52) + t1;
t1 = c & 0xFFFFFFFFFFFFFULL;
c = (c >> 52) + t2;
t2 = c & 0xFFFFFFFFFFFFFULL;
c = (c >> 52) + t3;
t3 = c & 0xFFFFFFFFFFFFFULL;
c = (c >> 52) + t4;
t4 = c & 0x0FFFFFFFFFFFFULL;
assert((c >> 48) == 0);
// Subtract p if result >= p
uint64_t mask = -(int64_t)((t4 < 0xFFFFFFFFFFFFULL) | (t3 < 0xFFFFFFFFFFFFFULL) | (t2 < 0xFFFFFFFFFFFFFULL) | (t1 < 0xFFFFFFFFFFFFFULL) | (t0 < 0xFFFFEFFFFFC2FULL));
t4 &= mask;
t3 &= mask;
t2 &= mask;
t1 &= mask;
t0 -= (~mask & 0xFFFFEFFFFFC2FULL);
// push internal variables back
r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
#ifdef VERIFY
r->magnitude = 1;
r->normalized = 1;
#endif
}
void static inline secp256k1_fe_set_int(secp256k1_fe_t *r, int a) {
r->n[0] = a;
r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
#ifdef VERIFY
r->magnitude = 1;
r->normalized = 1;
#endif
}
// TODO: not constant time!
int static inline secp256k1_fe_is_zero(const secp256k1_fe_t *a) {
#ifdef VERIFY
assert(a->normalized);
#endif
return (a->n[0] == 0 && a->n[1] == 0 && a->n[2] == 0 && a->n[3] == 0 && a->n[4] == 0);
}
int static inline secp256k1_fe_is_odd(const secp256k1_fe_t *a) {
#ifdef VERIFY
assert(a->normalized);
#endif
return a->n[0] & 1;
}
// TODO: not constant time!
int static inline secp256k1_fe_equal(const secp256k1_fe_t *a, const secp256k1_fe_t *b) {
#ifdef VERIFY
assert(a->normalized);
assert(b->normalized);
#endif
return (a->n[0] == b->n[0] && a->n[1] == b->n[1] && a->n[2] == b->n[2] && a->n[3] == b->n[3] && a->n[4] == b->n[4]);
}
void static secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a) {
r->n[0] = r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
for (int i=0; i<32; i++) {
for (int j=0; j<2; j++) {
int limb = (8*i+4*j)/52;
int shift = (8*i+4*j)%52;
r->n[limb] |= (uint64_t)((a[31-i] >> (4*j)) & 0xF) << shift;
}
}
#ifdef VERIFY
r->magnitude = 1;
r->normalized = 1;
#endif
}
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
void static secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a) {
#ifdef VERIFY
assert(a->normalized);
#endif
for (int i=0; i<32; i++) {
int c = 0;
for (int j=0; j<2; j++) {
int limb = (8*i+4*j)/52;
int shift = (8*i+4*j)%52;
c |= ((a->n[limb] >> shift) & 0xF) << (4 * j);
}
r[31-i] = c;
}
}
void static inline secp256k1_fe_negate(secp256k1_fe_t *r, const secp256k1_fe_t *a, int m) {
#ifdef VERIFY
assert(a->magnitude <= m);
r->magnitude = m + 1;
r->normalized = 0;
#endif
r->n[0] = 0xFFFFEFFFFFC2FULL * (m + 1) - a->n[0];
r->n[1] = 0xFFFFFFFFFFFFFULL * (m + 1) - a->n[1];
r->n[2] = 0xFFFFFFFFFFFFFULL * (m + 1) - a->n[2];
r->n[3] = 0xFFFFFFFFFFFFFULL * (m + 1) - a->n[3];
r->n[4] = 0x0FFFFFFFFFFFFULL * (m + 1) - a->n[4];
}
void static inline secp256k1_fe_mul_int(secp256k1_fe_t *r, int a) {
#ifdef VERIFY
r->magnitude *= a;
r->normalized = 0;
#endif
r->n[0] *= a;
r->n[1] *= a;
r->n[2] *= a;
r->n[3] *= a;
r->n[4] *= a;
}
void static inline secp256k1_fe_add(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
#ifdef VERIFY
r->magnitude += a->magnitude;
r->normalized = 0;
#endif
r->n[0] += a->n[0];
r->n[1] += a->n[1];
r->n[2] += a->n[2];
r->n[3] += a->n[3];
r->n[4] += a->n[4];
}
void static secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const secp256k1_fe_t *b) {
#ifdef VERIFY
assert(a->magnitude <= 8);
assert(b->magnitude <= 8);
r->magnitude = 1;
r->normalized = 0;
#endif
secp256k1_fe_mul_inner(a->n, b->n, r->n);
}
void static secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
#ifdef VERIFY
assert(a->magnitude <= 8);
r->magnitude = 1;
r->normalized = 0;
#endif
secp256k1_fe_sqr_inner(a->n, r->n);
}
#endif

11
secp256k1/impl/field_5x52_asm.h

@ -0,0 +1,11 @@
// Copyright (c) 2013 Pieter Wuille
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef _SECP256K1_FIELD_INNER5X52_IMPL_H_
#define _SECP256K1_FIELD_INNER5X52_IMPL_H_
void __attribute__ ((sysv_abi)) secp256k1_fe_mul_inner(const uint64_t *a, const uint64_t *b, uint64_t *r);
void __attribute__ ((sysv_abi)) secp256k1_fe_sqr_inner(const uint64_t *a, uint64_t *r);
#endif

105
secp256k1/impl/field_5x52_int128.h

@ -0,0 +1,105 @@
// Copyright (c) 2013 Pieter Wuille
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef _SECP256K1_FIELD_INNER5X52_IMPL_H_
#define _SECP256K1_FIELD_INNER5X52_IMPL_H_
#include <stdint.h>
void static inline secp256k1_fe_mul_inner(const uint64_t *a, const uint64_t *b, uint64_t *r) {
__int128 c = (__int128)a[0] * b[0];
uint64_t t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0FFFFFFFFFFFFFE0
c = c + (__int128)a[0] * b[1] +
(__int128)a[1] * b[0];
uint64_t t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 20000000000000BF
c = c + (__int128)a[0] * b[2] +
(__int128)a[1] * b[1] +
(__int128)a[2] * b[0];
uint64_t t2 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 30000000000001A0
c = c + (__int128)a[0] * b[3] +
(__int128)a[1] * b[2] +
(__int128)a[2] * b[1] +
(__int128)a[3] * b[0];
uint64_t t3 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 4000000000000280
c = c + (__int128)a[0] * b[4] +
(__int128)a[1] * b[3] +
(__int128)a[2] * b[2] +
(__int128)a[3] * b[1] +
(__int128)a[4] * b[0];
uint64_t t4 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 320000000000037E
c = c + (__int128)a[1] * b[4] +
(__int128)a[2] * b[3] +
(__int128)a[3] * b[2] +
(__int128)a[4] * b[1];
uint64_t t5 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 22000000000002BE
c = c + (__int128)a[2] * b[4] +
(__int128)a[3] * b[3] +
(__int128)a[4] * b[2];
uint64_t t6 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 12000000000001DE
c = c + (__int128)a[3] * b[4] +
(__int128)a[4] * b[3];
uint64_t t7 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 02000000000000FE
c = c + (__int128)a[4] * b[4];
uint64_t t8 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 001000000000001E
uint64_t t9 = c;
c = t0 + (__int128)t5 * 0x1000003D10ULL;
t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
c = c + t1 + (__int128)t6 * 0x1000003D10ULL;
t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
c = c + t2 + (__int128)t7 * 0x1000003D10ULL;
r[2] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
c = c + t3 + (__int128)t8 * 0x1000003D10ULL;
r[3] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
c = c + t4 + (__int128)t9 * 0x1000003D10ULL;
r[4] = c & 0x0FFFFFFFFFFFFULL; c = c >> 48; // c max 000001000003D110
c = t0 + (__int128)c * 0x1000003D1ULL;
r[0] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 1000008
r[1] = t1 + c;
}
void static inline secp256k1_fe_sqr_inner(const uint64_t *a, uint64_t *r) {
__int128 c = (__int128)a[0] * a[0];
uint64_t t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0FFFFFFFFFFFFFE0
c = c + (__int128)(a[0]*2) * a[1];
uint64_t t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 20000000000000BF
c = c + (__int128)(a[0]*2) * a[2] +
(__int128)a[1] * a[1];
uint64_t t2 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 30000000000001A0
c = c + (__int128)(a[0]*2) * a[3] +
(__int128)(a[1]*2) * a[2];
uint64_t t3 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 4000000000000280
c = c + (__int128)(a[0]*2) * a[4] +
(__int128)(a[1]*2) * a[3] +
(__int128)a[2] * a[2];
uint64_t t4 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 320000000000037E
c = c + (__int128)(a[1]*2) * a[4] +
(__int128)(a[2]*2) * a[3];
uint64_t t5 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 22000000000002BE
c = c + (__int128)(a[2]*2) * a[4] +
(__int128)a[3] * a[3];
uint64_t t6 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 12000000000001DE
c = c + (__int128)(a[3]*2) * a[4];
uint64_t t7 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 02000000000000FE
c = c + (__int128)a[4] * a[4];
uint64_t t8 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 001000000000001E
uint64_t t9 = c;
c = t0 + (__int128)t5 * 0x1000003D10ULL;
t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
c = c + t1 + (__int128)t6 * 0x1000003D10ULL;
t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
c = c + t2 + (__int128)t7 * 0x1000003D10ULL;
r[2] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
c = c + t3 + (__int128)t8 * 0x1000003D10ULL;
r[3] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
c = c + t4 + (__int128)t9 * 0x1000003D10ULL;
r[4] = c & 0x0FFFFFFFFFFFFULL; c = c >> 48; // c max 000001000003D110
c = t0 + (__int128)c * 0x1000003D1ULL;
r[0] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 1000008
r[1] = t1 + c;
}
#endif

155
secp256k1/impl/field_gmp.h

@ -0,0 +1,155 @@
// Copyright (c) 2013 Pieter Wuille
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef _SECP256K1_FIELD_REPR_IMPL_H_
#define _SECP256K1_FIELD_REPR_IMPL_H_
#include <stdio.h>
#include <assert.h>
#include <string.h>
#include "../num.h"
#include "../field.h"
static mp_limb_t secp256k1_field_p[FIELD_LIMBS];
static mp_limb_t secp256k1_field_pc[(33+GMP_NUMB_BITS-1)/GMP_NUMB_BITS];
void static secp256k1_fe_inner_start(void) {
for (int i=0; i<(33+GMP_NUMB_BITS-1)/GMP_NUMB_BITS; i++)
secp256k1_field_pc[i] = 0;
secp256k1_field_pc[0] += 0x3D1UL;
secp256k1_field_pc[32/GMP_NUMB_BITS] += (1UL << (32 % GMP_NUMB_BITS));
for (int i=0; i<FIELD_LIMBS; i++) {
secp256k1_field_p[i] = 0;
}
mpn_sub(secp256k1_field_p, secp256k1_field_p, FIELD_LIMBS, secp256k1_field_pc, (33+GMP_NUMB_BITS-1)/GMP_NUMB_BITS);
}
void static secp256k1_fe_inner_stop(void) {
}
void static secp256k1_fe_normalize(secp256k1_fe_t *r) {
if (r->n[FIELD_LIMBS] != 0) {
#if (GMP_NUMB_BITS >= 40)
mp_limb_t carry = mpn_add_1(r->n, r->n, FIELD_LIMBS, 0x1000003D1ULL * r->n[FIELD_LIMBS]);
mpn_add_1(r->n, r->n, FIELD_LIMBS, 0x1000003D1ULL * carry);
#else
mp_limb_t carry = mpn_add_1(r->n, r->n, FIELD_LIMBS, 0x3D1UL * r->n[FIELD_LIMBS]) +
mpn_add_1(r->n+(32/GMP_NUMB_BITS), r->n+(32/GMP_NUMB_BITS), FIELD_LIMBS-(32/GMP_NUMB_BITS), r->n[FIELD_LIMBS] << (32 % GMP_NUMB_BITS));
mpn_add_1(r->n, r->n, FIELD_LIMBS, 0x3D1UL * carry);
mpn_add_1(r->n+(32/GMP_NUMB_BITS), r->n+(32/GMP_NUMB_BITS), FIELD_LIMBS-(32/GMP_NUMB_BITS), carry << (32%GMP_NUMB_BITS));
#endif
r->n[FIELD_LIMBS] = 0;
}
if (mpn_cmp(r->n, secp256k1_field_p, FIELD_LIMBS) >= 0)
mpn_sub(r->n, r->n, FIELD_LIMBS, secp256k1_field_p, FIELD_LIMBS);
}
void static inline secp256k1_fe_set_int(secp256k1_fe_t *r, int a) {
r->n[0] = a;
for (int i=1; i<FIELD_LIMBS+1; i++)
r->n[i] = 0;
}
int static inline secp256k1_fe_is_zero(const secp256k1_fe_t *a) {
int ret = 1;
for (int i=0; i<FIELD_LIMBS+1; i++)
ret &= (a->n[i] == 0);
return ret;
}
int static inline secp256k1_fe_is_odd(const secp256k1_fe_t *a) {
return a->n[0] & 1;
}
int static inline secp256k1_fe_equal(const secp256k1_fe_t *a, const secp256k1_fe_t *b) {
int ret = 1;
for (int i=0; i<FIELD_LIMBS+1; i++)
ret &= (a->n[i] == b->n[i]);
return ret;
}
void static secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a) {
for (int i=0; i<FIELD_LIMBS+1; i++)
r->n[i] = 0;
for (int i=0; i<256; i++) {
int limb = i/GMP_NUMB_BITS;
int shift = i%GMP_NUMB_BITS;
r->n[limb] |= (mp_limb_t)((a[31-i/8] >> (i%8)) & 0x1) << shift;
}
}
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
void static secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a) {
for (int i=0; i<32; i++) {
int c = 0;
for (int j=0; j<8; j++) {
int limb = (8*i+j)/GMP_NUMB_BITS;
int shift = (8*i+j)%GMP_NUMB_BITS;
c |= ((a->n[limb] >> shift) & 0x1) << j;
}
r[31-i] = c;
}
}
void static inline secp256k1_fe_negate(secp256k1_fe_t *r, const secp256k1_fe_t *a, int m) {
*r = *a;
secp256k1_fe_normalize(r);
for (int i=0; i<FIELD_LIMBS; i++)
r->n[i] = ~(r->n[i]);
#if (GMP_NUMB_BITS >= 33)
mpn_sub_1(r->n, r->n, FIELD_LIMBS, 0x1000003D0ULL);
#else
mpn_sub_1(r->n, r->n, FIELD_LIMBS, 0x3D0UL);
mpn_sub_1(r->n+(32/GMP_NUMB_BITS), r->n+(32/GMP_NUMB_BITS), FIELD_LIMBS-(32/GMP_NUMB_BITS), 0x1UL << (32%GMP_NUMB_BITS));
#endif
}
void static inline secp256k1_fe_mul_int(secp256k1_fe_t *r, int a) {
mpn_mul_1(r->n, r->n, FIELD_LIMBS+1, a);
}
void static inline secp256k1_fe_add(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
mpn_add(r->n, r->n, FIELD_LIMBS+1, a->n, FIELD_LIMBS+1);
}
void static secp256k1_fe_reduce(secp256k1_fe_t *r, mp_limb_t *tmp) {
// <A1 A2 A3 A4> <B1 B2 B3 B4>
// B1 B2 B3 B4
// + C * A1 A2 A3 A4
// + A1 A2 A3 A4
#if (GMP_NUMB_BITS >= 33)
mp_limb_t o = mpn_addmul_1(tmp, tmp+FIELD_LIMBS, FIELD_LIMBS, 0x1000003D1ULL);
#else
mp_limb_t o = mpn_addmul_1(tmp, tmp+FIELD_LIMBS, FIELD_LIMBS, 0x3D1UL) +
mpn_addmul_1(tmp+(32/GMP_NUMB_BITS), tmp+FIELD_LIMBS, FIELD_LIMBS-(32/GMP_NUMB_BITS), 0x1UL << (32%GMP_NUMB_BITS));
#endif
mp_limb_t q[1+(33+GMP_NUMB_BITS-1)/GMP_NUMB_BITS];
q[(33+GMP_NUMB_BITS-1)/GMP_NUMB_BITS] = mpn_mul_1(q, secp256k1_field_pc, (33+GMP_NUMB_BITS-1)/GMP_NUMB_BITS, o);
#if (GMP_NUMB_BITS <= 32)
mp_limb_t o2 = tmp[2*FIELD_LIMBS-(32/GMP_NUMB_BITS)] << (32%GMP_NUMB_BITS);
q[(33+GMP_NUMB_BITS-1)/GMP_NUMB_BITS] += mpn_addmul_1(q, secp256k1_field_pc, (33+GMP_NUMB_BITS-1)/GMP_NUMB_BITS, o2);
#endif
r->n[FIELD_LIMBS] = mpn_add(r->n, tmp, FIELD_LIMBS, q, 1+(33+GMP_NUMB_BITS-1)/GMP_NUMB_BITS);
}
void static secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const secp256k1_fe_t *b) {
secp256k1_fe_t ac = *a;
secp256k1_fe_t bc = *b;
secp256k1_fe_normalize(&ac);
secp256k1_fe_normalize(&bc);
mp_limb_t tmp[2*FIELD_LIMBS];
mpn_mul_n(tmp, ac.n, bc.n, FIELD_LIMBS);
secp256k1_fe_reduce(r, tmp);
}
void static secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
secp256k1_fe_t ac = *a;
secp256k1_fe_normalize(&ac);
mp_limb_t tmp[2*FIELD_LIMBS];
mpn_sqr(tmp, ac.n, FIELD_LIMBS);
secp256k1_fe_reduce(r, tmp);
}
#endif

403
secp256k1/impl/group.h

@ -0,0 +1,403 @@
// Copyright (c) 2013 Pieter Wuille
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef _SECP256K1_GROUP_IMPL_H_
#define _SECP256K1_GROUP_IMPL_H_
#include <string.h>
#include "../num.h"
#include "../field.h"
#include "../group.h"
void static secp256k1_ge_set_infinity(secp256k1_ge_t *r) {
r->infinity = 1;
}
void static secp256k1_ge_set_xy(secp256k1_ge_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y) {
r->infinity = 0;
r->x = *x;
r->y = *y;
}
int static secp256k1_ge_is_infinity(const secp256k1_ge_t *a) {
return a->infinity;
}
void static secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a) {
r->infinity = a->infinity;
r->x = a->x;
r->y = a->y;
secp256k1_fe_normalize(&r->y);
secp256k1_fe_negate(&r->y, &r->y, 1);
}
void static secp256k1_ge_get_hex(char *r, int *rlen, const secp256k1_ge_t *a) {
char cx[65]; int lx=65;
char cy[65]; int ly=65;
secp256k1_fe_get_hex(cx, &lx, &a->x);
secp256k1_fe_get_hex(cy, &ly, &a->y);
lx = strlen(cx);
ly = strlen(cy);
int len = lx + ly + 3 + 1;
if (*rlen < len) {
*rlen = len;
return;
}
*rlen = len;
r[0] = '(';
memcpy(r+1, cx, lx);
r[1+lx] = ',';
memcpy(r+2+lx, cy, ly);
r[2+lx+ly] = ')';
r[3+lx+ly] = 0;
}
void static secp256k1_ge_set_gej(secp256k1_ge_t *r, secp256k1_gej_t *a) {
secp256k1_fe_inv_var(&a->z, &a->z);
secp256k1_fe_t z2; secp256k1_fe_sqr(&z2, &a->z);
secp256k1_fe_t z3; secp256k1_fe_mul(&z3, &a->z, &z2);
secp256k1_fe_mul(&a->x, &a->x, &z2);
secp256k1_fe_mul(&a->y, &a->y, &z3);
secp256k1_fe_set_int(&a->z, 1);
r->infinity = a->infinity;
r->x = a->x;
r->y = a->y;
}
void static secp256k1_gej_set_infinity(secp256k1_gej_t *r) {
r->infinity = 1;
}
void static secp256k1_gej_set_xy(secp256k1_gej_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y) {
r->infinity = 0;
r->x = *x;
r->y = *y;
secp256k1_fe_set_int(&r->z, 1);
}
void static secp256k1_ge_set_xo(secp256k1_ge_t *r, const secp256k1_fe_t *x, int odd) {
r->x = *x;
secp256k1_fe_t x2; secp256k1_fe_sqr(&x2, x);
secp256k1_fe_t x3; secp256k1_fe_mul(&x3, x, &x2);
r->infinity = 0;
secp256k1_fe_t c; secp256k1_fe_set_int(&c, 7);
secp256k1_fe_add(&c, &x3);
secp256k1_fe_sqrt(&r->y, &c);
secp256k1_fe_normalize(&r->y);
if (secp256k1_fe_is_odd(&r->y) != odd)
secp256k1_fe_negate(&r->y, &r->y, 1);
}
void static secp256k1_gej_set_ge(secp256k1_gej_t *r, const secp256k1_ge_t *a) {
r->infinity = a->infinity;
r->x = a->x;
r->y = a->y;
secp256k1_fe_set_int(&r->z, 1);
}
void static secp256k1_gej_get_x(secp256k1_fe_t *r, const secp256k1_gej_t *a) {
secp256k1_fe_t zi2; secp256k1_fe_inv_var(&zi2, &a->z); secp256k1_fe_sqr(&zi2, &zi2);
secp256k1_fe_mul(r, &a->x, &zi2);
}
void static secp256k1_gej_neg(secp256k1_gej_t *r, const secp256k1_gej_t *a) {
r->infinity = a->infinity;
r->x = a->x;
r->y = a->y;
r->z = a->z;
secp256k1_fe_normalize(&r->y);
secp256k1_fe_negate(&r->y, &r->y, 1);
}
int static secp256k1_gej_is_infinity(const secp256k1_gej_t *a) {
return a->infinity;
}
int static secp256k1_gej_is_valid(const secp256k1_gej_t *a) {
if (a->infinity)
return 0;
// y^2 = x^3 + 7
// (Y/Z^3)^2 = (X/Z^2)^3 + 7
// Y^2 / Z^6 = X^3 / Z^6 + 7
// Y^2 = X^3 + 7*Z^6
secp256k1_fe_t y2; secp256k1_fe_sqr(&y2, &a->y);
secp256k1_fe_t x3; secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
secp256k1_fe_t z2; secp256k1_fe_sqr(&z2, &a->z);
secp256k1_fe_t z6; secp256k1_fe_sqr(&z6, &z2); secp256k1_fe_mul(&z6, &z6, &z2);
secp256k1_fe_mul_int(&z6, 7);
secp256k1_fe_add(&x3, &z6);
secp256k1_fe_normalize(&y2);
secp256k1_fe_normalize(&x3);
return secp256k1_fe_equal(&y2, &x3);
}
int static secp256k1_ge_is_valid(const secp256k1_ge_t *a) {
if (a->infinity)
return 0;
// y^2 = x^3 + 7
secp256k1_fe_t y2; secp256k1_fe_sqr(&y2, &a->y);
secp256k1_fe_t x3; secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
secp256k1_fe_t c; secp256k1_fe_set_int(&c, 7);
secp256k1_fe_add(&x3, &c);
secp256k1_fe_normalize(&y2);
secp256k1_fe_normalize(&x3);
return secp256k1_fe_equal(&y2, &x3);
}
void static secp256k1_gej_double(secp256k1_gej_t *r, const secp256k1_gej_t *a) {
secp256k1_fe_t t5 = a->y;
secp256k1_fe_normalize(&t5);
if (a->infinity || secp256k1_fe_is_zero(&t5)) {
r->infinity = 1;
return;
}
secp256k1_fe_t t1,t2,t3,t4;
secp256k1_fe_mul(&r->z, &t5, &a->z);
secp256k1_fe_mul_int(&r->z, 2); // Z' = 2*Y*Z (2)
secp256k1_fe_sqr(&t1, &a->x);
secp256k1_fe_mul_int(&t1, 3); // T1 = 3*X^2 (3)
secp256k1_fe_sqr(&t2, &t1); // T2 = 9*X^4 (1)
secp256k1_fe_sqr(&t3, &t5);
secp256k1_fe_mul_int(&t3, 2); // T3 = 2*Y^2 (2)
secp256k1_fe_sqr(&t4, &t3);
secp256k1_fe_mul_int(&t4, 2); // T4 = 8*Y^4 (2)
secp256k1_fe_mul(&t3, &a->x, &t3); // T3 = 2*X*Y^2 (1)
r->x = t3;
secp256k1_fe_mul_int(&r->x, 4); // X' = 8*X*Y^2 (4)
secp256k1_fe_negate(&r->x, &r->x, 4); // X' = -8*X*Y^2 (5)
secp256k1_fe_add(&r->x, &t2); // X' = 9*X^4 - 8*X*Y^2 (6)
secp256k1_fe_negate(&t2, &t2, 1); // T2 = -9*X^4 (2)
secp256k1_fe_mul_int(&t3, 6); // T3 = 12*X*Y^2 (6)
secp256k1_fe_add(&t3, &t2); // T3 = 12*X*Y^2 - 9*X^4 (8)
secp256k1_fe_mul(&r->y, &t1, &t3); // Y' = 36*X^3*Y^2 - 27*X^6 (1)
secp256k1_fe_negate(&t2, &t4, 2); // T2 = -8*Y^4 (3)
secp256k1_fe_add(&r->y, &t2); // Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4)
r->infinity = 0;
}
void static secp256k1_gej_add(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_gej_t *b) {
if (a->infinity) {
*r = *b;
return;
}
if (b->infinity) {
*r = *a;
return;
}
r->infinity = 0;
secp256k1_fe_t z22; secp256k1_fe_sqr(&z22, &b->z);
secp256k1_fe_t z12; secp256k1_fe_sqr(&z12, &a->z);
secp256k1_fe_t u1; secp256k1_fe_mul(&u1, &a->x, &z22);
secp256k1_fe_t u2; secp256k1_fe_mul(&u2, &b->x, &z12);
secp256k1_fe_t s1; secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z);
secp256k1_fe_t s2; secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
secp256k1_fe_normalize(&u1);
secp256k1_fe_normalize(&u2);
if (secp256k1_fe_equal(&u1, &u2)) {
secp256k1_fe_normalize(&s1);
secp256k1_fe_normalize(&s2);
if (secp256k1_fe_equal(&s1, &s2)) {
secp256k1_gej_double(r, a);
} else {
r->infinity = 1;
}
return;
}
secp256k1_fe_t h; secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
secp256k1_fe_t i; secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
secp256k1_fe_t i2; secp256k1_fe_sqr(&i2, &i);
secp256k1_fe_t h2; secp256k1_fe_sqr(&h2, &h);
secp256k1_fe_t h3; secp256k1_fe_mul(&h3, &h, &h2);
secp256k1_fe_mul(&r->z, &a->z, &b->z); secp256k1_fe_mul(&r->z, &r->z, &h);
secp256k1_fe_t t; secp256k1_fe_mul(&t, &u1, &h2);
r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
secp256k1_fe_add(&r->y, &h3);
}
void static secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b) {
if (a->infinity) {
r->infinity = b->infinity;
r->x = b->x;
r->y = b->y;
secp256k1_fe_set_int(&r->z, 1);
return;
}
if (b->infinity) {
*r = *a;
return;
}
r->infinity = 0;
secp256k1_fe_t z12; secp256k1_fe_sqr(&z12, &a->z);
secp256k1_fe_t u1 = a->x; secp256k1_fe_normalize(&u1);
secp256k1_fe_t u2; secp256k1_fe_mul(&u2, &b->x, &z12);
secp256k1_fe_t s1 = a->y; secp256k1_fe_normalize(&s1);
secp256k1_fe_t s2; secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
secp256k1_fe_normalize(&u1);
secp256k1_fe_normalize(&u2);
if (secp256k1_fe_equal(&u1, &u2)) {
secp256k1_fe_normalize(&s1);
secp256k1_fe_normalize(&s2);
if (secp256k1_fe_equal(&s1, &s2)) {
secp256k1_gej_double(r, a);
} else {
r->infinity = 1;
}
return;
}
secp256k1_fe_t h; secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
secp256k1_fe_t i; secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
secp256k1_fe_t i2; secp256k1_fe_sqr(&i2, &i);
secp256k1_fe_t h2; secp256k1_fe_sqr(&h2, &h);
secp256k1_fe_t h3; secp256k1_fe_mul(&h3, &h, &h2);
r->z = a->z; secp256k1_fe_mul(&r->z, &r->z, &h);
secp256k1_fe_t t; secp256k1_fe_mul(&t, &u1, &h2);
r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
secp256k1_fe_add(&r->y, &h3);
}
void static secp256k1_gej_get_hex(char *r, int *rlen, const secp256k1_gej_t *a) {
secp256k1_gej_t c = *a;
secp256k1_ge_t t; secp256k1_ge_set_gej(&t, &c);
secp256k1_ge_get_hex(r, rlen, &t);
}
#ifdef USE_ENDOMORPHISM
void static secp256k1_gej_mul_lambda(secp256k1_gej_t *r, const secp256k1_gej_t *a) {
const secp256k1_fe_t *beta = &secp256k1_ge_consts->beta;
*r = *a;
secp256k1_fe_mul(&r->x, &r->x, beta);
}
void static secp256k1_gej_split_exp(secp256k1_num_t *r1, secp256k1_num_t *r2, const secp256k1_num_t *a) {
const secp256k1_ge_consts_t *c = secp256k1_ge_consts;
secp256k1_num_t bnc1, bnc2, bnt1, bnt2, bnn2;
secp256k1_num_init(&bnc1);
secp256k1_num_init(&bnc2);
secp256k1_num_init(&bnt1);
secp256k1_num_init(&bnt2);
secp256k1_num_init(&bnn2);
secp256k1_num_copy(&bnn2, &c->order);
secp256k1_num_shift(&bnn2, 1);
secp256k1_num_mul(&bnc1, a, &c->a1b2);
secp256k1_num_add(&bnc1, &bnc1, &bnn2);
secp256k1_num_div(&bnc1, &bnc1, &c->order);
secp256k1_num_mul(&bnc2, a, &c->b1);
secp256k1_num_add(&bnc2, &bnc2, &bnn2);
secp256k1_num_div(&bnc2, &bnc2, &c->order);
secp256k1_num_mul(&bnt1, &bnc1, &c->a1b2);
secp256k1_num_mul(&bnt2, &bnc2, &c->a2);
secp256k1_num_add(&bnt1, &bnt1, &bnt2);
secp256k1_num_sub(r1, a, &bnt1);
secp256k1_num_mul(&bnt1, &bnc1, &c->b1);
secp256k1_num_mul(&bnt2, &bnc2, &c->a1b2);
secp256k1_num_sub(r2, &bnt1, &bnt2);
secp256k1_num_free(&bnc1);
secp256k1_num_free(&bnc2);
secp256k1_num_free(&bnt1);
secp256k1_num_free(&bnt2);
secp256k1_num_free(&bnn2);
}
#endif
void static secp256k1_ge_start(void) {
static const unsigned char secp256k1_ge_consts_order[] = {
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,
0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41
};
static const unsigned char secp256k1_ge_consts_g_x[] = {
0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,
0x55,0xA0,0x62,0x95,0xCE,0x87,0x0B,0x07,
0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,
0x59,0xF2,0x81,0x5B,0x16,0xF8,0x17,0x98
};
static const unsigned char secp256k1_ge_consts_g_y[] = {
0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65,
0x5D,0xA4,0xFB,0xFC,0x0E,0x11,0x08,0xA8,
0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19,
0x9C,0x47,0xD0,0x8F,0xFB,0x10,0xD4,0xB8
};
#ifdef USE_ENDOMORPHISM
// properties of secp256k1's efficiently computable endomorphism
static const unsigned char secp256k1_ge_consts_lambda[] = {
0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0,
0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a,
0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78,
0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72
};
static const unsigned char secp256k1_ge_consts_beta[] = {
0x7a,0xe9,0x6a,0x2b,0x65,0x7c,0x07,0x10,
0x6e,0x64,0x47,0x9e,0xac,0x34,0x34,0xe9,
0x9c,0xf0,0x49,0x75,0x12,0xf5,0x89,0x95,
0xc1,0x39,0x6c,0x28,0x71,0x95,0x01,0xee
};
static const unsigned char secp256k1_ge_consts_a1b2[] = {
0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,
0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15
};
static const unsigned char secp256k1_ge_consts_b1[] = {
0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,
0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3
};
static const unsigned char secp256k1_ge_consts_a2[] = {
0x01,
0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,
0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8
};
#endif
if (secp256k1_ge_consts == NULL) {
secp256k1_ge_consts_t *ret = (secp256k1_ge_consts_t*)malloc(sizeof(secp256k1_ge_consts_t));
secp256k1_num_init(&ret->order);
secp256k1_num_init(&ret->half_order);
secp256k1_num_set_bin(&ret->order, secp256k1_ge_consts_order, sizeof(secp256k1_ge_consts_order));
secp256k1_num_copy(&ret->half_order, &ret->order);
secp256k1_num_shift(&ret->half_order, 1);
#ifdef USE_ENDOMORPHISM
secp256k1_num_init(&ret->lambda);
secp256k1_num_init(&ret->a1b2);
secp256k1_num_init(&ret->a2);
secp256k1_num_init(&ret->b1);
secp256k1_num_set_bin(&ret->lambda, secp256k1_ge_consts_lambda, sizeof(secp256k1_ge_consts_lambda));
secp256k1_num_set_bin(&ret->a1b2, secp256k1_ge_consts_a1b2, sizeof(secp256k1_ge_consts_a1b2));
secp256k1_num_set_bin(&ret->a2, secp256k1_ge_consts_a2, sizeof(secp256k1_ge_consts_a2));
secp256k1_num_set_bin(&ret->b1, secp256k1_ge_consts_b1, sizeof(secp256k1_ge_consts_b1));
secp256k1_fe_set_b32(&ret->beta, secp256k1_ge_consts_beta);
#endif
secp256k1_fe_t g_x, g_y;
secp256k1_fe_set_b32(&g_x, secp256k1_ge_consts_g_x);
secp256k1_fe_set_b32(&g_y, secp256k1_ge_consts_g_y);
secp256k1_ge_set_xy(&ret->g, &g_x, &g_y);
secp256k1_ge_consts = ret;
}
}
void static secp256k1_ge_stop(void) {
if (secp256k1_ge_consts != NULL) {
secp256k1_ge_consts_t *c = (secp256k1_ge_consts_t*)secp256k1_ge_consts;
secp256k1_num_free(&c->order);
secp256k1_num_free(&c->half_order);
secp256k1_num_free(&c->lambda);
secp256k1_num_free(&c->a1b2);
secp256k1_num_free(&c->a2);
secp256k1_num_free(&c->b1);
free((void*)c);
secp256k1_ge_consts = NULL;
}
}
#endif

18
secp256k1/impl/num.h

@ -0,0 +1,18 @@
// Copyright (c) 2013 Pieter Wuille
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef _SECP256K1_NUM_IMPL_H_
#define _SECP256K1_NUM_IMPL_H_
#include "../num.h"
#if defined(USE_NUM_GMP)
#include "num_gmp.h"
#elif defined(USE_NUM_OPENSSL)
#include "num_openssl.h"
#else
#error "Please select num implementation"
#endif
#endif

346
secp256k1/impl/num_gmp.h

@ -0,0 +1,346 @@
// Copyright (c) 2013 Pieter Wuille
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef _SECP256K1_NUM_REPR_IMPL_H_
#define _SECP256K1_NUM_REPR_IMPL_H_
#include <assert.h>
#include <string.h>
#include <stdlib.h>
#include <gmp.h>
#include "num.h"
#ifdef VERIFY
void static secp256k1_num_sanity(const secp256k1_num_t *a) {
assert(a->limbs == 1 || (a->limbs > 1 && a->data[a->limbs-1] != 0));
}
#else
#define secp256k1_num_sanity(a) do { } while(0)
#endif
void static secp256k1_num_init(secp256k1_num_t *r) {
r->neg = 0;
r->limbs = 1;
r->data[0] = 0;
}
void static secp256k1_num_free(secp256k1_num_t *r) {
}
void static secp256k1_num_copy(secp256k1_num_t *r, const secp256k1_num_t *a) {
*r = *a;
}
int static secp256k1_num_bits(const secp256k1_num_t *a) {
int ret=(a->limbs-1)*GMP_NUMB_BITS;
mp_limb_t x=a->data[a->limbs-1];
while (x) {
x >>= 1;
ret++;
}
return ret;
}
void static secp256k1_num_get_bin(unsigned char *r, unsigned int rlen, const secp256k1_num_t *a) {
unsigned char tmp[65];
int len = 0;
if (a->limbs>1 || a->data[0] != 0) {
len = mpn_get_str(tmp, 256, (mp_limb_t*)a->data, a->limbs);
}
int shift = 0;
while (shift < len && tmp[shift] == 0) shift++;
assert(len-shift <= rlen);
memset(r, 0, rlen - len + shift);
if (len > shift)
memcpy(r + rlen - len + shift, tmp + shift, len - shift);
}
void static secp256k1_num_set_bin(secp256k1_num_t *r, const unsigned char *a, unsigned int alen) {
assert(alen > 0);
assert(alen <= 64);
int len = mpn_set_str(r->data, a, alen, 256);
assert(len <= NUM_LIMBS*2);
r->limbs = len;
r->neg = 0;
while (r->limbs > 1 && r->data[r->limbs-1]==0) r->limbs--;
}
void static secp256k1_num_set_int(secp256k1_num_t *r, int a) {
r->limbs = 1;
r->neg = (a < 0);
r->data[0] = (a < 0) ? -a : a;
}
void static secp256k1_num_add_abs(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) {
mp_limb_t c = mpn_add(r->data, a->data, a->limbs, b->data, b->limbs);
r->limbs = a->limbs;
if (c != 0) {
assert(r->limbs < 2*NUM_LIMBS);
r->data[r->limbs++] = c;
}
}
void static secp256k1_num_sub_abs(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) {
mp_limb_t c = mpn_sub(r->data, a->data, a->limbs, b->data, b->limbs);
assert(c == 0);
r->limbs = a->limbs;
while (r->limbs > 1 && r->data[r->limbs-1]==0) r->limbs--;
}
void static secp256k1_num_mod(secp256k1_num_t *r, const secp256k1_num_t *m) {
secp256k1_num_sanity(r);
secp256k1_num_sanity(m);
if (r->limbs >= m->limbs) {
mp_limb_t t[2*NUM_LIMBS];
mpn_tdiv_qr(t, r->data, 0, r->data, r->limbs, m->data, m->limbs);
r->limbs = m->limbs;
while (r->limbs > 1 && r->data[r->limbs-1]==0) r->limbs--;
}
if (r->neg && (r->limbs > 1 || r->data[0] != 0)) {
secp256k1_num_sub_abs(r, m, r);
r->neg = 0;
}
}
void static secp256k1_num_mod_inverse(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *m) {
secp256k1_num_sanity(a);
secp256k1_num_sanity(m);
// mpn_gcdext computes: (G,S) = gcdext(U,V), where
// * G = gcd(U,V)
// * G = U*S + V*T
// * U has equal or more limbs than V, and V has no padding
// If we set U to be (a padded version of) a, and V = m:
// G = a*S + m*T
// G = a*S mod m
// Assuming G=1:
// S = 1/a mod m
assert(m->limbs <= NUM_LIMBS);
assert(m->data[m->limbs-1] != 0);
mp_limb_t g[NUM_LIMBS+1];
mp_limb_t u[NUM_LIMBS+1];
mp_limb_t v[NUM_LIMBS+1];
for (int i=0; i < m->limbs; i++) {
u[i] = (i < a->limbs) ? a->data[i] : 0;
v[i] = m->data[i];
}
mp_size_t sn = NUM_LIMBS+1;
mp_size_t gn = mpn_gcdext(g, r->data, &sn, u, m->limbs, v, m->limbs);
assert(gn == 1);
assert(g[0] == 1);
r->neg = a->neg ^ m->neg;
if (sn < 0) {
mpn_sub(r->data, m->data, m->limbs, r->data, -sn);
r->limbs = m->limbs;
while (r->limbs > 1 && r->data[r->limbs-1]==0) r->limbs--;
} else {
r->limbs = sn;
}
}
int static secp256k1_num_is_zero(const secp256k1_num_t *a) {
return (a->limbs == 1 && a->data[0] == 0);
}
int static secp256k1_num_is_odd(const secp256k1_num_t *a) {
return a->data[0] & 1;
}
int static secp256k1_num_is_neg(const secp256k1_num_t *a) {
return (a->limbs > 1 || a->data[0] != 0) && a->neg;
}
int static secp256k1_num_cmp(const secp256k1_num_t *a, const secp256k1_num_t *b) {
if (a->limbs > b->limbs) return 1;
if (a->limbs < b->limbs) return -1;
return mpn_cmp(a->data, b->data, a->limbs);
}
void static secp256k1_num_subadd(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b, int bneg) {
if (!(b->neg ^ bneg ^ a->neg)) { // a and b have the same sign
r->neg = a->neg;
if (a->limbs >= b->limbs) {
secp256k1_num_add_abs(r, a, b);
} else {
secp256k1_num_add_abs(r, b, a);
}
} else {
if (secp256k1_num_cmp(a, b) > 0) {
r->neg = a->neg;
secp256k1_num_sub_abs(r, a, b);
} else {
r->neg = b->neg ^ bneg;
secp256k1_num_sub_abs(r, b, a);
}
}
}
void static secp256k1_num_add(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) {
secp256k1_num_sanity(a);
secp256k1_num_sanity(b);
secp256k1_num_subadd(r, a, b, 0);
}
void static secp256k1_num_sub(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) {
secp256k1_num_sanity(a);
secp256k1_num_sanity(b);
secp256k1_num_subadd(r, a, b, 1);
}
void static secp256k1_num_mul(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) {
secp256k1_num_sanity(a);
secp256k1_num_sanity(b);
mp_limb_t tmp[2*NUM_LIMBS+1];
assert(a->limbs + b->limbs <= 2*NUM_LIMBS+1);
if ((a->limbs==1 && a->data[0]==0) || (b->limbs==1 && b->data[0]==0)) {
r->limbs = 1;
r->neg = 0;
r->data[0] = 0;
return;
}
if (a->limbs >= b->limbs)
mpn_mul(tmp, a->data, a->limbs, b->data, b->limbs);
else
mpn_mul(tmp, b->data, b->limbs, a->data, a->limbs);
r->limbs = a->limbs + b->limbs;
if (r->limbs > 1 && tmp[r->limbs - 1]==0) r->limbs--;
assert(r->limbs <= 2*NUM_LIMBS);
mpn_copyi(r->data, tmp, r->limbs);
r->neg = a->neg ^ b->neg;
}
void static secp256k1_num_div(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) {
secp256k1_num_sanity(a);
secp256k1_num_sanity(b);
if (b->limbs > a->limbs) {
r->limbs = 1;
r->data[0] = 0;
r->neg = 0;
return;
}
mp_limb_t quo[2*NUM_LIMBS+1];
mp_limb_t rem[2*NUM_LIMBS+1];
mpn_tdiv_qr(quo, rem, 0, a->data, a->limbs, b->data, b->limbs);
mpn_copyi(r->data, quo, a->limbs - b->limbs + 1);
r->limbs = a->limbs - b->limbs + 1;
while (r->limbs > 1 && r->data[r->limbs - 1]==0) r->limbs--;
r->neg = a->neg ^ b->neg;
}
void static secp256k1_num_mod_mul(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b, const secp256k1_num_t *m) {
secp256k1_num_mul(r, a, b);
secp256k1_num_mod(r, m);
}
int static secp256k1_num_shift(secp256k1_num_t *r, int bits) {
assert(bits <= GMP_NUMB_BITS);
mp_limb_t ret = mpn_rshift(r->data, r->data, r->limbs, bits);
if (r->limbs>1 && r->data[r->limbs-1]==0) r->limbs--;
ret >>= (GMP_NUMB_BITS - bits);
return ret;
}
int static secp256k1_num_get_bit(const secp256k1_num_t *a, int pos) {
return (a->limbs*GMP_NUMB_BITS > pos) && ((a->data[pos/GMP_NUMB_BITS] >> (pos % GMP_NUMB_BITS)) & 1);
}
void static secp256k1_num_inc(secp256k1_num_t *r) {
mp_limb_t ret = mpn_add_1(r->data, r->data, r->limbs, (mp_limb_t)1);
if (ret) {
assert(r->limbs < 2*NUM_LIMBS);
r->data[r->limbs++] = ret;
}
}
void static secp256k1_num_set_hex(secp256k1_num_t *r, const char *a, int alen) {
static const unsigned char cvt[256] = {
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 1, 2, 3, 4, 5, 6,7,8,9,0,0,0,0,0,0,
0,10,11,12,13,14,15,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0,10,11,12,13,14,15,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0
};
char num[257] = {};
for (int i=0; i<alen; i++) {
num[i] = cvt[a[i]];
}
r->limbs = mpn_set_str(r->data, num, alen, 16);
while (r->limbs > 1 && r->data[r->limbs-1] == 0) r->limbs--;
}
void static secp256k1_num_get_hex(char *r, int rlen, const secp256k1_num_t *a) {
static const unsigned char cvt[16] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'};
unsigned char *tmp = malloc(257);
mp_size_t len = mpn_get_str(tmp, 16, (mp_limb_t*)a->data, a->limbs);
assert(len <= rlen);
for (int i=0; i<len; i++) {
assert(rlen-len+i >= 0);
assert(rlen-len+i < rlen);
assert(tmp[i] >= 0);
assert(tmp[i] < 16);
r[rlen-len+i] = cvt[tmp[i]];
}
for (int i=0; i<rlen-len; i++) {
assert(i >= 0);
assert(i < rlen);
r[i] = cvt[0];
}
free(tmp);
}
void static secp256k1_num_split(secp256k1_num_t *rl, secp256k1_num_t *rh, const secp256k1_num_t *a, int bits) {
assert(bits > 0);
rh->neg = a->neg;
if (bits >= a->limbs * GMP_NUMB_BITS) {
*rl = *a;
rh->limbs = 1;
rh->data[0] = 0;
return;
}
rl->limbs = 0;
rl->neg = a->neg;
int left = bits;
while (left >= GMP_NUMB_BITS) {
rl->data[rl->limbs] = a->data[rl->limbs];
rl->limbs++;
left -= GMP_NUMB_BITS;
}
if (left == 0) {
mpn_copyi(rh->data, a->data + rl->limbs, a->limbs - rl->limbs);
rh->limbs = a->limbs - rl->limbs;
} else {
mpn_rshift(rh->data, a->data + rl->limbs, a->limbs - rl->limbs, left);
rh->limbs = a->limbs - rl->limbs;
while (rh->limbs>1 && rh->data[rh->limbs-1]==0) rh->limbs--;
}
if (left > 0) {
rl->data[rl->limbs] = a->data[rl->limbs] & ((((mp_limb_t)1) << left) - 1);
rl->limbs++;
}
while (rl->limbs>1 && rl->data[rl->limbs-1]==0) rl->limbs--;
}
void static secp256k1_num_negate(secp256k1_num_t *r) {
r->neg ^= 1;
}
#endif

145
secp256k1/impl/num_openssl.h

@ -0,0 +1,145 @@
// Copyright (c) 2013 Pieter Wuille
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef _SECP256K1_NUM_REPR_IMPL_H_
#define _SECP256K1_NUM_REPR_IMPL_H_
#include <assert.h>
#include <string.h>
#include <stdlib.h>
#include <openssl/bn.h>
#include <openssl/crypto.h>
#include "../num.h"
void static secp256k1_num_init(secp256k1_num_t *r) {
BN_init(&r->bn);
}
void static secp256k1_num_free(secp256k1_num_t *r) {
BN_free(&r->bn);
}
void static secp256k1_num_copy(secp256k1_num_t *r, const secp256k1_num_t *a) {
BN_copy(&r->bn, &a->bn);
}
void static secp256k1_num_get_bin(unsigned char *r, unsigned int rlen, const secp256k1_num_t *a) {
unsigned int size = BN_num_bytes(&a->bn);
assert(size <= rlen);
memset(r,0,rlen);
BN_bn2bin(&a->bn, r + rlen - size);
}
void static secp256k1_num_set_bin(secp256k1_num_t *r, const unsigned char *a, unsigned int alen) {
BN_bin2bn(a, alen, &r->bn);
}
void static secp256k1_num_set_int(secp256k1_num_t *r, int a) {
BN_set_word(&r->bn, a < 0 ? -a : a);
BN_set_negative(&r->bn, a < 0);
}
void static secp256k1_num_mod_inverse(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *m) {
BN_CTX *ctx = BN_CTX_new();
BN_mod_inverse(&r->bn, &a->bn, &m->bn, ctx);
BN_CTX_free(ctx);
}
void static secp256k1_num_mod_mul(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b, const secp256k1_num_t *m) {
BN_CTX *ctx = BN_CTX_new();
BN_mod_mul(&r->bn, &a->bn, &b->bn, &m->bn, ctx);
BN_CTX_free(ctx);
}
int static secp256k1_num_cmp(const secp256k1_num_t *a, const secp256k1_num_t *b) {
return BN_cmp(&a->bn, &b->bn);
}
void static secp256k1_num_add(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) {
BN_add(&r->bn, &a->bn, &b->bn);
}
void static secp256k1_num_sub(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) {
BN_sub(&r->bn, &a->bn, &b->bn);
}
void static secp256k1_num_mul(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) {
BN_CTX *ctx = BN_CTX_new();
BN_mul(&r->bn, &a->bn, &b->bn, ctx);
BN_CTX_free(ctx);
}
void static secp256k1_num_div(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) {
BN_CTX *ctx = BN_CTX_new();
BN_div(&r->bn, NULL, &a->bn, &b->bn, ctx);
BN_CTX_free(ctx);
}
void static secp256k1_num_mod(secp256k1_num_t *r, const secp256k1_num_t *m) {
BN_CTX *ctx = BN_CTX_new();
BN_nnmod(&r->bn, &r->bn, &m->bn, ctx);
BN_CTX_free(ctx);
}
int static secp256k1_num_bits(const secp256k1_num_t *a) {
return BN_num_bits(&a->bn);
}
int static secp256k1_num_shift(secp256k1_num_t *r, int bits) {
int ret = BN_is_zero(&r->bn) ? 0 : r->bn.d[0] & ((1 << bits) - 1);
BN_rshift(&r->bn, &r->bn, bits);
return ret;
}
int static secp256k1_num_is_zero(const secp256k1_num_t *a) {
return BN_is_zero(&a->bn);
}
int static secp256k1_num_is_odd(const secp256k1_num_t *a) {
return BN_is_odd(&a->bn);
}
int static secp256k1_num_is_neg(const secp256k1_num_t *a) {
return BN_is_negative(&a->bn);
}
int static secp256k1_num_get_bit(const secp256k1_num_t *a, int pos) {
return BN_is_bit_set(&a->bn, pos);
}
void static secp256k1_num_inc(secp256k1_num_t *r) {
BN_add_word(&r->bn, 1);
}
void static secp256k1_num_set_hex(secp256k1_num_t *r, const char *a, int alen) {
char *str = (char*)malloc(alen+1);
memcpy(str, a, alen);
str[alen] = 0;
BIGNUM *pbn = &r->bn;
BN_hex2bn(&pbn, str);
free(str);
}
void static secp256k1_num_get_hex(char *r, int rlen, const secp256k1_num_t *a) {
char *str = BN_bn2hex(&a->bn);
int len = strlen(str);
assert(rlen >= len);
for (int i=0; i<rlen-len; i++)
r[i] = '0';
memcpy(r+rlen-len, str, len);
OPENSSL_free(str);
}
void static secp256k1_num_split(secp256k1_num_t *rl, secp256k1_num_t *rh, const secp256k1_num_t *a, int bits) {
BN_copy(&rl->bn, &a->bn);
BN_rshift(&rh->bn, &a->bn, bits);
BN_mask_bits(&rl->bn, bits);
}
void static secp256k1_num_negate(secp256k1_num_t *r) {
BN_set_negative(&r->bn, !BN_is_negative(&r->bn));
}
#endif

45
secp256k1/impl/util.h

@ -0,0 +1,45 @@
// Copyright (c) 2013 Pieter Wuille
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef _SECP256K1_UTIL_IMPL_H_
#define _SECP256K1_UTIL_IMPL_H_
#include <stdint.h>
#include <string.h>
#include "../util.h"
static inline uint32_t secp256k1_rand32(void) {
static uint32_t Rz = 11, Rw = 11;
Rz = 36969 * (Rz & 0xFFFF) + (Rz >> 16);
Rw = 18000 * (Rw & 0xFFFF) + (Rw >> 16);
return (Rw << 16) + (Rw >> 16) + Rz;
}
static void secp256k1_rand256(unsigned char *b32) {
for (int i=0; i<8; i++) {
uint32_t r = secp256k1_rand32();
b32[i*4 + 0] = (r >> 0) & 0xFF;
b32[i*4 + 1] = (r >> 8) & 0xFF;
b32[i*4 + 2] = (r >> 16) & 0xFF;
b32[i*4 + 3] = (r >> 24) & 0xFF;
}
}
static void secp256k1_rand256_test(unsigned char *b32) {
int bits=0;
memset(b32, 0, 32);
while (bits < 256) {
uint32_t ent = secp256k1_rand32();
int now = 1 + ((ent % 64)*((ent >> 6) % 32)+16)/31;
uint32_t val = 1 & (ent >> 11);
while (now > 0 && bits < 256) {
b32[bits / 8] |= val << (bits % 8);
now--;
bits++;
}
}
}
#endif

93
secp256k1/num.h

@ -0,0 +1,93 @@
// Copyright (c) 2013 Pieter Wuille
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef _SECP256K1_NUM_
#define _SECP256K1_NUM_
#if defined(USE_NUM_GMP)
#include "num_gmp.h"
#elif defined(USE_NUM_OPENSSL)
#include "num_openssl.h"
#else
#error "Please select num implementation"
#endif
/** Initialize a number. */
void static secp256k1_num_init(secp256k1_num_t *r);
/** Free a number. */
void static secp256k1_num_free(secp256k1_num_t *r);
/** Copy a number. */
void static secp256k1_num_copy(secp256k1_num_t *r, const secp256k1_num_t *a);
/** Convert a number's absolute value to a binary big-endian string.
* There must be enough place. */
void static secp256k1_num_get_bin(unsigned char *r, unsigned int rlen, const secp256k1_num_t *a);
/** Set a number to the value of a binary big-endian string. */
void static secp256k1_num_set_bin(secp256k1_num_t *r, const unsigned char *a, unsigned int alen);
/** Set a number equal to a (signed) integer. */
void static secp256k1_num_set_int(secp256k1_num_t *r, int a);
/** Compute a modular inverse. The input must be less than the modulus. */
void static secp256k1_num_mod_inverse(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *m);
/** Multiply two numbers modulo another. */
void static secp256k1_num_mod_mul(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b, const secp256k1_num_t *m);
/** Compare the absolute value of two numbers. */
int static secp256k1_num_cmp(const secp256k1_num_t *a, const secp256k1_num_t *b);
/** Add two (signed) numbers. */
void static secp256k1_num_add(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b);
/** Subtract two (signed) numbers. */
void static secp256k1_num_sub(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b);
/** Multiply two (signed) numbers. */
void static secp256k1_num_mul(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b);
/** Divide two (signed) numbers. */
void static secp256k1_num_div(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b);
/** Replace a number by its remainder modulo m. M's sign is ignored. The result is a number between 0 and m-1,
even if r was negative. */
void static secp256k1_num_mod(secp256k1_num_t *r, const secp256k1_num_t *m);
/** Calculate the number of bits in (the absolute value of) a number. */
int static secp256k1_num_bits(const secp256k1_num_t *a);
/** Right-shift the passed number by bits bits, and return those bits. */
int static secp256k1_num_shift(secp256k1_num_t *r, int bits);
/** Check whether a number is zero. */
int static secp256k1_num_is_zero(const secp256k1_num_t *a);
/** Check whether a number is odd. */
int static secp256k1_num_is_odd(const secp256k1_num_t *a);
/** Check whether a number is strictly negative. */
int static secp256k1_num_is_neg(const secp256k1_num_t *a);
/** Check whether a particular bit is set in a number. */
int static secp256k1_num_get_bit(const secp256k1_num_t *a, int pos);
/** Increase a number by 1. */
void static secp256k1_num_inc(secp256k1_num_t *r);
/** Set a number equal to the value of a hex string (unsigned). */
void static secp256k1_num_set_hex(secp256k1_num_t *r, const char *a, int alen);
/** Convert (the absolute value of) a number to a hexadecimal string. */
void static secp256k1_num_get_hex(char *r, int rlen, const secp256k1_num_t *a);
/** Split a number into a low and high part. */
void static secp256k1_num_split(secp256k1_num_t *rl, secp256k1_num_t *rh, const secp256k1_num_t *a, int bits);
/** Change a number's sign. */
void static secp256k1_num_negate(secp256k1_num_t *r);
#endif

18
secp256k1/num_gmp.h

@ -0,0 +1,18 @@
// Copyright (c) 2013 Pieter Wuille
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef _SECP256K1_NUM_REPR_
#define _SECP256K1_NUM_REPR_
#include <gmp.h>
#define NUM_LIMBS ((256+GMP_NUMB_BITS-1)/GMP_NUMB_BITS)
typedef struct {
mp_limb_t data[2*NUM_LIMBS];
int neg;
int limbs;
} secp256k1_num_t;
#endif

14
secp256k1/num_openssl.h

@ -0,0 +1,14 @@
// Copyright (c) 2013 Pieter Wuille
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef _SECP256K1_NUM_REPR_
#define _SECP256K1_NUM_REPR_
#include <openssl/bn.h>
typedef struct {
BIGNUM bn;
} secp256k1_num_t;
#endif

269
secp256k1/secp256k1.c

@ -0,0 +1,269 @@
// Copyright (c) 2013 Pieter Wuille
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "impl/num.h"
#include "impl/field.h"
#include "impl/group.h"
#include "impl/ecmult.h"
#include "impl/ecdsa.h"
void secp256k1_start(void) {
secp256k1_fe_start();
secp256k1_ge_start();
secp256k1_ecmult_start();
}
void secp256k1_stop(void) {
secp256k1_ecmult_stop();
secp256k1_ge_stop();
secp256k1_fe_stop();
}
int secp256k1_ecdsa_verify(const unsigned char *msg, int msglen, const unsigned char *sig, int siglen, const unsigned char *pubkey, int pubkeylen) {
int ret = -3;
secp256k1_num_t m;
secp256k1_num_init(&m);
secp256k1_ecdsa_sig_t s;
secp256k1_ecdsa_sig_init(&s);
secp256k1_ge_t q;
secp256k1_num_set_bin(&m, msg, msglen);
if (!secp256k1_ecdsa_pubkey_parse(&q, pubkey, pubkeylen)) {
ret = -1;
goto end;
}
if (!secp256k1_ecdsa_sig_parse(&s, sig, siglen)) {
ret = -2;
goto end;
}
if (!secp256k1_ecdsa_sig_verify(&s, &q, &m)) {
ret = 0;
goto end;
}
ret = 1;
end:
secp256k1_ecdsa_sig_free(&s);
secp256k1_num_free(&m);
return ret;
}
int secp256k1_ecdsa_sign(const unsigned char *message, int messagelen, unsigned char *signature, int *signaturelen, const unsigned char *seckey, const unsigned char *nonce) {
secp256k1_num_t sec, non, msg;
secp256k1_num_init(&sec);
secp256k1_num_init(&non);
secp256k1_num_init(&msg);
secp256k1_num_set_bin(&sec, seckey, 32);
secp256k1_num_set_bin(&non, nonce, 32);
secp256k1_num_set_bin(&msg, message, messagelen);
secp256k1_ecdsa_sig_t sig;
secp256k1_ecdsa_sig_init(&sig);
int ret = secp256k1_ecdsa_sig_sign(&sig, &sec, &msg, &non, NULL);
if (ret) {
secp256k1_ecdsa_sig_serialize(signature, signaturelen, &sig);
}
secp256k1_ecdsa_sig_free(&sig);
secp256k1_num_free(&msg);
secp256k1_num_free(&non);
secp256k1_num_free(&sec);
return ret;
}
int secp256k1_ecdsa_sign_compact(const unsigned char *message, int messagelen, unsigned char *sig64, const unsigned char *seckey, const unsigned char *nonce, int *recid) {
secp256k1_num_t sec, non, msg;
secp256k1_num_init(&sec);
secp256k1_num_init(&non);
secp256k1_num_init(&msg);
secp256k1_num_set_bin(&sec, seckey, 32);
secp256k1_num_set_bin(&non, nonce, 32);
secp256k1_num_set_bin(&msg, message, messagelen);
secp256k1_ecdsa_sig_t sig;
secp256k1_ecdsa_sig_init(&sig);
int ret = secp256k1_ecdsa_sig_sign(&sig, &sec, &msg, &non, recid);
if (ret) {
secp256k1_num_get_bin(sig64, 32, &sig.r);
secp256k1_num_get_bin(sig64 + 32, 32, &sig.s);
}
secp256k1_ecdsa_sig_free(&sig);
secp256k1_num_free(&msg);
secp256k1_num_free(&non);
secp256k1_num_free(&sec);
return ret;
}
int secp256k1_ecdsa_recover_compact(const unsigned char *msg, int msglen, const unsigned char *sig64, unsigned char *pubkey, int *pubkeylen, int compressed, int recid) {
int ret = 0;
secp256k1_num_t m;
secp256k1_num_init(&m);
secp256k1_ecdsa_sig_t sig;
secp256k1_ecdsa_sig_init(&sig);
secp256k1_num_set_bin(&sig.r, sig64, 32);
secp256k1_num_set_bin(&sig.s, sig64 + 32, 32);
secp256k1_num_set_bin(&m, msg, msglen);
secp256k1_ge_t q;
if (secp256k1_ecdsa_sig_recover(&sig, &q, &m, recid)) {
secp256k1_ecdsa_pubkey_serialize(&q, pubkey, pubkeylen, compressed);
ret = 1;
}
secp256k1_ecdsa_sig_free(&sig);
secp256k1_num_free(&m);
return ret;
}
int secp256k1_ecdsa_seckey_verify(const unsigned char *seckey) {
secp256k1_num_t sec;
secp256k1_num_init(&sec);
secp256k1_num_set_bin(&sec, seckey, 32);
int ret = !secp256k1_num_is_zero(&sec) &&
(secp256k1_num_cmp(&sec, &secp256k1_ge_consts->order) < 0);
secp256k1_num_free(&sec);
return ret;
}
int secp256k1_ecdsa_pubkey_verify(const unsigned char *pubkey, int pubkeylen) {
secp256k1_ge_t q;
return secp256k1_ecdsa_pubkey_parse(&q, pubkey, pubkeylen);
}
int secp256k1_ecdsa_pubkey_create(unsigned char *pubkey, int *pubkeylen, const unsigned char *seckey, int compressed) {
secp256k1_num_t sec;
secp256k1_num_init(&sec);
secp256k1_num_set_bin(&sec, seckey, 32);
secp256k1_gej_t pj;
secp256k1_ecmult_gen(&pj, &sec);
secp256k1_ge_t p;
secp256k1_ge_set_gej(&p, &pj);
secp256k1_ecdsa_pubkey_serialize(&p, pubkey, pubkeylen, compressed);
return 1;
}
int secp256k1_ecdsa_pubkey_decompress(unsigned char *pubkey, int *pubkeylen) {
secp256k1_ge_t p;
if (!secp256k1_ecdsa_pubkey_parse(&p, pubkey, *pubkeylen))
return 0;
secp256k1_ecdsa_pubkey_serialize(&p, pubkey, pubkeylen, 0);
return 1;
}
int secp256k1_ecdsa_privkey_tweak_add(unsigned char *seckey, const unsigned char *tweak) {
int ret = 1;
secp256k1_num_t term;
secp256k1_num_init(&term);
secp256k1_num_set_bin(&term, tweak, 32);
if (secp256k1_num_cmp(&term, &secp256k1_ge_consts->order) >= 0)
ret = 0;
secp256k1_num_t sec;
secp256k1_num_init(&sec);
if (ret) {
secp256k1_num_set_bin(&sec, seckey, 32);
secp256k1_num_add(&sec, &sec, &term);
secp256k1_num_mod(&sec, &secp256k1_ge_consts->order);
if (secp256k1_num_is_zero(&sec))
ret = 0;
}
if (ret)
secp256k1_num_get_bin(seckey, 32, &sec);
secp256k1_num_free(&sec);
secp256k1_num_free(&term);
return ret;
}
int secp256k1_ecdsa_pubkey_tweak_add(unsigned char *pubkey, int pubkeylen, const unsigned char *tweak) {
int ret = 1;
secp256k1_num_t term;
secp256k1_num_init(&term);
secp256k1_num_set_bin(&term, tweak, 32);
if (secp256k1_num_cmp(&term, &secp256k1_ge_consts->order) >= 0)
ret = 0;
secp256k1_ge_t p;
if (ret) {
if (!secp256k1_ecdsa_pubkey_parse(&p, pubkey, pubkeylen))
ret = 0;
}
if (ret) {
secp256k1_gej_t pt;
secp256k1_ecmult_gen(&pt, &term);
secp256k1_gej_add_ge(&pt, &pt, &p);
if (secp256k1_gej_is_infinity(&pt))
ret = 0;
secp256k1_ge_set_gej(&p, &pt);
int oldlen = pubkeylen;
secp256k1_ecdsa_pubkey_serialize(&p, pubkey, &pubkeylen, oldlen <= 33);
assert(pubkeylen == oldlen);
}
secp256k1_num_free(&term);
return ret;
}
int secp256k1_ecdsa_privkey_tweak_mul(unsigned char *seckey, const unsigned char *tweak) {
int ret = 1;
secp256k1_num_t factor;
secp256k1_num_init(&factor);
secp256k1_num_set_bin(&factor, tweak, 32);
if (secp256k1_num_is_zero(&factor))
ret = 0;
if (secp256k1_num_cmp(&factor, &secp256k1_ge_consts->order) >= 0)
ret = 0;
secp256k1_num_t sec;
secp256k1_num_init(&sec);
if (ret) {
secp256k1_num_set_bin(&sec, seckey, 32);
secp256k1_num_mod_mul(&sec, &sec, &factor, &secp256k1_ge_consts->order);
}
if (ret)
secp256k1_num_get_bin(seckey, 32, &sec);
secp256k1_num_free(&sec);
secp256k1_num_free(&factor);
return ret;
}
int secp256k1_ecdsa_pubkey_tweak_mul(unsigned char *pubkey, int pubkeylen, const unsigned char *tweak) {
int ret = 1;
secp256k1_num_t factor;
secp256k1_num_init(&factor);
secp256k1_num_set_bin(&factor, tweak, 32);
if (secp256k1_num_is_zero(&factor))
ret = 0;
if (secp256k1_num_cmp(&factor, &secp256k1_ge_consts->order) >= 0)
ret = 0;
secp256k1_ge_t p;
if (ret) {
if (!secp256k1_ecdsa_pubkey_parse(&p, pubkey, pubkeylen))
ret = 0;
}
if (ret) {
secp256k1_num_t zero;
secp256k1_num_init(&zero);
secp256k1_num_set_int(&zero, 0);
secp256k1_gej_t pt;
secp256k1_gej_set_ge(&pt, &p);
secp256k1_ecmult(&pt, &pt, &factor, &zero);
secp256k1_num_free(&zero);
secp256k1_ge_set_gej(&p, &pt);
int oldlen = pubkeylen;
secp256k1_ecdsa_pubkey_serialize(&p, pubkey, &pubkeylen, oldlen <= 33);
assert(pubkeylen == oldlen);
}
secp256k1_num_free(&factor);
return ret;
}
int secp256k1_ecdsa_privkey_export(const unsigned char *seckey, unsigned char *privkey, int *privkeylen, int compressed) {
secp256k1_num_t key;
secp256k1_num_init(&key);
secp256k1_num_set_bin(&key, seckey, 32);
int ret = secp256k1_ecdsa_privkey_serialize(privkey, privkeylen, &key, compressed);
secp256k1_num_free(&key);
return ret;
}
int secp256k1_ecdsa_privkey_import(unsigned char *seckey, const unsigned char *privkey, int privkeylen) {
secp256k1_num_t key;
secp256k1_num_init(&key);
int ret = secp256k1_ecdsa_privkey_parse(&key, privkey, privkeylen);
if (ret)
secp256k1_num_get_bin(seckey, 32, &key);
secp256k1_num_free(&key);
return ret;
}

121
secp256k1/secp256k1.h

@ -0,0 +1,121 @@
#ifndef _SECP256K1_
#define _SECP256K1_
#ifdef __cplusplus
extern "C" {
#endif
/** Initialize the library. This may take some time (10-100 ms).
* You need to call this before calling any other function.
* It cannot run in parallel with any other functions, but once
* secp256k1_start() returns, all other functions are thread-safe.
*/
void secp256k1_start(void);
/** Free all memory associated with this library. After this, no
* functions can be called anymore, except secp256k1_start()
*/
void secp256k1_stop(void);
/** Verify an ECDSA signature.
* Returns: 1: correct signature
* 0: incorrect signature
* -1: invalid public key
* -2: invalid signature
*/
int secp256k1_ecdsa_verify(const unsigned char *msg, int msglen,
const unsigned char *sig, int siglen,
const unsigned char *pubkey, int pubkeylen);
/** Create an ECDSA signature.
* Returns: 1: signature created
* 0: nonce invalid, try another one
* In: msg: the message being signed
* msglen: the length of the message being signed
* seckey: pointer to a 32-byte secret key (assumed to be valid)
* nonce: pointer to a 32-byte nonce (generated with a cryptographic PRNG)
* Out: sig: pointer to a 72-byte array where the signature will be placed.
* siglen: pointer to an int, which will be updated to the signature length (<=72).
*/
int secp256k1_ecdsa_sign(const unsigned char *msg, int msglen,
unsigned char *sig, int *siglen,
const unsigned char *seckey,
const unsigned char *nonce);
/** Create a compact ECDSA signature (64 byte + recovery id).
* Returns: 1: signature created
* 0: nonce invalid, try another one
* In: msg: the message being signed
* msglen: the length of the message being signed
* seckey: pointer to a 32-byte secret key (assumed to be valid)
* nonce: pointer to a 32-byte nonce (generated with a cryptographic PRNG)
* Out: sig: pointer to a 64-byte array where the signature will be placed.
* recid: pointer to an int, which will be updated to contain the recovery id.
*/
int secp256k1_ecdsa_sign_compact(const unsigned char *msg, int msglen,
unsigned char *sig64,
const unsigned char *seckey,
const unsigned char *nonce,
int *recid);
/** Recover an ECDSA public key from a compact signature.
* Returns: 1: public key succesfully recovered (which guarantees a correct signature).
* 0: otherwise.
* In: msg: the message assumed to be signed
* msglen: the length of the message
* sig64: signature as 64 byte array
* compressed: whether to recover a compressed or uncompressed pubkey
* recid: the recovery id (as returned by ecdsa_sign_compact)
* Out: pubkey: pointer to a 33 or 65 byte array to put the pubkey.
* pubkeylen: pointer to an int that will contain the pubkey length.
*/
int secp256k1_ecdsa_recover_compact(const unsigned char *msg, int msglen,
const unsigned char *sig64,
unsigned char *pubkey, int *pubkeylen,
int compressed, int recid);
/** Verify an ECDSA secret key.
* Returns: 1: secret key is valid
* 0: secret key is invalid
* In: seckey: pointer to a 32-byte secret key
*/
int secp256k1_ecdsa_seckey_verify(const unsigned char *seckey);
/** Just validate a public key.
* Returns: 1: valid public key
* 0: invalid public key
*/
int secp256k1_ecdsa_pubkey_verify(const unsigned char *pubkey, int pubkeylen);
/** Compute the public key for a secret key.
* In: compressed: whether the computed public key should be compressed
* seckey: pointer to a 32-byte private key.
* Out: pubkey: pointer to a 33-byte (if compressed) or 65-byte (if uncompressed)
* area to store the public key.
* pubkeylen: pointer to int that will be updated to contains the pubkey's
* length.
* Returns: 1: secret was valid, public key stores
* 0: secret was invalid, try again.
*/
int secp256k1_ecdsa_pubkey_create(unsigned char *pubkey, int *pubkeylen, const unsigned char *seckey, int compressed);
int secp256k1_ecdsa_pubkey_decompress(unsigned char *pubkey, int *pubkeylen);
int secp256k1_ecdsa_privkey_export(const unsigned char *seckey,
unsigned char *privkey, int *privkeylen,
int compressed);
int secp256k1_ecdsa_privkey_import(unsigned char *seckey,
const unsigned char *privkey, int privkeylen);
int secp256k1_ecdsa_privkey_tweak_add(unsigned char *seckey, const unsigned char *tweak);
int secp256k1_ecdsa_pubkey_tweak_add(unsigned char *pubkey, int pubkeylen, const unsigned char *tweak);
int secp256k1_ecdsa_privkey_tweak_mul(unsigned char *seckey, const unsigned char *tweak);
int secp256k1_ecdsa_pubkey_tweak_mul(unsigned char *pubkey, int pubkeylen, const unsigned char *tweak);
#ifdef __cplusplus
}
#endif
#endif

19
secp256k1/util.h

@ -0,0 +1,19 @@
// Copyright (c) 2013 Pieter Wuille
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef _SECP256K1_UTIL_H_
#define _SECP256K1_UTIL_H_
/** Generate a pseudorandom 32-bit number. */
static uint32_t secp256k1_rand32(void);
/** Generate a pseudorandom 32-byte array. */
static void secp256k1_rand256(unsigned char *b32);
/** Generate a pseudorandom 32-byte array with long sequences of zero and one bits. */
static void secp256k1_rand256_test(unsigned char *b32);
#include "impl/util.h"
#endif

1
test/CMakeLists.txt

@ -12,7 +12,6 @@ find_package(Threads REQUIRED)
target_link_libraries(testeth ethereum)
target_link_libraries(testeth miniupnpc)
target_link_libraries(testeth ${CRYPTOPP_LIBRARIES})
target_link_libraries(testeth secp256k1)
target_link_libraries(testeth gmp)
target_link_libraries(testeth boost_system)
target_link_libraries(testeth boost_filesystem)

Loading…
Cancel
Save