Browse Source

ccan: import time module.

Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
ppa-0.6.1
Rusty Russell 9 years ago
parent
commit
4163935bbb
  1. 6
      Makefile
  2. 1
      ccan/ccan/time/LICENSE
  3. 57
      ccan/ccan/time/_info
  4. 204
      ccan/ccan/time/test/run-check.c
  5. 24
      ccan/ccan/time/test/run-monotonic.c
  6. 163
      ccan/ccan/time/test/run.c
  7. 130
      ccan/ccan/time/time.c
  8. 669
      ccan/ccan/time/time.h

6
Makefile

@ -86,7 +86,8 @@ CCAN_OBJS := \
ccan-take.o \
ccan-tal-grab_file.o \
ccan-tal-str.o \
ccan-tal.o
ccan-tal.o \
ccan-time.o
# For tests
CCAN_EXTRA_OBJS := \
@ -139,6 +140,7 @@ CCAN_HEADERS := \
$(CCANDIR)/ccan/tal/tal.h \
$(CCANDIR)/ccan/tal/talloc/talloc.h \
$(CCANDIR)/ccan/tcon/tcon.h \
$(CCANDIR)/ccan/time/time.h \
$(CCANDIR)/ccan/typesafe_cb/typesafe_cb.h
TEST_CLI_HEADERS := test-cli/gather_updates.h
@ -363,3 +365,5 @@ ccan-isaac.o: $(CCANDIR)/ccan/isaac/isaac.c
$(CC) $(CFLAGS) -c -o $@ $<
ccan-isaac64.o: $(CCANDIR)/ccan/isaac/isaac64.c
$(CC) $(CFLAGS) -c -o $@ $<
ccan-time.o: $(CCANDIR)/ccan/time/time.c
$(CC) $(CFLAGS) -c -o $@ $<

1
ccan/ccan/time/LICENSE

@ -0,0 +1 @@
../../licenses/BSD-MIT

57
ccan/ccan/time/_info

@ -0,0 +1,57 @@
#include "config.h"
#include <stdio.h>
#include <string.h>
/**
* time - routines for dealing with time
*
* This code provides convenient functions for working with time, in the
* form of 'struct timerel' for durations and 'struct timeabs' for timestamps
* which are light wrappers around struct timespec.
*
* Author: Rusty Russell <rusty@rustcorp.com.au>
* License: BSD-MIT
*
* Example:
* #include <ccan/time/time.h>
* #include <stdlib.h>
* #include <stdio.h>
* #include <err.h>
*
* int main(int argc, char *argv[])
* {
* struct timeabs t;
*
* if (argc != 2)
* errx(1, "Usage: %s <diff in millisec>", argv[0]);
*
* t = time_now();
* if (argv[1][0] == '-')
* t = timeabs_sub(t, time_from_msec(atol(argv[1]+1)));
* else
* t = timeabs_add(t, time_from_msec(atol(argv[1])));
*
* printf("%lu.%09u\n",
* (unsigned long)t.ts.tv_sec, (unsigned)t.ts.tv_nsec);
* return 0;
* }
*/
int main(int argc, char *argv[])
{
/* Expect exactly one argument */
if (argc != 2)
return 1;
if (strcmp(argv[1], "depends") == 0) {
return 0;
}
#if HAVE_CLOCK_GETTIME_IN_LIBRT
if (strcmp(argv[1], "libs") == 0) {
printf("rt\n");
return 0;
}
#endif
return 1;
}

204
ccan/ccan/time/test/run-check.c

@ -0,0 +1,204 @@
#define DEBUG
#include <ccan/time/time.h>
#include <ccan/time/time.c>
#include <ccan/tap/tap.h>
#include <unistd.h>
#include <stdlib.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>
/* If we really abort, we don't get coverage info! */
void abort(void)
{
exit(7);
}
int main(void)
{
struct timeabs t1, t2, epoch = { { 0, 0 } };
struct timerel t3, t4, zero = { { 0, 0 } };
int fds[2];
plan_tests(64);
/* Test time_now */
t1 = time_now();
t2 = time_now();
/* Test time_between. */
t3 = time_between(t2, t1);
ok1(t3.ts.tv_sec > 0 || t3.ts.tv_nsec >= 0);
t3 = time_between(t2, t2);
ok1(t3.ts.tv_sec == 0 && t3.ts.tv_nsec == 0);
t3 = time_between(t1, t1);
ok1(t3.ts.tv_sec == 0 && t3.ts.tv_nsec == 0);
/* Test timeabs_eq / timerel_eq */
ok1(timeabs_eq(t1, t1));
ok1(timeabs_eq(t2, t2));
ok1(!timeabs_eq(t1, epoch));
ok1(!timeabs_eq(t2, epoch));
t3.ts.tv_sec = 1;
ok1(timerel_eq(t3, t3));
ok1(!timerel_eq(t3, zero));
/* Make sure t2 > t1. */
t3.ts.tv_sec = 0;
t3.ts.tv_nsec = 1;
t2 = timeabs_add(t2, t3);
/* Test time_before and time_after. */
ok1(!timeabs_eq(t1, t2));
ok1(!time_after(t1, t2));
ok1(time_before(t1, t2));
ok1(time_after(t2, t1));
ok1(!time_before(t2, t1));
t3.ts.tv_sec = 0;
t3.ts.tv_nsec = 999999999;
t2 = timeabs_add(t2, t3);
ok1(!timeabs_eq(t1, t2));
ok1(!time_after(t1, t2));
ok1(time_before(t1, t2));
ok1(time_after(t2, t1));
ok1(!time_before(t2, t1));
t3 = time_between(t2, epoch);
ok1(t2.ts.tv_sec == t3.ts.tv_sec && t2.ts.tv_nsec == t3.ts.tv_nsec);
t3 = time_between(t2, t2);
ok1(timerel_eq(t3, zero));
/* time_from_msec / time_to_msec */
t3 = time_from_msec(500);
ok1(t3.ts.tv_sec == 0);
ok1(t3.ts.tv_nsec == 500000000);
ok1(time_to_msec(t3) == 500);
t3 = time_from_msec(1000);
ok1(t3.ts.tv_sec == 1);
ok1(t3.ts.tv_nsec == 0);
ok1(time_to_msec(t3) == 1000);
t3 = time_from_msec(1500);
ok1(t3.ts.tv_sec == 1);
ok1(t3.ts.tv_nsec == 500000000);
ok1(time_to_msec(t3) == 1500);
/* time_from_usec */
t3 = time_from_usec(500000);
ok1(t3.ts.tv_sec == 0);
ok1(t3.ts.tv_nsec == 500000000);
ok1(time_to_usec(t3) == 500000);
t3 = time_from_usec(1000000);
ok1(t3.ts.tv_sec == 1);
ok1(t3.ts.tv_nsec == 0);
ok1(time_to_usec(t3) == 1000000);
t3 = time_from_usec(1500000);
ok1(t3.ts.tv_sec == 1);
ok1(t3.ts.tv_nsec == 500000000);
ok1(time_to_usec(t3) == 1500000);
/* time_from_nsec */
t3 = time_from_nsec(500000000);
ok1(t3.ts.tv_sec == 0);
ok1(t3.ts.tv_nsec == 500000000);
ok1(time_to_nsec(t3) == 500000000);
t3 = time_from_nsec(1000000000);
ok1(t3.ts.tv_sec == 1);
ok1(t3.ts.tv_nsec == 0);
ok1(time_to_nsec(t3) == 1000000000);
t3 = time_from_nsec(1500000000);
ok1(t3.ts.tv_sec == 1);
ok1(t3.ts.tv_nsec == 500000000);
ok1(time_to_nsec(t3) == 1500000000);
/* Test wrapunder */
t1 = timeabs_sub(timeabs_sub(t2, time_from_msec(500)),
time_from_msec(500));
ok1(t1.ts.tv_sec == t2.ts.tv_sec - 1);
ok1(t1.ts.tv_nsec == t2.ts.tv_nsec);
/* time_divide and time_multiply */
t4.ts.tv_nsec = 100;
t4.ts.tv_sec = 100;
t3 = time_divide(t4, 2);
ok1(t3.ts.tv_sec == 50);
ok1(t3.ts.tv_nsec == 50);
t3 = time_divide(t4, 100);
ok1(t3.ts.tv_sec == 1);
ok1(t3.ts.tv_nsec == 1);
t3 = time_multiply(t3, 100);
ok1(timerel_eq(t3, t4));
t3 = time_divide(t4, 200);
ok1(t3.ts.tv_sec == 0);
ok1(t3.ts.tv_nsec == 500000000);
/* Divide by huge number. */
t4.ts.tv_sec = (1U << 31) - 1;
t4.ts.tv_nsec = 999999999;
t3 = time_divide(t4, 1 << 30);
/* Allow us to round either way. */
ok1((t3.ts.tv_sec == 2 && t3.ts.tv_nsec == 0)
|| (t3.ts.tv_sec == 1 && t3.ts.tv_nsec == 999999999));
/* Multiply by huge number. */
t4.ts.tv_sec = 0;
t4.ts.tv_nsec = 1;
t3 = time_multiply(t4, 1UL << 31);
ok1(t3.ts.tv_sec == 2);
ok1(t3.ts.tv_nsec == 147483648);
pipe(fds);
fflush(stdout);
switch (fork()) {
case 0:
close(fds[0]);
dup2(fds[1], 1);
dup2(fds[1], 2);
t1.ts.tv_sec = 7;
t1.ts.tv_nsec = 1000000001;
t2 = timeabs_check(t1, NULL);
if (t2.ts.tv_sec != 8 || t2.ts.tv_nsec != 1)
exit(1);
t1.ts.tv_sec = -1;
t1.ts.tv_nsec = 5;
t2 = timeabs_check(t1, NULL);
if (t2.ts.tv_sec != 0 || t2.ts.tv_nsec != 5)
exit(1);
t1.ts.tv_sec = 8;
t1.ts.tv_nsec = 1000000002;
/* We expect this to abort! */
t2 = timeabs_check(t1, "abortstr");
exit(1);
default: {
char readbuf[1024];
int r, len = 0;
close(fds[1]);
while ((r = read(fds[0], readbuf + len, 1023 - len)) > 0)
len += r;
readbuf[len] = '\0';
ok1(strcmp(readbuf,
"WARNING: malformed time"
" 7 seconds 1000000001 ns converted to 8.000000001.\n"
"WARNING: malformed time"
" -1 seconds 5 ns converted to 0.000000005.\n"
"abortstr: malformed time 8.1000000002\n") == 0);
ok1(wait(&r) != -1);
ok1(WIFEXITED(r));
ok1(WEXITSTATUS(r) == 7);
}
}
return exit_status();
}

24
ccan/ccan/time/test/run-monotonic.c

@ -0,0 +1,24 @@
#include <ccan/time/time.h>
#include <ccan/time/time.c>
#include <ccan/tap/tap.h>
int main(void)
{
struct timemono t1, t2;
struct timerel t3;
plan_tests(2);
/* Test time_mono */
t1 = time_mono();
t2 = time_mono();
ok1(!time_less_(t2.ts, t1.ts));
t3.ts.tv_sec = 1;
t3.ts.tv_nsec = 0;
ok1(time_less(timemono_between(t1, t2), t3));
return exit_status();
}

163
ccan/ccan/time/test/run.c

@ -0,0 +1,163 @@
#include <ccan/time/time.h>
#include <ccan/time/time.c>
#include <ccan/tap/tap.h>
int main(void)
{
struct timeabs t1, t2;
struct timerel t3, t4, zero = { { 0, 0 } };
plan_tests(66);
/* Test time_now */
t1 = time_now();
t2 = time_now();
/* Test time_between. */
t3 = time_between(t2, t1);
ok1(t3.ts.tv_sec > 0 || t3.ts.tv_nsec >= 0);
t3 = time_between(t2, t2);
ok1(t3.ts.tv_sec == 0 && t3.ts.tv_nsec == 0);
t3 = time_between(t1, t1);
ok1(t3.ts.tv_sec == 0 && t3.ts.tv_nsec == 0);
/* Test timeabs_eq / timerel_eq */
ok1(timeabs_eq(t1, t1));
ok1(timeabs_eq(t2, t2));
t3.ts.tv_sec = 0;
t3.ts.tv_nsec = 1;
ok1(!timerel_eq(t3, zero));
ok1(!timerel_eq(t3, zero));
/* Make sure t2 > t1. */
t2 = timeabs_add(t2, t3);
/* Test time_after and time_before. */
ok1(!timeabs_eq(t1, t2));
ok1(!time_after(t1, t2));
ok1(time_before(t1, t2));
ok1(time_after(t2, t1));
ok1(!time_before(t2, t1));
t3.ts.tv_sec = 0;
t3.ts.tv_nsec = 999999999;
t2 = timeabs_add(t2, t3);
ok1(!timeabs_eq(t1, t2));
ok1(!time_after(t1, t2));
ok1(time_before(t1, t2));
ok1(time_after(t2, t1));
ok1(!time_before(t2, t1));
/* Test time_less and time_greater. */
ok1(time_less(zero, t3));
ok1(!time_greater(zero, t3));
ok1(!time_less(t3, zero));
ok1(time_greater(t3, zero));
/* Test time_sub */
t3 = time_sub(t3, t3);
ok1(timerel_eq(t3, zero));
/* Test time_between */
t3 = time_between(t2, t2);
ok1(timerel_eq(t3, zero));
t3.ts.tv_sec = 0;
t3.ts.tv_nsec = 999999999;
t1 = timeabs_add(t2, t3);
t3 = time_between(t1, t2);
ok1(t3.ts.tv_sec == 0 && t3.ts.tv_nsec == 999999999);
/* time_from_sec / time_to_sec */
t3 = time_from_sec(500);
ok1(t3.ts.tv_sec == 500);
ok1(t3.ts.tv_nsec == 0);
ok1(time_to_sec(t3) == 500);
/* time_from_msec / time_to_msec */
t3 = time_from_msec(500);
ok1(t3.ts.tv_sec == 0);
ok1(t3.ts.tv_nsec == 500000000);
ok1(time_to_msec(t3) == 500);
t3 = time_from_msec(1000);
ok1(t3.ts.tv_sec == 1);
ok1(t3.ts.tv_nsec == 0);
ok1(time_to_msec(t3) == 1000);
t3 = time_from_msec(1500);
ok1(t3.ts.tv_sec == 1);
ok1(t3.ts.tv_nsec == 500000000);
ok1(time_to_msec(t3) == 1500);
/* time_from_usec */
t3 = time_from_usec(500000);
ok1(t3.ts.tv_sec == 0);
ok1(t3.ts.tv_nsec == 500000000);
ok1(time_to_usec(t3) == 500000);
t3 = time_from_usec(1000000);
ok1(t3.ts.tv_sec == 1);
ok1(t3.ts.tv_nsec == 0);
ok1(time_to_usec(t3) == 1000000);
t3 = time_from_usec(1500000);
ok1(t3.ts.tv_sec == 1);
ok1(t3.ts.tv_nsec == 500000000);
ok1(time_to_usec(t3) == 1500000);
/* time_from_nsec */
t3 = time_from_nsec(500000000);
ok1(t3.ts.tv_sec == 0);
ok1(t3.ts.tv_nsec == 500000000);
ok1(time_to_nsec(t3) == 500000000);
t3 = time_from_nsec(1000000000);
ok1(t3.ts.tv_sec == 1);
ok1(t3.ts.tv_nsec == 0);
ok1(time_to_nsec(t3) == 1000000000);
t3 = time_from_nsec(1500000000);
ok1(t3.ts.tv_sec == 1);
ok1(t3.ts.tv_nsec == 500000000);
ok1(time_to_nsec(t3) == 1500000000);
/* Test wrapunder */
t1 = timeabs_sub(timeabs_sub(t2, time_from_msec(500)), time_from_msec(500));
ok1(t1.ts.tv_sec == t2.ts.tv_sec - 1);
ok1(t1.ts.tv_nsec == t2.ts.tv_nsec);
/* time_divide and time_multiply */
t4.ts.tv_nsec = 100;
t4.ts.tv_sec = 100;
t3 = time_divide(t4, 2);
ok1(t3.ts.tv_sec == 50);
ok1(t3.ts.tv_nsec == 50);
t3 = time_divide(t4, 100);
ok1(t3.ts.tv_sec == 1);
ok1(t3.ts.tv_nsec == 1);
t3 = time_multiply(t3, 100);
ok1(timerel_eq(t3, t4));
t3 = time_divide(t4, 200);
ok1(t3.ts.tv_sec == 0);
ok1(t3.ts.tv_nsec == 500000000);
/* Divide by huge number. */
t4.ts.tv_sec = (1U << 31) - 1;
t4.ts.tv_nsec = 999999999;
t3 = time_divide(t4, 1 << 30);
/* Allow us to round either way. */
ok1((t3.ts.tv_sec == 2 && t3.ts.tv_nsec == 0)
|| (t3.ts.tv_sec == 1 && t3.ts.tv_nsec == 999999999));
/* Multiply by huge number. */
t4.ts.tv_sec = 0;
t4.ts.tv_nsec = 1;
t3 = time_multiply(t4, 1UL << 31);
ok1(t3.ts.tv_sec == 2);
ok1(t3.ts.tv_nsec == 147483648);
return exit_status();
}

130
ccan/ccan/time/time.c

@ -0,0 +1,130 @@
/* Licensed under BSD-MIT - see LICENSE file for details */
#include <ccan/time/time.h>
#include <stdlib.h>
#include <stdio.h>
#if !HAVE_CLOCK_GETTIME
#include <sys/time.h>
struct timeabs time_now(void)
{
struct timeval now;
struct timeabs ret;
gettimeofday(&now, NULL);
ret.ts.tv_sec = now.tv_sec;
ret.ts.tv_nsec = now.tv_usec * 1000;
return TIMEABS_CHECK(ret);
}
#else
#include <time.h>
struct timeabs time_now(void)
{
struct timeabs ret;
clock_gettime(CLOCK_REALTIME, &ret.ts);
return TIMEABS_CHECK(ret);
}
#endif /* HAVE_CLOCK_GETTIME */
struct timemono time_mono(void)
{
struct timemono ret;
#ifdef TIME_HAVE_MONOTONIC
clock_gettime(CLOCK_MONOTONIC, &ret.ts);
#else /* Best we can do */
ret.ts = time_now().ts;
#endif /* !HAVE_TIME_MONOTONIC */
return ret;
}
struct timerel time_divide(struct timerel t, unsigned long div)
{
struct timerel res;
uint64_t rem, ns;
/* Dividing seconds is simple. */
res.ts.tv_sec = TIMEREL_CHECK(t).ts.tv_sec / div;
rem = t.ts.tv_sec % div;
/* If we can't fit remainder * 1,000,000,000 in 64 bits? */
#if 0 /* ilog is great, but we use fp for multiply anyway. */
bits = ilog64(rem);
if (bits + 30 >= 64) {
/* Reduce accuracy slightly */
rem >>= (bits - (64 - 30));
div >>= (bits - (64 - 30));
}
#endif
if (rem & ~(((uint64_t)1 << 30) - 1)) {
/* FIXME: fp is cheating! */
double nsec = rem * 1000000000.0 + t.ts.tv_nsec;
res.ts.tv_nsec = nsec / div;
} else {
ns = rem * 1000000000 + t.ts.tv_nsec;
res.ts.tv_nsec = ns / div;
}
return TIMEREL_CHECK(res);
}
struct timerel time_multiply(struct timerel t, unsigned long mult)
{
struct timerel res;
/* Are we going to overflow if we multiply nsec? */
if (mult & ~((1UL << 30) - 1)) {
/* FIXME: fp is cheating! */
double nsec = (double)t.ts.tv_nsec * mult;
res.ts.tv_sec = nsec / 1000000000.0;
res.ts.tv_nsec = nsec - (res.ts.tv_sec * 1000000000.0);
} else {
uint64_t nsec = t.ts.tv_nsec * mult;
res.ts.tv_nsec = nsec % 1000000000;
res.ts.tv_sec = nsec / 1000000000;
}
res.ts.tv_sec += TIMEREL_CHECK(t).ts.tv_sec * mult;
return TIMEREL_CHECK(res);
}
struct timespec time_check_(struct timespec t, const char *abortstr)
{
if (t.tv_sec < 0 || t.tv_nsec >= 1000000000) {
if (abortstr) {
fprintf(stderr, "%s: malformed time %li.%09li\n",
abortstr,
(long)t.tv_sec, (long)t.tv_nsec);
abort();
} else {
struct timespec old = t;
if (t.tv_nsec >= 1000000000) {
t.tv_sec += t.tv_nsec / 1000000000;
t.tv_nsec %= 1000000000;
}
if (t.tv_sec < 0)
t.tv_sec = 0;
fprintf(stderr, "WARNING: malformed time"
" %li seconds %li ns converted to %li.%09li.\n",
(long)old.tv_sec, (long)old.tv_nsec,
(long)t.tv_sec, (long)t.tv_nsec);
}
}
return t;
}
struct timerel timerel_check(struct timerel t, const char *abortstr)
{
struct timerel ret;
ret.ts = time_check_(t.ts, abortstr);
return ret;
}
struct timeabs timeabs_check(struct timeabs t, const char *abortstr)
{
struct timeabs ret;
ret.ts = time_check_(t.ts, abortstr);
return ret;
}

669
ccan/ccan/time/time.h

@ -0,0 +1,669 @@
/* Licensed under BSD-MIT - see LICENSE file for details */
#ifndef CCAN_TIME_H
#define CCAN_TIME_H
#include "config.h"
#include <sys/time.h>
#if HAVE_STRUCT_TIMESPEC
#include <time.h>
#else
struct timespec {
time_t tv_sec; /* seconds */
long tv_nsec; /* nanoseconds */
};
#endif
#include <stdint.h>
#include <stdbool.h>
#ifdef DEBUG
#include <ccan/str/str.h>
#define TIME_CHECK(t) \
time_check_((t), __FILE__ ":" stringify(__LINE__) " (" stringify(t) ") ")
#define TIMEREL_CHECK(t) \
timerel_check((t), __FILE__ ":" stringify(__LINE__) " (" stringify(t) ") ")
#define TIMEABS_CHECK(t) \
timeabs_check((t), __FILE__ ":" stringify(__LINE__) " (" stringify(t) ") ")
#else
#define TIME_CHECK(t) (t)
#define TIMEREL_CHECK(t) (t)
#define TIMEABS_CHECK(t) (t)
#endif
/**
* struct timerel - a relative time.
* @ts: the actual timespec value.
*
* For example, 1 second: ts.tv_sec = 1, ts.tv_nsec = 0
*/
struct timerel {
struct timespec ts;
};
/**
* struct timeabs - an absolue time.
* @ts: the actual timespec value.
*
* For example, Midnight UTC January 1st, 1970: ts.tv_sec = 0, ts.tv_nsec = 0
*/
struct timeabs {
struct timespec ts;
};
/**
* struct timemono - a monotonic time.
* @ts: the actual timespec value.
*
* This comes from the monotonic clock (if available), so it's useful
* for measuring intervals as it won't change even if the system clock
* is moved for some reason.
*/
struct timemono {
struct timespec ts;
};
/**
* TIME_HAVE_MONOTONIC - defined if we really have a monotonic clock.
*
* Otherwise time_mono() just refers to time_now(). Your code might
* test this if you really need a monotonic clock.
*/
#if HAVE_CLOCK_GETTIME && defined(CLOCK_MONOTONIC)
#define TIME_HAVE_MONOTONIC 1
#endif
struct timespec time_check_(struct timespec in, const char *abortstr);
/**
* timerel_check - check if a relative time is malformed.
* @in: the relative time to check (returned)
* @abortstr: the string to print to stderr before aborting (if set).
*
* This can be used to make sure a time isn't negative and doesn't
* have a tv_nsec >= 1000000000. If it is, and @abortstr is non-NULL,
* that will be printed and abort() is called. Otherwise, if
* @abortstr is NULL then the returned timerel will be normalized and
* tv_sec set to 0 if it was negative.
*
* Note that if ccan/time is compiled with DEBUG, then it will call this
* for all passed and returned times.
*
* Example:
* printf("Time to calc this was %lu nanoseconds\n",
* (long)timerel_check(time_between(time_now(), time_now()),
* "time_now() failed?").ts.tv_nsec);
*/
struct timerel timerel_check(struct timerel in, const char *abortstr);
/**
* timeabs_check - check if an absolute time is malformed.
* @in: the relative time to check (returned)
* @abortstr: the string to print to stderr before aborting (if set).
*
* This can be used to make sure a time isn't negative and doesn't
* have a tv_nsec >= 1000000000. If it is, and @abortstr is non-NULL,
* that will be printed and abort() is called. Otherwise, if
* @abortstr is NULL then the returned timeabs will be normalized and
* tv_sec set to 0 if it was negative.
*
* Note that if ccan/time is compiled with DEBUG, then it will call this
* for all passed and returned times.
*
* Example:
* printf("Now is %lu seconds since epoch\n",
* (long)timeabs_check(time_now(), "time_now failed?").ts.tv_sec);
*/
struct timeabs timeabs_check(struct timeabs in, const char *abortstr);
/**
* time_now - return the current time
*
* Example:
* printf("Now is %lu seconds since epoch\n", (long)time_now().ts.tv_sec);
*/
struct timeabs time_now(void);
/**
* time_mono - return the current monotonic time
*
* This value is only really useful for measuring time intervals.
*
* See also:
* time_since()
*/
struct timemono time_mono(void);
static inline bool time_greater_(struct timespec a, struct timespec b)
{
if (TIME_CHECK(a).tv_sec > TIME_CHECK(b).tv_sec)
return true;
else if (a.tv_sec < b.tv_sec)
return false;
return a.tv_nsec > b.tv_nsec;
}
/**
* time_after - is a after b?
* @a: one abstime.
* @b: another abstime.
*
* Example:
* static bool timed_out(const struct timeabs *start)
* {
* #define TIMEOUT time_from_msec(1000)
* return time_after(time_now(), timeabs_add(*start, TIMEOUT));
* }
*/
static inline bool time_after(struct timeabs a, struct timeabs b)
{
return time_greater_(a.ts, b.ts);
}
/**
* time_greater - is a greater than b?
* @a: one reltime.
* @b: another reltime.
*/
static inline bool time_greater(struct timerel a, struct timerel b)
{
return time_greater_(a.ts, b.ts);
}
static inline bool time_less_(struct timespec a, struct timespec b)
{
if (TIME_CHECK(a).tv_sec < TIME_CHECK(b).tv_sec)
return true;
else if (a.tv_sec > b.tv_sec)
return false;
return a.tv_nsec < b.tv_nsec;
}
/**
* time_before - is a before b?
* @a: one absolute time.
* @b: another absolute time.
*
* Example:
* static bool still_valid(const struct timeabs *start)
* {
* #define TIMEOUT time_from_msec(1000)
* return time_before(time_now(), timeabs_add(*start, TIMEOUT));
* }
*/
static inline bool time_before(struct timeabs a, struct timeabs b)
{
return time_less_(a.ts, b.ts);
}
/**
* time_less - is a before b?
* @a: one relative time.
* @b: another relative time.
*/
static inline bool time_less(struct timerel a, struct timerel b)
{
return time_less_(a.ts, b.ts);
}
/**
* timeabs_eq - is a equal to b?
* @a: one absolute time.
* @b: another absolute time.
*
* Example:
* #include <sys/types.h>
* #include <sys/wait.h>
*
* // Can we fork in under a nanosecond?
* static bool fast_fork(void)
* {
* struct timeabs start = time_now();
* if (fork() != 0) {
* exit(0);
* }
* wait(NULL);
* return timeabs_eq(start, time_now());
* }
*/
static inline bool timeabs_eq(struct timeabs a, struct timeabs b)
{
return TIMEABS_CHECK(a).ts.tv_sec == TIMEABS_CHECK(b).ts.tv_sec
&& a.ts.tv_nsec == b.ts.tv_nsec;
}
/**
* timerel_eq - is a equal to b?
* @a: one relative time.
* @b: another relative time.
*
* Example:
* #include <sys/types.h>
* #include <sys/wait.h>
*
* // Can we fork in under a nanosecond?
* static bool fast_fork(void)
* {
* struct timeabs start = time_now();
* struct timerel diff, zero = { .ts = { 0, 0 } };
* if (fork() != 0) {
* exit(0);
* }
* wait(NULL);
* diff = time_between(time_now(), start);
* return timerel_eq(diff, zero);
* }
*/
static inline bool timerel_eq(struct timerel a, struct timerel b)
{
return TIMEREL_CHECK(a).ts.tv_sec == TIMEREL_CHECK(b).ts.tv_sec
&& a.ts.tv_nsec == b.ts.tv_nsec;
}
static inline struct timespec time_sub_(struct timespec recent,
struct timespec old)
{
struct timespec diff;
diff.tv_sec = TIME_CHECK(recent).tv_sec - TIME_CHECK(old).tv_sec;
if (old.tv_nsec > recent.tv_nsec) {
diff.tv_sec--;
diff.tv_nsec = 1000000000 + recent.tv_nsec - old.tv_nsec;
} else
diff.tv_nsec = recent.tv_nsec - old.tv_nsec;
return TIME_CHECK(diff);
}
/**
* time_sub - subtract two relative times
* @a: the larger time.
* @b: the smaller time.
*
* This returns a well formed struct timerel of @a - @b.
*/
static inline struct timerel time_sub(struct timerel a, struct timerel b)
{
struct timerel t;
t.ts = time_sub_(a.ts, b.ts);
return t;
}
/**
* time_between - time between two absolute times
* @recent: the larger time.
* @old: the smaller time.
*
* This returns a well formed struct timerel of @a - @b.
*/
static inline struct timerel time_between(struct timeabs recent, struct timeabs old)
{
struct timerel t;
t.ts = time_sub_(recent.ts, old.ts);
return t;
}
/**
* timemono_between - time between two monotonic times
* @recent: the larger time.
* @old: the smaller time.
*
* This returns a well formed struct timerel of @recent - @old.
*/
static inline struct timerel timemono_between(struct timemono recent,
struct timemono old)
{
struct timerel t;
t.ts = time_sub_(recent.ts, old.ts);
return t;
}
/**
* timeabs_sub - subtract a relative time from an absolute time
* @abs: the absolute time.
* @rel: the relative time.
*
* This returns a well formed struct timeabs of @a - @b.
*
* Example:
* // We do one every second.
* static struct timeabs previous_time(void)
* {
* return timeabs_sub(time_now(), time_from_msec(1000));
* }
*/
static inline struct timeabs timeabs_sub(struct timeabs abs, struct timerel rel)
{
struct timeabs t;
t.ts = time_sub_(abs.ts, rel.ts);
return t;
}
static inline struct timespec time_add_(struct timespec a, struct timespec b)
{
struct timespec sum;
sum.tv_sec = TIME_CHECK(a).tv_sec + TIME_CHECK(b).tv_sec;
sum.tv_nsec = a.tv_nsec + b.tv_nsec;
if (sum.tv_nsec >= 1000000000) {
sum.tv_sec++;
sum.tv_nsec -= 1000000000;
}
return TIME_CHECK(sum);
}
/**
* timeabs_add - add a relative to an absolute time
* @a: the absolute time.
* @b: a relative time.
*
* The times must not overflow, or the results are undefined.
*
* Example:
* // We do one every second.
* static struct timeabs next_time(void)
* {
* return timeabs_add(time_now(), time_from_msec(1000));
* }
*/
static inline struct timeabs timeabs_add(struct timeabs a, struct timerel b)
{
struct timeabs t;
t.ts = time_add_(a.ts, b.ts);
return t;
}
/**
* timerel_add - add two relative times
* @a: one relative time.
* @b: another relative time.
*
* The times must not overflow, or the results are undefined.
*
* Example:
* static struct timerel double_time(struct timerel a)
* {
* return timerel_add(a, a);
* }
*/
static inline struct timerel timerel_add(struct timerel a, struct timerel b)
{
struct timerel t;
t.ts = time_add_(a.ts, b.ts);
return t;
}
/**
* time_divide - divide a time by a value.
* @t: a time.
* @div: number to divide it by.
*
* Example:
* // How long does it take to do a fork?
* static struct timerel forking_time(void)
* {
* struct timeabs start = time_now();
* unsigned int i;
*
* for (i = 0; i < 1000; i++) {
* if (fork() != 0) {
* exit(0);
* }
* wait(NULL);
* }
* return time_divide(time_between(time_now(), start), i);
* }
*/
struct timerel time_divide(struct timerel t, unsigned long div);
/**
* time_multiply - multiply a time by a value.
* @t: a relative time.
* @mult: number to multiply it by.
*
* Example:
* ...
* printf("Time to do 100000 forks would be %u sec\n",
* (unsigned)time_multiply(forking_time(), 1000000).ts.tv_sec);
*/
struct timerel time_multiply(struct timerel t, unsigned long mult);
/**
* time_to_sec - return number of seconds
* @t: a time
*
* It's often more convenient to deal with time values as seconds.
* Note that this will fit into an unsigned 32-bit variable if it's a
* time of less than about 136 years.
*
* Example:
* ...
* printf("Forking time is %u sec\n",
* (unsigned)time_to_sec(forking_time()));
*/
static inline uint64_t time_to_sec(struct timerel t)
{
return t.ts.tv_sec;
}
/**
* time_to_msec - return number of milliseconds
* @t: a relative time
*
* It's often more convenient to deal with time values as
* milliseconds. Note that this will fit into a 32-bit variable if
* it's a time difference of less than ~7 weeks.
*
* Example:
* ...
* printf("Forking time is %u msec\n",
* (unsigned)time_to_msec(forking_time()));
*/
static inline uint64_t time_to_msec(struct timerel t)
{
uint64_t msec;
msec = TIMEREL_CHECK(t).ts.tv_nsec/1000000 + (uint64_t)t.ts.tv_sec*1000;
return msec;
}
/**
* time_to_usec - return number of microseconds
* @t: a relative time
*
* It's often more convenient to deal with time values as
* microseconds. Note that this will fit into a 32-bit variable if
* it's a time difference of less than ~1 hour.
*
* Example:
* ...
* printf("Forking time is %u usec\n",
* (unsigned)time_to_usec(forking_time()));
*
*/
static inline uint64_t time_to_usec(struct timerel t)
{
uint64_t usec;
usec = TIMEREL_CHECK(t).ts.tv_nsec/1000 + (uint64_t)t.ts.tv_sec*1000000;
return usec;
}
/**
* time_to_nsec - return number of nanoseconds
* @t: a relative time
*
* It's sometimes more convenient to deal with time values as
* nanoseconds. Note that this will fit into a 32-bit variable if
* it's a time difference of less than ~4 seconds.
*
* Example:
* ...
* printf("Forking time is %u nsec\n",
* (unsigned)time_to_nsec(forking_time()));
*
*/
static inline uint64_t time_to_nsec(struct timerel t)
{
uint64_t nsec;
nsec = TIMEREL_CHECK(t).ts.tv_nsec + (uint64_t)t.ts.tv_sec * 1000000000;
return nsec;
}
/**
* time_from_sec - convert seconds to a relative time
* @msec: time in seconds
*
* Example:
* // 1 minute timeout
* #define TIMEOUT time_from_sec(60)
*/
static inline struct timerel time_from_sec(uint64_t sec)
{
struct timerel t;
t.ts.tv_nsec = 0;
t.ts.tv_sec = sec;
return TIMEREL_CHECK(t);
}
/**
* time_from_msec - convert milliseconds to a relative time
* @msec: time in milliseconds
*
* Example:
* // 1/2 second timeout
* #define TIMEOUT time_from_msec(500)
*/
static inline struct timerel time_from_msec(uint64_t msec)
{
struct timerel t;
t.ts.tv_nsec = (msec % 1000) * 1000000;
t.ts.tv_sec = msec / 1000;
return TIMEREL_CHECK(t);
}
/**
* time_from_usec - convert microseconds to a relative time
* @usec: time in microseconds
*
* Example:
* // 1/2 second timeout
* #define TIMEOUT time_from_usec(500000)
*/
static inline struct timerel time_from_usec(uint64_t usec)
{
struct timerel t;
t.ts.tv_nsec = (usec % 1000000) * 1000;
t.ts.tv_sec = usec / 1000000;
return TIMEREL_CHECK(t);
}
/**
* time_from_nsec - convert nanoseconds to a relative time
* @nsec: time in nanoseconds
*
* Example:
* // 1/2 second timeout
* #define TIMEOUT time_from_nsec(500000000)
*/
static inline struct timerel time_from_nsec(uint64_t nsec)
{
struct timerel t;
t.ts.tv_nsec = nsec % 1000000000;
t.ts.tv_sec = nsec / 1000000000;
return TIMEREL_CHECK(t);
}
static inline struct timeval timespec_to_timeval(struct timespec ts)
{
struct timeval tv;
tv.tv_sec = ts.tv_sec;
tv.tv_usec = ts.tv_nsec / 1000;
return tv;
}
/**
* timerel_to_timeval - convert a relative time to a timeval.
* @t: a relative time.
*
* Example:
* struct timerel t = { { 100, 0 } }; // 100 seconds
* struct timeval tv;
*
* tv = timerel_to_timeval(t);
* printf("time = %lu.%06u\n", (long)tv.tv_sec, (int)tv.tv_usec);
*/
static inline struct timeval timerel_to_timeval(struct timerel t)
{
return timespec_to_timeval(t.ts);
}
/**
* timeabs_to_timeval - convert an absolute time to a timeval.
* @t: an absolute time.
*
* Example:
* struct timeval tv;
*
* tv = timeabs_to_timeval(time_now());
* printf("time = %lu.%06u\n", (long)tv.tv_sec, (int)tv.tv_usec);
*/
static inline struct timeval timeabs_to_timeval(struct timeabs t)
{
return timespec_to_timeval(t.ts);
}
static inline struct timespec timeval_to_timespec(struct timeval tv)
{
struct timespec ts;
ts.tv_sec = tv.tv_sec;
ts.tv_nsec = tv.tv_usec * 1000;
return ts;
}
/**
* timeval_to_timerel - convert a timeval to a relative time.
* @tv: a timeval.
*
* Example:
* struct timeval tv = { 0, 500 };
* struct timerel t;
*
* t = timeval_to_timerel(tv);
* printf("timerel = %lu.%09lu\n", (long)t.ts.tv_sec, (long)t.ts.tv_nsec);
*/
static inline struct timerel timeval_to_timerel(struct timeval tv)
{
struct timerel t;
t.ts = timeval_to_timespec(tv);
return TIMEREL_CHECK(t);
}
/**
* timeval_to_timeabs - convert a timeval to an absolute time.
* @tv: a timeval.
*
* Example:
* struct timeval tv = { 1401762008, 500 };
* struct timeabs t;
*
* t = timeval_to_timeabs(tv);
* printf("timeabs = %lu.%09lu\n", (long)t.ts.tv_sec, (long)t.ts.tv_nsec);
*/
static inline struct timeabs timeval_to_timeabs(struct timeval tv)
{
struct timeabs t;
t.ts = timeval_to_timespec(tv);
return TIMEABS_CHECK(t);
}
#endif /* CCAN_TIME_H */
Loading…
Cancel
Save