You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

399 lines
11 KiB

/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file Assembly.cpp
* @author Gav Wood <i@gavwood.com>
* @date 2014
*/
#include "Assembly.h"
#include <libethential/Log.h>
using namespace std;
using namespace eth;
int AssemblyItem::deposit() const
{
switch (m_type)
{
case Operation:
return c_instructionInfo.at((Instruction)(byte)m_data).ret - c_instructionInfo.at((Instruction)(byte)m_data).args;
case Push: case PushString: case PushTag: case PushData:
return 1;
case Tag:
return 0;
default:;
}
return 0;
}
unsigned Assembly::bytesRequired() const
{
for (unsigned br = 1;; ++br)
{
unsigned ret = 1;
for (auto const& i: m_data)
ret += i.second.size();
for (AssemblyItem const& i: m_items)
switch (i.m_type)
{
case Operation:
ret++;
break;
case PushString:
ret += 33;
break;
case Push:
ret += 1 + max<unsigned>(1, eth::bytesRequired(i.m_data));
break;
case PushTag:
case PushData:
ret += 1 + br;
case Tag:;
default:;
}
if (eth::bytesRequired(ret) <= br)
return ret;
}
}
void Assembly::append(Assembly const& _a)
{
auto newDeposit = m_deposit + _a.deposit();
for (AssemblyItem i: _a.m_items)
{
if (i.type() == Tag || i.type() == PushTag)
i.m_data += m_usedTags;
append(i);
}
m_deposit = newDeposit;
m_usedTags += _a.m_usedTags;
for (auto const& i: _a.m_data)
m_data.insert(i);
for (auto const& i: _a.m_strings)
m_strings.insert(i);
assert(!_a.m_baseDeposit);
assert(!_a.m_totalDeposit);
}
void Assembly::append(Assembly const& _a, int _deposit)
{
if (_deposit > _a.m_deposit)
throw InvalidDeposit();
else
{
append(_a);
while (_deposit++ < _a.m_deposit)
append(Instruction::POP);
}
}
ostream& eth::operator<<(ostream& _out, AssemblyItemsConstRef _i)
{
for (AssemblyItem const& i: _i)
switch (i.type())
{
case Operation:
_out << " " << c_instructionInfo.at((Instruction)(byte)i.data()).name;
break;
case Push:
_out << " PUSH" << i.data();
break;
case PushString:
_out << " PUSH'[" << hex << (unsigned)i.data() << "]";
break;
case PushTag:
_out << " PUSH[tag" << i.data() << "]";
break;
case Tag:
_out << " tag" << i.data() << ":";
break;
case PushData:
_out << " PUSH*[" << hex << (unsigned)i.data() << "]";
break;
case UndefinedItem:
_out << " ???";
default:;
}
return _out;
}
ostream& Assembly::streamOut(ostream& _out) const
{
_out << ".code:" << endl;
for (AssemblyItem const& i: m_items)
switch (i.m_type)
{
case Operation:
_out << " " << c_instructionInfo.at((Instruction)(byte)i.m_data).name << endl;
break;
case Push:
_out << " PUSH " << i.m_data << endl;
break;
case PushString:
_out << " PUSH \"" << m_strings.at((h256)i.m_data) << "\"" << endl;
break;
case PushTag:
_out << " PUSH [tag" << i.m_data << "]" << endl;
break;
case Tag:
_out << "tag" << i.m_data << ": " << endl;
break;
case PushData:
_out << " PUSH [" << hex << (unsigned)i.m_data << "]" << endl;
break;
default:;
}
if (m_data.size())
{
_out << ".data:" << endl;
for (auto const& i: m_data)
_out << " " << hex << (unsigned)(u256)i.first << ": " << toHex(i.second) << endl;
}
return _out;
}
AssemblyItem const& Assembly::append(AssemblyItem const& _i)
{
m_deposit += _i.deposit();
m_items.push_back(_i);
return back();
}
void Assembly::injectStart(AssemblyItem const& _i)
{
m_items.insert(m_items.begin(), _i);
}
inline bool matches(AssemblyItemsConstRef _a, AssemblyItemsConstRef _b)
{
if (_a.size() != _b.size())
return false;
for (unsigned i = 0; i < _a.size(); ++i)
if (!_a[i].match(_b[i]))
return false;
return true;
}
struct OptimiserChannel: public LogChannel { static const char* name() { return "OPT"; } static const int verbosity = 12; };
#define copt eth::LogOutputStream<OptimiserChannel, true>()
void Assembly::optimise()
{
map<Instruction, function<u256(u256, u256)>> c_simple =
{
{ Instruction::SUB, [](u256 a, u256 b)->u256{return a - b;} },
{ Instruction::DIV, [](u256 a, u256 b)->u256{return a / b;} },
{ Instruction::SDIV, [](u256 a, u256 b)->u256{return s2u(u2s(a) / u2s(b));} },
{ Instruction::MOD, [](u256 a, u256 b)->u256{return a % b;} },
{ Instruction::SMOD, [](u256 a, u256 b)->u256{return s2u(u2s(a) % u2s(b));} },
{ Instruction::EXP, [](u256 a, u256 b)->u256{return boost::multiprecision::pow(a, (unsigned)b);} },
{ Instruction::LT, [](u256 a, u256 b)->u256{return a < b ? 1 : 0;} },
{ Instruction::GT, [](u256 a, u256 b)->u256{return a > b ? 1 : 0;} },
{ Instruction::SLT, [](u256 a, u256 b)->u256{return u2s(a) < u2s(b) ? 1 : 0;} },
{ Instruction::SGT, [](u256 a, u256 b)->u256{return u2s(a) > u2s(b) ? 1 : 0;} },
{ Instruction::EQ, [](u256 a, u256 b)->u256{return a == b ? 1 : 0;} },
};
map<Instruction, function<u256(u256, u256)>> c_associative =
{
{ Instruction::ADD, [](u256 a, u256 b)->u256{return a + b;} },
{ Instruction::MUL, [](u256 a, u256 b)->u256{return a * b;} },
};
std::vector<pair<AssemblyItems, function<AssemblyItems(AssemblyItemsConstRef)>>> rules =
{
{ { Push, Instruction::POP }, [](AssemblyItemsConstRef) -> AssemblyItems { return {}; } },
{ { PushTag, Instruction::POP }, [](AssemblyItemsConstRef) -> AssemblyItems { return {}; } },
{ { PushString, Instruction::POP }, [](AssemblyItemsConstRef) -> AssemblyItems { return {}; } },
{ { Push, PushTag, Instruction::JUMPI }, [](AssemblyItemsConstRef m) -> AssemblyItems { if (m[0].data()) return { m[1], Instruction::JUMP }; else return {}; } },
{ { Instruction::NOT, Instruction::NOT }, [](AssemblyItemsConstRef) -> AssemblyItems { return {}; } },
};
for (auto const& i: c_simple)
rules.push_back({ { Push, Push, i.first }, [&](AssemblyItemsConstRef m) -> AssemblyItems { return { i.second(m[1].data(), m[0].data()) }; } });
for (auto const& i: c_associative)
{
rules.push_back({ { Push, Push, i.first }, [&](AssemblyItemsConstRef m) -> AssemblyItems { return { i.second(m[1].data(), m[0].data()) }; } });
rules.push_back({ { Push, i.first, Push, i.first }, [&](AssemblyItemsConstRef m) -> AssemblyItems { return { i.second(m[2].data(), m[0].data()), i.first }; } });
rules.push_back({ { PushTag, Instruction::JUMP, Tag }, [&](AssemblyItemsConstRef m) -> AssemblyItems { if (m[0].m_data == m[2].m_data) return {}; else return m.toVector(); }});
}
copt << *this;
unsigned total = 0;
for (unsigned count = 1; count > 0; total += count)
{
count = 0;
map<u256, unsigned> tags;
for (unsigned i = 0; i < m_items.size(); ++i)
{
for (auto const& r: rules)
{
auto vr = AssemblyItemsConstRef(&m_items).cropped(i, r.first.size());
if (matches(&r.first, vr))
{
auto rw = r.second(vr);
if (rw.size() < vr.size())
{
copt << vr << "matches" << AssemblyItemsConstRef(&r.first) << "becomes...";
for (unsigned j = 0; j < vr.size(); ++j)
if (j < rw.size())
m_items[i + j] = rw[j];
else
m_items.erase(m_items.begin() + i + rw.size());
copt << AssemblyItemsConstRef(&rw);
count++;
copt << "Now:\n" << m_items;
}
}
}
if (m_items[i].type() == Operation && m_items[i].data() == (byte)Instruction::JUMP)
{
bool o = false;
while (m_items.size() > i + 1 && m_items[i + 1].type() != Tag)
{
m_items.erase(m_items.begin() + i + 1);
o = true;
}
if (o)
{
copt << "Jump with no tag. Now:\n" << m_items;
++count;
}
}
}
for (unsigned i = 0; i < m_items.size(); ++i)
if (m_items[i].type() == Tag)
tags.insert(make_pair(m_items[i].data(), i));
for (auto const& i: m_items)
if (i.type() == PushTag)
tags.erase(i.data());
if (tags.size())
{
auto t = *tags.begin();
unsigned i = t.second;
if (i && m_items[i - 1].type() == Operation && m_items[i - 1].data() == (byte)Instruction::JUMP)
while (i < m_items.size() && (m_items[i].type() != Tag || tags.count(m_items[i].data())))
{
if (m_items[i].type() == Tag && tags.count(m_items[i].data()))
tags.erase(m_items[i].data());
m_items.erase(m_items.begin() + i);
}
else
{
m_items.erase(m_items.begin() + i);
tags.erase(t.first);
}
copt << "Unused tag. Now:\n" << m_items;
++count;
}
}
copt << total << " optimisations done.";
}
bytes Assembly::assemble() const
{
bytes ret;
unsigned totalBytes = bytesRequired();
ret.reserve(totalBytes);
vector<unsigned> tagPos(m_usedTags);
map<unsigned, unsigned> tagRef;
multimap<h256, unsigned> dataRef;
unsigned bytesPerTag = eth::bytesRequired(totalBytes);
byte tagPush = (byte)Instruction::PUSH1 - 1 + bytesPerTag;
for (AssemblyItem const& i: m_items)
switch (i.m_type)
{
case Operation:
ret.push_back((byte)i.m_data);
break;
case PushString:
{
ret.push_back((byte)Instruction::PUSH32);
unsigned ii = 0;
for (auto j: m_strings.at((h256)i.m_data))
if (++ii > 32)
break;
else
ret.push_back((byte)j);
while (ii++ < 32)
ret.push_back(0);
break;
}
case Push:
{
byte b = max<unsigned>(1, eth::bytesRequired(i.m_data));
ret.push_back((byte)Instruction::PUSH1 - 1 + b);
ret.resize(ret.size() + b);
bytesRef byr(&ret.back() + 1 - b, b);
toBigEndian(i.m_data, byr);
break;
}
case PushTag:
{
ret.push_back(tagPush);
tagRef[ret.size()] = (unsigned)i.m_data;
ret.resize(ret.size() + bytesPerTag);
break;
}
case PushData:
{
ret.push_back(tagPush);
dataRef.insert(make_pair((h256)i.m_data, ret.size()));
ret.resize(ret.size() + bytesPerTag);
break;
}
case Tag:
tagPos[(unsigned)i.m_data] = ret.size();
break;
default:;
}
for (auto const& i: tagRef)
{
bytesRef r(ret.data() + i.first, bytesPerTag);
toBigEndian(tagPos[i.second], r);
}
if (m_data.size())
{
ret.push_back(0);
for (auto const& i: m_data)
{
auto its = dataRef.equal_range(i.first);
if (its.first != its.second)
{
for (auto it = its.first; it != its.second; ++it)
{
bytesRef r(ret.data() + it->second, bytesPerTag);
toBigEndian(ret.size(), r);
}
for (auto b: i.second)
ret.push_back(b);
}
}
}
return ret;
}