You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
551 lines
15 KiB
551 lines
15 KiB
9 years ago
|
#define _GNU_SOURCE 1
|
||
|
#include "secp256k1.h"
|
||
|
#include "secp256k1_ecdh.h"
|
||
|
#include <openssl/hmac.h>
|
||
|
#include <openssl/evp.h>
|
||
|
#include <openssl/aes.h>
|
||
|
#include <string.h>
|
||
|
#include <unistd.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <err.h>
|
||
|
#include <stdbool.h>
|
||
|
#include <assert.h>
|
||
|
#include <ccan/tal/tal.h>
|
||
|
#include <ccan/mem/mem.h>
|
||
|
#include <ccan/crypto/sha256/sha256.h>
|
||
|
|
||
|
/*
|
||
|
* The client knows the server's public key S (which has corresponding
|
||
|
private key s) in advance.
|
||
|
* The client generates an ephemeral private key r, and its corresponding
|
||
|
public key R.
|
||
|
* The client computes K = ECDH(r, S), and sends R to the server at
|
||
|
connection establishing time.
|
||
|
* The server receives R, and computes K = ECHD(R, s).
|
||
|
* Both client and server compute Kenc = SHA256(K || 0) and Kmac = SHA256(K
|
||
|
|| 1), and now send HMAC-SHA256(key=Kmac, msg=AES(key=Kenc, msg=m)) instead
|
||
|
of m, for each message.
|
||
|
*/
|
||
|
|
||
|
//#define EXPORT_FRIENDLY 1 /* No crypto! */
|
||
|
//#define NO_HMAC 1 /* No real hmac */
|
||
|
|
||
|
struct seckey {
|
||
|
struct sha256 k;
|
||
|
};
|
||
|
|
||
|
struct enckey {
|
||
|
struct sha256 k;
|
||
|
};
|
||
|
|
||
|
struct hmackey {
|
||
|
struct sha256 k;
|
||
|
};
|
||
|
|
||
|
struct iv {
|
||
|
unsigned char iv[AES_BLOCK_SIZE];
|
||
|
};
|
||
|
|
||
|
static void sha_with_seed(const unsigned char secret[32],
|
||
|
unsigned char seed,
|
||
|
struct sha256 *res)
|
||
|
{
|
||
|
struct sha256_ctx ctx;
|
||
|
|
||
|
sha256_init(&ctx);
|
||
|
sha256_update(&ctx, memcheck(secret, 32), 32);
|
||
|
sha256_u8(&ctx, seed);
|
||
|
sha256_done(&ctx, res);
|
||
|
}
|
||
|
|
||
|
static struct enckey enckey_from_secret(const unsigned char secret[32])
|
||
|
{
|
||
|
struct enckey enckey;
|
||
|
sha_with_seed(secret, 0, &enckey.k);
|
||
|
return enckey;
|
||
|
}
|
||
|
|
||
|
static struct hmackey hmackey_from_secret(const unsigned char secret[32])
|
||
|
{
|
||
|
struct hmackey hmackey;
|
||
|
sha_with_seed(secret, 1, &hmackey.k);
|
||
|
memcheck(&hmackey, 1);
|
||
|
return hmackey;
|
||
|
}
|
||
|
|
||
|
|
||
|
static struct iv iv_from_secret(const unsigned char secret[32], size_t i)
|
||
|
{
|
||
|
struct iv iv;
|
||
|
struct sha256 sha;
|
||
|
sha_with_seed(secret, 2, &sha);
|
||
|
memcpy(iv.iv, sha.u.u8, sizeof(iv.iv));
|
||
|
#ifdef EXPORT_FRIENDLY
|
||
|
iv.iv[0] = i*2;
|
||
|
#endif
|
||
|
return iv;
|
||
|
}
|
||
|
|
||
|
static struct iv pad_iv_from_secret(const unsigned char secret[32], size_t i)
|
||
|
{
|
||
|
struct iv iv;
|
||
|
struct sha256 sha;
|
||
|
sha_with_seed(secret, 3, &sha);
|
||
|
memcpy(iv.iv, sha.u.u8, sizeof(iv.iv));
|
||
|
#ifdef EXPORT_FRIENDLY
|
||
|
iv.iv[0] = i*2 + 1;
|
||
|
#endif
|
||
|
return iv;
|
||
|
}
|
||
|
|
||
|
/* Not really! */
|
||
|
static void random_bytes(void *dst, size_t n)
|
||
|
{
|
||
|
size_t i;
|
||
|
unsigned char *d = dst;
|
||
|
|
||
|
for (i = 0; i < n; i++)
|
||
|
d[i] = random() % 256;
|
||
|
}
|
||
|
|
||
|
static void gen_keys(secp256k1_context *ctx,
|
||
|
struct seckey *seckey, secp256k1_pubkey *pubkey)
|
||
|
{
|
||
|
do {
|
||
|
random_bytes(seckey->k.u.u8, sizeof(seckey->k));
|
||
|
} while (!secp256k1_ec_pubkey_create(ctx, pubkey, seckey->k.u.u8));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Onion routing:
|
||
|
*
|
||
|
* Each step decrypts the payload, and removes its message. It then
|
||
|
* pads at the end to keep constant size, by encrypting 0 bytes (ZPAD)
|
||
|
*
|
||
|
* You can see the result of the unwrapping here:
|
||
|
*
|
||
|
* ENC1(PKT1 ENC2(PKT2 ENC3(PKT3 ENC4(PKT4 ENC5(PKT5 RPAD)))))
|
||
|
* After 1: ENC2(PKT2 ENC3(PKT3 ENC4(PKT4 ENC5(PKT5 RPAD))))
|
||
|
* ENC1(ZPAD)
|
||
|
* After 2: ENC3(PKT3 ENC4(PKT4 ENC5(PKT5 RPAD)))
|
||
|
* DEC2(ENC1(ZPAD))
|
||
|
* ENC2(ZPAD)
|
||
|
* After 3: ENC4(PKT4 ENC5(PKT5 RPAD)))
|
||
|
* DEC3(DEC2(ENC1(ZPAD)) ENC2(ZPAD))
|
||
|
* ENC3(ZPAD)
|
||
|
* After 4: ENC5(PKT5 RPAD)
|
||
|
* DEC4(DEC3(DEC2(ENC1(ZPAD)) ENC2(ZPAD)) ENC3(ZPAD))
|
||
|
* ENC4(ZPAD)
|
||
|
*
|
||
|
* ENC1(PKT1 ENC2(PKT2))
|
||
|
* => ENC2(PKT2) ENC1(ZPAD)
|
||
|
* => PKT2 DEC2(ENC1(ZPAD))
|
||
|
*/
|
||
|
#define MESSAGE_SIZE 128
|
||
|
#define MAX_HOPS 20
|
||
|
|
||
|
struct hop {
|
||
|
struct sha256 hmac;
|
||
|
/* FIXME: Must use parse/serialize functions. */
|
||
|
secp256k1_pubkey pubkey;
|
||
|
unsigned char msg[MESSAGE_SIZE];
|
||
|
};
|
||
|
|
||
|
struct onion {
|
||
|
struct hop hop[MAX_HOPS];
|
||
|
};
|
||
|
|
||
|
static bool aes_encrypt(void *dst, const void *src, size_t len,
|
||
|
const struct enckey *enckey, const struct iv *iv)
|
||
|
{
|
||
|
#ifdef EXPORT_FRIENDLY
|
||
|
unsigned char *dptr = dst;
|
||
|
const unsigned char *sptr = memcheck(src, len);
|
||
|
size_t i;
|
||
|
|
||
|
for (i = 0; i < len; i++)
|
||
|
dptr[i] = sptr[i] + iv->iv[0] + i / sizeof(struct hop);
|
||
|
return true;
|
||
|
#else
|
||
|
EVP_CIPHER_CTX evpctx;
|
||
|
int outlen;
|
||
|
|
||
|
/* Counter mode allows parallelism in future. */
|
||
|
if (EVP_EncryptInit(&evpctx, EVP_aes_256_ctr(),
|
||
|
memcheck(enckey->k.u.u8, sizeof(enckey->k)),
|
||
|
memcheck(iv->iv, sizeof(iv->iv))) != 1)
|
||
|
return false;
|
||
|
|
||
|
/* No padding, we're a multiple of 128 bits. */
|
||
|
if (EVP_CIPHER_CTX_set_padding(&evpctx, 0) != 1)
|
||
|
return false;
|
||
|
|
||
|
EVP_EncryptUpdate(&evpctx, dst, &outlen, memcheck(src, len), len);
|
||
|
assert(outlen == len);
|
||
|
/* Shouldn't happen (no padding) */
|
||
|
if (EVP_EncryptFinal(&evpctx, dst, &outlen) != 1)
|
||
|
return false;
|
||
|
assert(outlen == 0);
|
||
|
return true;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static bool aes_decrypt(void *dst, const void *src, size_t len,
|
||
|
const struct enckey *enckey, const struct iv *iv)
|
||
|
{
|
||
|
#ifdef EXPORT_FRIENDLY
|
||
|
unsigned char *dptr = dst;
|
||
|
const unsigned char *sptr = memcheck(src, len);
|
||
|
size_t i;
|
||
|
|
||
|
for (i = 0; i < len; i++)
|
||
|
dptr[i] = sptr[i] - iv->iv[0] - i / sizeof(struct hop);
|
||
|
return true;
|
||
|
#else
|
||
|
EVP_CIPHER_CTX evpctx;
|
||
|
int outlen;
|
||
|
|
||
|
/* Counter mode allows parallelism in future. */
|
||
|
if (EVP_DecryptInit(&evpctx, EVP_aes_256_ctr(),
|
||
|
memcheck(enckey->k.u.u8, sizeof(enckey->k)),
|
||
|
memcheck(iv->iv, sizeof(iv->iv))) != 1)
|
||
|
return false;
|
||
|
|
||
|
/* No padding, we're a multiple of 128 bits. */
|
||
|
if (EVP_CIPHER_CTX_set_padding(&evpctx, 0) != 1)
|
||
|
return false;
|
||
|
|
||
|
EVP_DecryptUpdate(&evpctx, dst, &outlen, memcheck(src, len), len);
|
||
|
assert(outlen == len);
|
||
|
/* Shouldn't happen (no padding) */
|
||
|
if (EVP_DecryptFinal(&evpctx, dst, &outlen) != 1)
|
||
|
return false;
|
||
|
assert(outlen == 0);
|
||
|
return true;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
void dump_contents(const void *data, size_t n)
|
||
|
{
|
||
|
size_t i;
|
||
|
const unsigned char *p = memcheck(data, n);
|
||
|
|
||
|
for (i = 0; i < n; i++) {
|
||
|
printf("%02x", p[i]);
|
||
|
if (i % 16 == 15)
|
||
|
printf("\n");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static bool decrypt_padding(struct hop *padding, size_t nhops,
|
||
|
const struct enckey *enckey,
|
||
|
const struct iv *iv)
|
||
|
{
|
||
|
/*
|
||
|
* FIXME: This would be easier if we could set the counter; instead
|
||
|
* we simulate it by decrypting junk before the actual padding.
|
||
|
*/
|
||
|
struct hop tmp[MAX_HOPS];
|
||
|
|
||
|
/* Keep valgrind happy. */
|
||
|
memset(tmp, 0, (MAX_HOPS - nhops) * sizeof(struct hop));
|
||
|
|
||
|
memcpy(tmp + MAX_HOPS - nhops, padding, nhops * sizeof(struct hop));
|
||
|
|
||
|
/* FIXME: Assumes we are allowed to decrypt in place! */
|
||
|
if (!aes_decrypt((char *)tmp + offsetof(struct hop, msg),
|
||
|
(char *)tmp + offsetof(struct hop, msg),
|
||
|
sizeof(tmp) - offsetof(struct hop, msg), enckey, iv))
|
||
|
return false;
|
||
|
|
||
|
memcpy(padding, tmp + MAX_HOPS - nhops, nhops * sizeof(struct hop));
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/* Padding is created by encrypting zeroes. */
|
||
|
static void add_padding(struct hop *padding,
|
||
|
const struct enckey *enckey,
|
||
|
const struct iv *pad_iv)
|
||
|
{
|
||
|
static struct hop zerohop;
|
||
|
|
||
|
aes_encrypt(padding, &zerohop, sizeof(zerohop), enckey, pad_iv);
|
||
|
}
|
||
|
|
||
|
static void make_hmac(const struct hop *hops, size_t num_hops,
|
||
|
const struct hop *padding,
|
||
|
const struct hmackey *hmackey,
|
||
|
struct sha256 *hmac)
|
||
|
{
|
||
|
#ifdef NO_HMAC
|
||
|
/* Copy first byte of message on each hop. */
|
||
|
size_t i;
|
||
|
|
||
|
memset(hmac, 0, sizeof(*hmac));
|
||
|
for (i = 0; i < MAX_HOPS; i++) {
|
||
|
if (i < num_hops)
|
||
|
hmac->u.u8[i] = hops[i].msg[0];
|
||
|
else
|
||
|
hmac->u.u8[i] = padding[i - num_hops].msg[0];
|
||
|
}
|
||
|
#else
|
||
|
HMAC_CTX ctx;
|
||
|
size_t len, padlen;
|
||
|
|
||
|
/* Calculate HMAC of pubkey onwards, plus padding. */
|
||
|
HMAC_CTX_init(&ctx);
|
||
|
HMAC_Init_ex(&ctx, memcheck(hmackey->k.u.u8, sizeof(hmackey->k)),
|
||
|
sizeof(hmackey->k), EVP_sha256(), NULL);
|
||
|
len = num_hops*sizeof(struct hop) - offsetof(struct hop, pubkey);
|
||
|
HMAC_Update(&ctx, memcheck((unsigned char *)hops + offsetof(struct hop, pubkey),
|
||
|
len), len);
|
||
|
padlen = (MAX_HOPS - num_hops) * sizeof(struct hop);
|
||
|
HMAC_Update(&ctx, memcheck((unsigned char *)padding, padlen), padlen);
|
||
|
HMAC_Final(&ctx, hmac->u.u8, NULL);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static bool check_hmac(struct onion *onion, const struct hmackey *hmackey)
|
||
|
{
|
||
|
struct sha256 hmac;
|
||
|
|
||
|
make_hmac(onion->hop, MAX_HOPS, NULL, hmackey, &hmac);
|
||
|
return CRYPTO_memcmp(&hmac, &onion->hop[0].hmac, sizeof(hmac)) == 0;
|
||
|
}
|
||
|
|
||
|
bool create_onion(const secp256k1_pubkey pubkey[],
|
||
|
char *const msg[],
|
||
|
size_t num,
|
||
|
struct onion *onion)
|
||
|
{
|
||
|
int i;
|
||
|
struct seckey *seckeys = tal_arr(NULL, struct seckey, num);
|
||
|
secp256k1_pubkey *pubkeys = tal_arr(seckeys, secp256k1_pubkey, num);
|
||
|
struct enckey *enckeys = tal_arr(seckeys, struct enckey, num);
|
||
|
struct hmackey *hmackeys = tal_arr(seckeys, struct hmackey, num);
|
||
|
struct iv *ivs = tal_arr(seckeys, struct iv, num);
|
||
|
struct iv *pad_ivs = tal_arr(seckeys, struct iv, num);
|
||
|
struct hop **padding = tal_arr(seckeys, struct hop *, num);
|
||
|
struct hop **hops = tal_arr(seckeys, struct hop *, num);
|
||
|
size_t junk_hops;
|
||
|
secp256k1_context *ctx;
|
||
|
bool ok = false;
|
||
|
|
||
|
if (num > MAX_HOPS)
|
||
|
goto fail;
|
||
|
|
||
|
ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
|
||
|
|
||
|
/* First generate all the keys. */
|
||
|
for (i = 0; i < num; i++) {
|
||
|
unsigned char secret[32];
|
||
|
|
||
|
gen_keys(ctx, &seckeys[i], &pubkeys[i]);
|
||
|
|
||
|
/* Make shared secret. */
|
||
|
if (!secp256k1_ecdh(ctx, secret, &pubkey[i], seckeys[i].k.u.u8))
|
||
|
goto fail;
|
||
|
|
||
|
hmackeys[i] = hmackey_from_secret(memcheck(secret, 32));
|
||
|
enckeys[i] = enckey_from_secret(secret);
|
||
|
ivs[i] = iv_from_secret(secret, i);
|
||
|
pad_ivs[i] = pad_iv_from_secret(secret, i);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Building the onion is a little tricky.
|
||
|
*
|
||
|
* First, there is the padding. That's generated by previous nodes,
|
||
|
* and "decrypted" by the others. So we have to generate that
|
||
|
* forwards.
|
||
|
*/
|
||
|
for (i = 1; i < num; i++) {
|
||
|
/* Each one has 1 padding from previous. */
|
||
|
padding[i] = tal_arr(padding, struct hop, i);
|
||
|
|
||
|
/* Copy padding from previous node. */
|
||
|
memcpy(padding[i], padding[i-1], sizeof(struct hop)*(i-1));
|
||
|
/* Previous node "decrypts" it before handing to us */
|
||
|
if (!decrypt_padding(padding[i], i-1,
|
||
|
&enckeys[i-1], &ivs[i-1]))
|
||
|
goto fail;
|
||
|
/* And generates another lot of padding. */
|
||
|
add_padding(padding[i]+i-1, &enckeys[i-1], &pad_ivs[i-1]);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Now the normal onion is generated backwards.
|
||
|
*/
|
||
|
|
||
|
/* Unused hops filled with random, so even recipient can't tell
|
||
|
* how many were used. */
|
||
|
junk_hops = MAX_HOPS - num;
|
||
|
|
||
|
for (i = num - 1; i >= 0; i--) {
|
||
|
size_t other_hops;
|
||
|
struct hop *myonion;
|
||
|
|
||
|
other_hops = num - i - 1 + junk_hops;
|
||
|
myonion = hops[i] = tal_arr(hops, struct hop, 1 + other_hops);
|
||
|
if (i == num - 1) {
|
||
|
/* Fill with junk. */
|
||
|
random_bytes(myonion + 1,
|
||
|
other_hops * sizeof(struct hop));
|
||
|
} else {
|
||
|
/* Copy from next hop. */
|
||
|
memcpy(myonion + 1, hops[i+1],
|
||
|
other_hops * sizeof(struct hop));
|
||
|
}
|
||
|
|
||
|
/* Now populate our hop. */
|
||
|
myonion->pubkey = pubkeys[i];
|
||
|
/* Set message. */
|
||
|
assert(strlen(msg[i]) < MESSAGE_SIZE);
|
||
|
memset(myonion->msg, 0, MESSAGE_SIZE);
|
||
|
strcpy((char *)myonion->msg, msg[i]);
|
||
|
|
||
|
/* Encrypt whole thing from message onwards. */
|
||
|
if (!aes_encrypt(&myonion->msg, &myonion->msg,
|
||
|
(1 + other_hops) * sizeof(struct hop)
|
||
|
- offsetof(struct hop, msg),
|
||
|
&enckeys[i], &ivs[i]))
|
||
|
goto fail;
|
||
|
|
||
|
/* HMAC covers entire thing except hmac itself. */
|
||
|
make_hmac(myonion, 1 + other_hops, padding[i],
|
||
|
&hmackeys[i], &myonion->hmac);
|
||
|
}
|
||
|
|
||
|
/* Transfer results to onion, for first node. */
|
||
|
assert(tal_count(hops[0]) == MAX_HOPS);
|
||
|
memcpy(onion->hop, hops[0], sizeof(onion->hop));
|
||
|
ok = true;
|
||
|
|
||
|
fail:
|
||
|
tal_free(seckeys);
|
||
|
secp256k1_context_destroy(ctx);
|
||
|
return ok;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Decrypt onion, return true if onion->hop[0] is valid.
|
||
|
*
|
||
|
* Returns enckey and pad_iv for use in unwrap.
|
||
|
*/
|
||
|
bool decrypt_onion(const struct seckey *myseckey, struct onion *onion,
|
||
|
struct enckey *enckey, struct iv *pad_iv, size_t i)
|
||
|
{
|
||
|
secp256k1_context *ctx;
|
||
|
unsigned char secret[32];
|
||
|
struct hmackey hmackey;
|
||
|
struct iv iv;
|
||
|
|
||
|
ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
|
||
|
|
||
|
/* Extract shared secret. */
|
||
|
if (!secp256k1_ecdh(ctx, secret, &onion->hop[0].pubkey,
|
||
|
myseckey->k.u.u8))
|
||
|
goto fail;
|
||
|
|
||
|
hmackey = hmackey_from_secret(secret);
|
||
|
*enckey = enckey_from_secret(secret);
|
||
|
iv = iv_from_secret(secret, i);
|
||
|
*pad_iv = pad_iv_from_secret(secret, i);
|
||
|
|
||
|
/* Check HMAC. */
|
||
|
#if 0
|
||
|
printf("Checking HMAC using key%02x%02x%02x%02x%02x%02x%02x%02x (offset %u len %zu) for %02x%02x%02x%02x%02x%02x%02x%02x...%02x%02x%02x\n",
|
||
|
hmackey.k[0], hmackey.k[1],
|
||
|
hmackey.k[2], hmackey.k[3],
|
||
|
hmackey.k[4], hmackey.k[5],
|
||
|
hmackey.k[6], hmackey.k[7],
|
||
|
SHA256_DIGEST_LENGTH,
|
||
|
sizeof(*onion) - SHA256_DIGEST_LENGTH,
|
||
|
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[0],
|
||
|
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[1],
|
||
|
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[2],
|
||
|
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[3],
|
||
|
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[4],
|
||
|
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[5],
|
||
|
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[6],
|
||
|
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[7],
|
||
|
((unsigned char *)(onion + 1))[-3],
|
||
|
((unsigned char *)(onion + 1))[-2],
|
||
|
((unsigned char *)(onion + 1))[-1]);
|
||
|
dump_contents((unsigned char *)onion + SHA256_DIGEST_LENGTH,
|
||
|
sizeof(*onion) - SHA256_DIGEST_LENGTH);
|
||
|
#endif
|
||
|
if (!check_hmac(onion, &hmackey))
|
||
|
goto fail;
|
||
|
|
||
|
/* Decrypt everything after pubkey. */
|
||
|
if (!aes_decrypt(onion->hop[0].msg, onion->hop[0].msg,
|
||
|
sizeof(*onion) - offsetof(struct hop, msg),
|
||
|
enckey, &iv))
|
||
|
goto fail;
|
||
|
|
||
|
secp256k1_context_destroy(ctx);
|
||
|
return true;
|
||
|
|
||
|
fail:
|
||
|
secp256k1_context_destroy(ctx);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/* Get next layer of onion, for forwarding. */
|
||
|
bool peel_onion(struct onion *onion,
|
||
|
const struct enckey *enckey, const struct iv *pad_iv)
|
||
|
{
|
||
|
/* Move next one to front. */
|
||
|
memmove(&onion->hop[0], &onion->hop[1],
|
||
|
sizeof(*onion) - sizeof(onion->hop[0]));
|
||
|
|
||
|
/* Add random-looking (but predictable) padding. */
|
||
|
memset(&onion->hop[MAX_HOPS-1], 0, sizeof(onion->hop[MAX_HOPS-1]));
|
||
|
return aes_encrypt(&onion->hop[MAX_HOPS-1], &onion->hop[MAX_HOPS-1],
|
||
|
sizeof(onion->hop[MAX_HOPS-1]), enckey, pad_iv);
|
||
|
}
|
||
|
|
||
|
int main(int argc, char *argv[])
|
||
|
{
|
||
|
secp256k1_context *ctx;
|
||
|
size_t i, hops;
|
||
|
struct seckey seckeys[MAX_HOPS];
|
||
|
secp256k1_pubkey pubkeys[MAX_HOPS];
|
||
|
char *msgs[MAX_HOPS];
|
||
|
struct onion onion;
|
||
|
|
||
|
assert(EVP_CIPHER_iv_length(EVP_aes_256_ctr()) == sizeof(struct iv));
|
||
|
|
||
|
if (argc != 2)
|
||
|
errx(1, "Usage: %s <num hops>", argv[0]);
|
||
|
hops = atoi(argv[1]);
|
||
|
if (hops == 0 || hops > MAX_HOPS)
|
||
|
errx(1, "%s is invalid number of hops", argv[1]);
|
||
|
|
||
|
ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
|
||
|
for (i = 0; i < hops; i++) {
|
||
|
asprintf(&msgs[i], "Message to %zu", i);
|
||
|
gen_keys(ctx, &seckeys[i], &pubkeys[i]);
|
||
|
}
|
||
|
|
||
|
if (!create_onion(pubkeys, msgs, hops, &onion))
|
||
|
errx(1, "Creating onion packet failed");
|
||
|
|
||
|
/* Now parse and peel. */
|
||
|
for (i = 0; i < hops; i++) {
|
||
|
struct enckey enckey;
|
||
|
struct iv pad_iv;
|
||
|
|
||
|
printf("Decrypting with key %zi\n", i);
|
||
|
if (!decrypt_onion(&seckeys[i], &onion, &enckey, &pad_iv, i))
|
||
|
errx(1, "Decrypting onion for hop %zi", i);
|
||
|
if (strcmp((char *)onion.hop[0].msg, msgs[i]) != 0)
|
||
|
errx(1, "Bad message for hop %zi", i);
|
||
|
if (!peel_onion(&onion, &enckey, &pad_iv))
|
||
|
errx(1, "Peeling onion for hop %zi", i);
|
||
|
}
|
||
|
secp256k1_context_destroy(ctx);
|
||
|
return 0;
|
||
|
}
|