|
|
|
#include "privkey.h"
|
|
|
|
#include "pubkey.h"
|
|
|
|
#include "script.h"
|
|
|
|
#include "shadouble.h"
|
|
|
|
#include "signature.h"
|
|
|
|
#include "tx.h"
|
|
|
|
#include <assert.h>
|
|
|
|
#include <ccan/cast/cast.h>
|
|
|
|
#include <common/type_to_string.h>
|
|
|
|
#include <common/utils.h>
|
|
|
|
|
|
|
|
#undef DEBUG
|
|
|
|
#ifdef DEBUG
|
|
|
|
# include <ccan/err/err.h>
|
|
|
|
# include <stdio.h>
|
|
|
|
#define SHA_FMT \
|
|
|
|
"%02x%02x%02x%02x%02x%02x%02x%02x" \
|
|
|
|
"%02x%02x%02x%02x%02x%02x%02x%02x" \
|
|
|
|
"%02x%02x%02x%02x%02x%02x%02x%02x" \
|
|
|
|
"%02x%02x%02x%02x%02x%02x%02x%02x"
|
|
|
|
|
|
|
|
#define SHA_VALS(e) \
|
|
|
|
e[0], e[1], e[2], e[3], e[4], e[5], e[6], e[7], \
|
|
|
|
e[8], e[9], e[10], e[11], e[12], e[13], e[14], e[15], \
|
|
|
|
e[16], e[17], e[18], e[19], e[20], e[21], e[22], e[23], \
|
|
|
|
e[24], e[25], e[25], e[26], e[28], e[29], e[30], e[31]
|
|
|
|
|
|
|
|
static void dump_tx(const char *msg,
|
|
|
|
const struct bitcoin_tx *tx, size_t inputnum,
|
|
|
|
const u8 *script,
|
|
|
|
const struct pubkey *key,
|
|
|
|
const struct sha256_double *h)
|
|
|
|
{
|
|
|
|
size_t i, j;
|
|
|
|
warnx("%s tx version %u locktime %#x:",
|
|
|
|
msg, tx->version, tx->lock_time);
|
|
|
|
for (i = 0; i < tal_count(tx->input); i++) {
|
|
|
|
warnx("input[%zu].txid = "SHA_FMT, i,
|
|
|
|
SHA_VALS(tx->input[i].txid.sha.u.u8));
|
|
|
|
warnx("input[%zu].index = %u", i, tx->input[i].index);
|
|
|
|
}
|
|
|
|
for (i = 0; i < tal_count(tx->output); i++) {
|
|
|
|
warnx("output[%zu].amount = %llu",
|
|
|
|
i, (long long)tx->output[i].amount);
|
|
|
|
warnx("output[%zu].script = %zu",
|
|
|
|
i, tal_len(tx->output[i].script));
|
|
|
|
for (j = 0; j < tal_len(tx->output[i].script); j++)
|
|
|
|
fprintf(stderr, "%02x", tx->output[i].script[j]);
|
|
|
|
fprintf(stderr, "\n");
|
|
|
|
}
|
|
|
|
warnx("input[%zu].script = %zu", inputnum, tal_len(script));
|
|
|
|
for (i = 0; i < tal_len(script); i++)
|
|
|
|
fprintf(stderr, "%02x", script[i]);
|
|
|
|
if (key) {
|
|
|
|
fprintf(stderr, "\nPubkey: ");
|
|
|
|
for (i = 0; i < sizeof(key->pubkey); i++)
|
|
|
|
fprintf(stderr, "%02x", ((u8 *)&key->pubkey)[i]);
|
|
|
|
fprintf(stderr, "\n");
|
|
|
|
}
|
|
|
|
if (h) {
|
|
|
|
fprintf(stderr, "\nHash: ");
|
|
|
|
for (i = 0; i < sizeof(h->sha.u.u8); i++)
|
|
|
|
fprintf(stderr, "%02x", h->sha.u.u8[i]);
|
|
|
|
fprintf(stderr, "\n");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
static void dump_tx(const char *msg UNUSED,
|
|
|
|
const struct bitcoin_tx *tx UNUSED, size_t inputnum UNUSED,
|
|
|
|
const u8 *script UNUSED,
|
|
|
|
const struct pubkey *key UNUSED,
|
|
|
|
const struct sha256_double *h UNUSED)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
void sign_hash(const struct privkey *privkey,
|
|
|
|
const struct sha256_double *h,
|
|
|
|
secp256k1_ecdsa_signature *s)
|
|
|
|
{
|
|
|
|
bool ok;
|
|
|
|
|
|
|
|
ok = secp256k1_ecdsa_sign(secp256k1_ctx,
|
|
|
|
s,
|
|
|
|
h->sha.u.u8,
|
|
|
|
privkey->secret.data, NULL, NULL);
|
|
|
|
assert(ok);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Only does SIGHASH_ALL */
|
|
|
|
static void sha256_tx_one_input(struct bitcoin_tx *tx,
|
|
|
|
size_t input_num,
|
|
|
|
const u8 *script,
|
|
|
|
const u8 *witness_script,
|
|
|
|
struct sha256_double *hash)
|
|
|
|
{
|
|
|
|
size_t i;
|
|
|
|
|
|
|
|
assert(input_num < tal_count(tx->input));
|
|
|
|
|
|
|
|
/* You must have all inputs zeroed to start. */
|
|
|
|
for (i = 0; i < tal_count(tx->input); i++)
|
|
|
|
assert(!tx->input[i].script);
|
|
|
|
|
|
|
|
tx->input[input_num].script = cast_const(u8 *, script);
|
|
|
|
|
|
|
|
sha256_tx_for_sig(hash, tx, input_num, witness_script);
|
|
|
|
|
|
|
|
/* Reset it for next time. */
|
|
|
|
tx->input[input_num].script = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Only does SIGHASH_ALL */
|
|
|
|
void sign_tx_input(struct bitcoin_tx *tx,
|
|
|
|
unsigned int in,
|
|
|
|
const u8 *subscript,
|
|
|
|
const u8 *witness_script,
|
|
|
|
const struct privkey *privkey, const struct pubkey *key,
|
|
|
|
secp256k1_ecdsa_signature *sig)
|
|
|
|
{
|
|
|
|
struct sha256_double hash;
|
|
|
|
|
|
|
|
sha256_tx_one_input(tx, in, subscript, witness_script, &hash);
|
|
|
|
dump_tx("Signing", tx, in, subscript, key, &hash);
|
|
|
|
sign_hash(privkey, &hash, sig);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool check_signed_hash(const struct sha256_double *hash,
|
|
|
|
const secp256k1_ecdsa_signature *signature,
|
|
|
|
const struct pubkey *key)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = secp256k1_ecdsa_verify(secp256k1_ctx,
|
|
|
|
signature,
|
|
|
|
hash->sha.u.u8, &key->pubkey);
|
|
|
|
return ret == 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool check_tx_sig(struct bitcoin_tx *tx, size_t input_num,
|
|
|
|
const u8 *redeemscript,
|
|
|
|
const u8 *witness_script,
|
|
|
|
const struct pubkey *key,
|
|
|
|
const secp256k1_ecdsa_signature *sig)
|
|
|
|
{
|
|
|
|
struct sha256_double hash;
|
|
|
|
bool ret;
|
|
|
|
|
|
|
|
assert(input_num < tal_count(tx->input));
|
|
|
|
|
|
|
|
sha256_tx_one_input(tx, input_num, redeemscript, witness_script, &hash);
|
|
|
|
|
|
|
|
ret = check_signed_hash(&hash, sig, key);
|
|
|
|
if (!ret)
|
|
|
|
dump_tx("Sig failed", tx, input_num, redeemscript, key, &hash);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Stolen direct from bitcoin/src/script/sign.cpp:
|
|
|
|
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
|
|
|
// Copyright (c) 2009-2014 The Bitcoin Core developers
|
|
|
|
// Distributed under the MIT software license, see the accompanying
|
|
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
*/
|
|
|
|
static bool IsValidSignatureEncoding(const unsigned char sig[], size_t len)
|
|
|
|
{
|
|
|
|
// Format: 0x30 [total-length] 0x02 [R-length] [R] 0x02 [S-length] [S] [sighash]
|
|
|
|
// * total-length: 1-byte length descriptor of everything that follows,
|
|
|
|
// excluding the sighash byte.
|
|
|
|
// * R-length: 1-byte length descriptor of the R value that follows.
|
|
|
|
// * R: arbitrary-length big-endian encoded R value. It must use the shortest
|
|
|
|
// possible encoding for a positive integers (which means no null bytes at
|
|
|
|
// the start, except a single one when the next byte has its highest bit set).
|
|
|
|
// * S-length: 1-byte length descriptor of the S value that follows.
|
|
|
|
// * S: arbitrary-length big-endian encoded S value. The same rules apply.
|
|
|
|
// * sighash: 1-byte value indicating what data is hashed (not part of the DER
|
|
|
|
// signature)
|
|
|
|
|
|
|
|
// Minimum and maximum size constraints.
|
|
|
|
if (len < 9) return false;
|
|
|
|
if (len > 73) return false;
|
|
|
|
|
|
|
|
// A signature is of type 0x30 (compound).
|
|
|
|
if (sig[0] != 0x30) return false;
|
|
|
|
|
|
|
|
// Make sure the length covers the entire signature.
|
|
|
|
if (sig[1] != len - 3) return false;
|
|
|
|
|
|
|
|
// Extract the length of the R element.
|
|
|
|
unsigned int lenR = sig[3];
|
|
|
|
|
|
|
|
// Make sure the length of the S element is still inside the signature.
|
|
|
|
if (5 + lenR >= len) return false;
|
|
|
|
|
|
|
|
// Extract the length of the S element.
|
|
|
|
unsigned int lenS = sig[5 + lenR];
|
|
|
|
|
|
|
|
// Verify that the length of the signature matches the sum of the length
|
|
|
|
// of the elements.
|
|
|
|
if ((size_t)(lenR + lenS + 7) != len) return false;
|
|
|
|
|
|
|
|
// Check whether the R element is an integer.
|
|
|
|
if (sig[2] != 0x02) return false;
|
|
|
|
|
|
|
|
// Zero-length integers are not allowed for R.
|
|
|
|
if (lenR == 0) return false;
|
|
|
|
|
|
|
|
// Negative numbers are not allowed for R.
|
|
|
|
if (sig[4] & 0x80) return false;
|
|
|
|
|
|
|
|
// Null bytes at the start of R are not allowed, unless R would
|
|
|
|
// otherwise be interpreted as a negative number.
|
|
|
|
if (lenR > 1 && (sig[4] == 0x00) && !(sig[5] & 0x80)) return false;
|
|
|
|
|
|
|
|
// Check whether the S element is an integer.
|
|
|
|
if (sig[lenR + 4] != 0x02) return false;
|
|
|
|
|
|
|
|
// Zero-length integers are not allowed for S.
|
|
|
|
if (lenS == 0) return false;
|
|
|
|
|
|
|
|
// Negative numbers are not allowed for S.
|
|
|
|
if (sig[lenR + 6] & 0x80) return false;
|
|
|
|
|
|
|
|
// Null bytes at the start of S are not allowed, unless S would otherwise be
|
|
|
|
// interpreted as a negative number.
|
|
|
|
if (lenS > 1 && (sig[lenR + 6] == 0x00) && !(sig[lenR + 7] & 0x80)) return false;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t signature_to_der(u8 der[72], const secp256k1_ecdsa_signature *sig)
|
|
|
|
{
|
|
|
|
size_t len = 72;
|
|
|
|
|
|
|
|
secp256k1_ecdsa_signature_serialize_der(secp256k1_ctx,
|
|
|
|
der, &len, sig);
|
|
|
|
|
|
|
|
/* IsValidSignatureEncoding() expect extra byte for sighash */
|
|
|
|
assert(IsValidSignatureEncoding(der, len + 1));
|
|
|
|
return len;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool signature_from_der(const u8 *der, size_t len, secp256k1_ecdsa_signature *sig)
|
|
|
|
{
|
|
|
|
return secp256k1_ecdsa_signature_parse_der(secp256k1_ctx,
|
|
|
|
sig, der, len);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Signature must have low S value. */
|
|
|
|
bool sig_valid(const secp256k1_ecdsa_signature *sig)
|
|
|
|
{
|
|
|
|
secp256k1_ecdsa_signature tmp;
|
|
|
|
|
|
|
|
if (secp256k1_ecdsa_signature_normalize(secp256k1_ctx, &tmp, sig) == 0)
|
|
|
|
return true;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
static char *signature_to_hexstr(const tal_t *ctx,
|
|
|
|
const secp256k1_ecdsa_signature *sig)
|
|
|
|
{
|
|
|
|
u8 der[72];
|
|
|
|
size_t len = signature_to_der(der, sig);
|
|
|
|
|
|
|
|
return tal_hexstr(ctx, der, len);
|
|
|
|
}
|
|
|
|
REGISTER_TYPE_TO_STRING(secp256k1_ecdsa_signature, signature_to_hexstr);
|