Browse Source

connectd: Code documentation part III.

Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
fee-tracking2
Rusty Russell 6 years ago
parent
commit
c3ffa6b9aa
  1. 310
      connectd/connectd.c

310
connectd/connectd.c

@ -1,3 +1,12 @@
/*~ Welcome to the connect daemon: maintainer of connectivity!
*
* This is another separate daemon which is responsible for reaching out to
* other peers, and also accepting their incoming connections. It talks to
* them for just long enough to validate their identity using a cryptographic
* handshake, then receive and send supported feature sets; then it hands them
* up to lightningd which will fire up a specific per-peer daemon to talk to
* it.
*/
#include <ccan/asort/asort.h> #include <ccan/asort/asort.h>
#include <ccan/build_assert/build_assert.h> #include <ccan/build_assert/build_assert.h>
#include <ccan/cast/cast.h> #include <ccan/cast/cast.h>
@ -57,35 +66,54 @@
#include <wire/wire_sync.h> #include <wire/wire_sync.h>
#include <zlib.h> #include <zlib.h>
#define MAX_CONNECT_ATTEMPTS 10 /*~ We are passed two file descriptors when exec'ed from `lightningd`: the
* first is a connection to `hsmd`, which we need for the cryptographic
* handshake, and the second is to `gossipd`: it gathers network gossip and
* thus may know how to reach certain peers. */
#define HSM_FD 3 #define HSM_FD 3
#define GOSSIPCTL_FD 4 #define GOSSIPCTL_FD 4
/*~ In C convention, constants are UPPERCASE macros. Not everything needs to
* be a constant, but if soothes the programmer's conscience to encapsulate
* arbitrary decisions like these in one place. */
#define MAX_CONNECT_ATTEMPTS 10
#define INITIAL_WAIT_SECONDS 1 #define INITIAL_WAIT_SECONDS 1
#define MAX_WAIT_SECONDS 300 #define MAX_WAIT_SECONDS 300
/*~ We keep a hash table (ccan/htable) of public keys, which tells us what
* peers are already connected. The HTABLE_DEFINE_TYPE() macro needs a
* keyof() function to extract the key. For this simple use, that's the
* identity function: */
static const struct pubkey *pubkey_keyof(const struct pubkey *pk) static const struct pubkey *pubkey_keyof(const struct pubkey *pk)
{ {
return pk; return pk;
} }
/*~ We also need to define a hashing function. siphash24 is a fast yet
* cryptographic hash in ccan/crypto/siphash24; we might be able to get away
* with a slightly faster hash with fewer guarantees, but it's good hygiene to
* use this unless it's a proven bottleneck. siphash_seed() is a function in
* common/pseudorand which sets up a seed for our hashing; it's different
* every time the program is run. */
static size_t pubkey_hash(const struct pubkey *id) static size_t pubkey_hash(const struct pubkey *id)
{ {
return siphash24(siphash_seed(), id, sizeof(*id)); return siphash24(siphash_seed(), id, sizeof(*id));
} }
/*~ This defines 'struct pubkey_set' which contains 'struct pubkey' pointers. */
HTABLE_DEFINE_TYPE(struct pubkey, HTABLE_DEFINE_TYPE(struct pubkey,
pubkey_keyof, pubkey_keyof,
pubkey_hash, pubkey_hash,
pubkey_eq, pubkey_eq,
pubkey_set); pubkey_set);
/*~ This is the global state, like `struct lightningd *ld` in lightningd. */
struct daemon { struct daemon {
/* Who am I? */ /* Who am I? */
struct pubkey id; struct pubkey id;
/* Peers we know of */ /* Peers that we've handed to `lightningd`, which it hasn't told us
* have disconnected. */
struct pubkey_set peers; struct pubkey_set peers;
/* Peers we are trying to reach */ /* Peers we are trying to reach */
@ -97,13 +125,18 @@ struct daemon {
/* Local and global features to offer to peers. */ /* Local and global features to offer to peers. */
u8 *localfeatures, *globalfeatures; u8 *localfeatures, *globalfeatures;
/* Allow localhost to be considered "public" */ /* Allow localhost to be considered "public": DEVELOPER-only option,
* but for simplicity we don't #if DEVELOPER-wrap it here. */
bool dev_allow_localhost; bool dev_allow_localhost;
/* We support use of a SOCKS5 proxy (e.g. Tor) */
struct addrinfo *proxyaddr; struct addrinfo *proxyaddr;
/* They can tell us we must use proxy even for non-Tor addresses. */
bool use_proxy_always; bool use_proxy_always;
/* @see lightningd.config.use_dns */ /* There are DNS seeds we can use to look up node addresses as a last
* resort, but doing so leaks our address so can be disabled. */
bool use_dns; bool use_dns;
/* The address that the broken response returns instead of /* The address that the broken response returns instead of
@ -114,7 +147,8 @@ struct daemon {
struct listen_fd *listen_fds; struct listen_fd *listen_fds;
}; };
/* Peers we're trying to connect. */ /* Peers we're trying to reach: we iterate through addrs until we succeed
* or fail. */
struct connecting { struct connecting {
/* daemon->connecting */ /* daemon->connecting */
struct list_node list; struct list_node list;
@ -141,11 +175,14 @@ struct connecting {
u32 seconds_waited; u32 seconds_waited;
}; };
/* Mutual recursion */ /*~ C programs should generally be written bottom-to-top, with the root
* function at the bottom, and functions it calls above it. That avoids
* us having to pre-declare functions; but in the case of mutual recursion
* pre-declarations are necessary (also, sometimes we do it to avoid making
* a patch hard to review with gratuitous reorganizations). */
static void try_connect_one_addr(struct connecting *connect); static void try_connect_one_addr(struct connecting *connect);
/** /*~ Some ISP resolvers will reply with a dummy IP to queries that would otherwise
* Some ISP resolvers will reply with a dummy IP to queries that would otherwise
* result in an NXDOMAIN reply. This just checks whether we have one such * result in an NXDOMAIN reply. This just checks whether we have one such
* resolver upstream and remembers its reply so we can try to filter future * resolver upstream and remembers its reply so we can try to filter future
* dummies out. * dummies out.
@ -157,6 +194,7 @@ static bool broken_resolver(struct daemon *daemon)
const char *hostname = "nxdomain-test.doesntexist"; const char *hostname = "nxdomain-test.doesntexist";
int err; int err;
/* If they told us to never do DNS queries, don't even do this one */
if (!daemon->use_dns) { if (!daemon->use_dns) {
daemon->broken_resolver_response = NULL; daemon->broken_resolver_response = NULL;
return false; return false;
@ -170,6 +208,8 @@ static bool broken_resolver(struct daemon *daemon)
err = getaddrinfo(hostname, tal_fmt(tmpctx, "%d", 42), err = getaddrinfo(hostname, tal_fmt(tmpctx, "%d", 42),
&hints, &addrinfo); &hints, &addrinfo);
/*~ Note the use of tal_dup here: it is a memdup for tal, but it's
* type-aware so it's less error-prone. */
if (err == 0) { if (err == 0) {
daemon->broken_resolver_response daemon->broken_resolver_response
= tal_dup(daemon, struct sockaddr, addrinfo->ai_addr); = tal_dup(daemon, struct sockaddr, addrinfo->ai_addr);
@ -180,22 +220,40 @@ static bool broken_resolver(struct daemon *daemon)
return daemon->broken_resolver_response != NULL; return daemon->broken_resolver_response != NULL;
} }
/*~ Here we see our first tal destructor: in this case the 'struct connect'
* simply removes itself from the list of all 'connect' structs. */
static void destroy_connecting(struct connecting *connect) static void destroy_connecting(struct connecting *connect)
{ {
/*~ We don't *need* the list_head here; `list_del(&connect->list)`
* would work. But we have access to it, and `list_del_from()` is
* clearer for readers, and also does a very brief sanity check that
* the list isn't already empty which catches a surprising number of
* bugs! (If CCAN_LIST_DEBUG were defined, it would perform a
* complete list traverse to check it was in the list before
* deletion). */
list_del_from(&connect->daemon->connecting, &connect->list); list_del_from(&connect->daemon->connecting, &connect->list);
} }
/*~ Most simple search functions start with find_; in this case, search
* for an existing attempt to connect the given peer id. */
static struct connecting *find_connecting(struct daemon *daemon, static struct connecting *find_connecting(struct daemon *daemon,
const struct pubkey *id) const struct pubkey *id)
{ {
struct connecting *i; struct connecting *i;
/*~ Note the pubkey_eq function: this is generally preferred over
* doing a memcmp() manually, as it is both typesafe and can handle
* any padding which the C compiler is allowed to insert between
* members (unnecessary here, as there's no padding in a `struct
* pubkey`). */
list_for_each(&daemon->connecting, i, list) list_for_each(&daemon->connecting, i, list)
if (pubkey_eq(id, &i->id)) if (pubkey_eq(id, &i->id))
return i; return i;
return NULL; return NULL;
} }
/*~ Once we've connected, we disable the callback which would cause us to
* to try the next address. */
static void connected_to_peer(struct daemon *daemon, static void connected_to_peer(struct daemon *daemon,
struct io_conn *conn, struct io_conn *conn,
const struct pubkey *id) const struct pubkey *id)
@ -203,12 +261,22 @@ static void connected_to_peer(struct daemon *daemon,
/* Don't call destroy_io_conn */ /* Don't call destroy_io_conn */
io_set_finish(conn, NULL, NULL); io_set_finish(conn, NULL, NULL);
/* Don't free conn with connect */ /* We allocate 'conn' as a child of 'connect': we don't want to free
* it just yet though. tal_steal() it onto the permanent 'daemon'
* struct. */
tal_steal(daemon, conn); tal_steal(daemon, conn);
/* Now free the 'connecting' struct. */
tal_free(find_connecting(daemon, id)); tal_free(find_connecting(daemon, id));
} }
/*~ Every per-peer daemon needs a connection to the gossip daemon; this allows
* it to forward gossip to/from the peer. The gossip daemon needs to know a
* few of the features of the peer and its id (for reporting).
*
* The 'lfeatures' refers to 'local features', which indicate the properties
* when you're connected to it like we are: there are also 'global features'
* which specify requirements to route a payment through a node. */
static int get_gossipfd(struct daemon *daemon, static int get_gossipfd(struct daemon *daemon,
const struct pubkey *id, const struct pubkey *id,
const u8 *lfeatures) const u8 *lfeatures)
@ -216,14 +284,21 @@ static int get_gossipfd(struct daemon *daemon,
bool gossip_queries_feature, initial_routing_sync, success; bool gossip_queries_feature, initial_routing_sync, success;
u8 *msg; u8 *msg;
/*~ The way features generally work is that both sides need to offer it;
* we always offer `gossip_queries`, but this check is explicit. */
gossip_queries_feature gossip_queries_feature
= feature_offered(lfeatures, LOCAL_GOSSIP_QUERIES) = feature_offered(lfeatures, LOCAL_GOSSIP_QUERIES)
&& feature_offered(daemon->localfeatures, && feature_offered(daemon->localfeatures,
LOCAL_GOSSIP_QUERIES); LOCAL_GOSSIP_QUERIES);
/*~ `initial_routing_sync is supported by every node, since it was in
* the initial lightning specification: it means the peer wants the
* backlog of existing gossip. */
initial_routing_sync initial_routing_sync
= feature_offered(lfeatures, LOCAL_INITIAL_ROUTING_SYNC); = feature_offered(lfeatures, LOCAL_INITIAL_ROUTING_SYNC);
/* We do this communication sync. */ /*~ We do this communication sync, since gossipd is our friend and
* it's easier. If gossipd fails, we fail. */
msg = towire_gossip_new_peer(NULL, id, gossip_queries_feature, msg = towire_gossip_new_peer(NULL, id, gossip_queries_feature,
initial_routing_sync); initial_routing_sync);
if (!wire_sync_write(GOSSIPCTL_FD, take(msg))) if (!wire_sync_write(GOSSIPCTL_FD, take(msg)))
@ -236,14 +311,22 @@ static int get_gossipfd(struct daemon *daemon,
status_failed(STATUS_FAIL_INTERNAL_ERROR, status_failed(STATUS_FAIL_INTERNAL_ERROR,
"Failed parsing msg gossipctl: %s", "Failed parsing msg gossipctl: %s",
tal_hex(tmpctx, msg)); tal_hex(tmpctx, msg));
/* Gossipd might run out of file descriptors, so it tell us, and we
* give up on connecting this peer. */
if (!success) { if (!success) {
status_broken("Gossipd did not give us an fd: losing peer %s", status_broken("Gossipd did not give us an fd: losing peer %s",
type_to_string(tmpctx, struct pubkey, id)); type_to_string(tmpctx, struct pubkey, id));
return -1; return -1;
} }
/* Otherwise, the next thing in the socket will be the file descriptor
* for the per-peer daemon. */
return fdpass_recv(GOSSIPCTL_FD); return fdpass_recv(GOSSIPCTL_FD);
} }
/*~ This is an ad-hoc marshalling structure where we store arguments so we
* can call peer_connected again. */
struct peer_reconnected { struct peer_reconnected {
struct daemon *daemon; struct daemon *daemon;
struct pubkey id; struct pubkey id;
@ -251,14 +334,20 @@ struct peer_reconnected {
const u8 *lfeatures; const u8 *lfeatures;
}; };
/*~ For simplicity, lightningd only ever deals with a single connection per
* peer. So if we already know about a peer, we tell lightning to disconnect
* the old one and retry once it does. */
static struct io_plan *retry_peer_connected(struct io_conn *conn, static struct io_plan *retry_peer_connected(struct io_conn *conn,
struct peer_reconnected *pr) struct peer_reconnected *pr)
{ {
struct io_plan *plan; struct io_plan *plan;
/*~ As you can see, we've had issues with this code before :( */
status_trace("peer %s: processing now old peer gone", status_trace("peer %s: processing now old peer gone",
type_to_string(tmpctx, struct pubkey, &pr->id)); type_to_string(tmpctx, struct pubkey, &pr->id));
/*~ Usually the pattern is to return this directly, but we have to free
* our temporary structure. */
plan = peer_connected(conn, pr->daemon, &pr->id, plan = peer_connected(conn, pr->daemon, &pr->id,
take(pr->peer_connected_msg), take(pr->peer_connected_msg),
take(pr->lfeatures)); take(pr->lfeatures));
@ -266,6 +355,8 @@ static struct io_plan *retry_peer_connected(struct io_conn *conn,
return plan; return plan;
} }
/*~ Note the lack of static: this is called by peer_exchange_initmsg.c once the
* INIT messages are exchanged, and also by the retry code above. */
struct io_plan *peer_connected(struct io_conn *conn, struct io_plan *peer_connected(struct io_conn *conn,
struct daemon *daemon, struct daemon *daemon,
const struct pubkey *id TAKES, const struct pubkey *id TAKES,
@ -292,11 +383,18 @@ struct io_plan *peer_connected(struct io_conn *conn,
r = tal(daemon, struct peer_reconnected); r = tal(daemon, struct peer_reconnected);
r->daemon = daemon; r->daemon = daemon;
r->id = *id; r->id = *id;
/*~ Note that tal_dup_arr() will do handle the take() of
* peer_connected_msg and lfeatures (turning it into a simply
* tal_steal() in those cases). */
r->peer_connected_msg r->peer_connected_msg
= tal_dup_arr(r, u8, peer_connected_msg, = tal_dup_arr(r, u8, peer_connected_msg,
tal_count(peer_connected_msg), 0); tal_count(peer_connected_msg), 0);
r->lfeatures r->lfeatures
= tal_dup_arr(r, u8, lfeatures, tal_count(lfeatures), 0); = tal_dup_arr(r, u8, lfeatures, tal_count(lfeatures), 0);
/*~ ccan/io supports waiting on an address: in this case, `key`.
* When someone calls `io_wake()` on that address, it will
* call retry_peer_connected above. */
return io_wait(conn, key, retry_peer_connected, r); return io_wait(conn, key, retry_peer_connected, r);
} }
@ -304,23 +402,34 @@ struct io_plan *peer_connected(struct io_conn *conn,
gossip_fd = get_gossipfd(daemon, id, lfeatures); gossip_fd = get_gossipfd(daemon, id, lfeatures);
/* We promised we'd take it. */ /* We promised we'd take it by marking it TAKEN above; simply free it. */
if (taken(lfeatures)) if (taken(lfeatures))
tal_free(lfeatures); tal_free(lfeatures);
/* If gossipd can't give us a file descriptor, we give up connecting. */
if (gossip_fd < 0) if (gossip_fd < 0)
return io_close(conn); return io_close(conn);
/*~ daemon_conn is a message queue for inter-daemon communication: we
* queue up the `connect_peer_connected` message to tell lightningd
* we have connected, and give the the peer and gossip fds. */
daemon_conn_send(&daemon->master, peer_connected_msg); daemon_conn_send(&daemon->master, peer_connected_msg);
/* io_conn_fd() extracts the fd from ccan/io's io_conn */
daemon_conn_send_fd(&daemon->master, io_conn_fd(conn)); daemon_conn_send_fd(&daemon->master, io_conn_fd(conn));
daemon_conn_send_fd(&daemon->master, gossip_fd); daemon_conn_send_fd(&daemon->master, gossip_fd);
/*~ Finally, we add it to the set of pubkeys: tal_dup will handle
* take() args for us, by simply tal_steal()ing it. */
pubkey_set_add(&daemon->peers, tal_dup(daemon, struct pubkey, id)); pubkey_set_add(&daemon->peers, tal_dup(daemon, struct pubkey, id));
/* This frees the peer. */ /*~ We want to free the connection, but not close the fd (which is
* queued to go to lightningd), so use this variation on io_close: */
return io_close_taken_fd(conn); return io_close_taken_fd(conn);
} }
/*~ handshake.c's handles setting up the crypto state once we get a connection
* in; we hand it straight to peer_exchange_initmsg() to send and receive INIT
* and call peer_connected(). */
static struct io_plan *handshake_in_success(struct io_conn *conn, static struct io_plan *handshake_in_success(struct io_conn *conn,
const struct pubkey *id, const struct pubkey *id,
const struct wireaddr_internal *addr, const struct wireaddr_internal *addr,
@ -332,12 +441,15 @@ static struct io_plan *handshake_in_success(struct io_conn *conn,
return peer_exchange_initmsg(conn, daemon, cs, id, addr); return peer_exchange_initmsg(conn, daemon, cs, id, addr);
} }
/*~ When we get a connection in we set up its network address the call
* handshake.c to set up the crypto state. */
static struct io_plan *connection_in(struct io_conn *conn, struct daemon *daemon) static struct io_plan *connection_in(struct io_conn *conn, struct daemon *daemon)
{ {
struct wireaddr_internal addr; struct wireaddr_internal addr;
struct sockaddr_storage s = {}; struct sockaddr_storage s = {};
socklen_t len = sizeof(s); socklen_t len = sizeof(s);
/* The cast here is a weird Berkeley sockets API feature... */
if (getpeername(io_conn_fd(conn), (struct sockaddr *)&s, &len) != 0) { if (getpeername(io_conn_fd(conn), (struct sockaddr *)&s, &len) != 0) {
status_trace("Failed to get peername for incoming conn: %s", status_trace("Failed to get peername for incoming conn: %s",
strerror(errno)); strerror(errno));
@ -365,10 +477,13 @@ static struct io_plan *connection_in(struct io_conn *conn, struct daemon *daemon
} }
/* FIXME: Timeout */ /* FIXME: Timeout */
/*~ The crypto handshake differs depending on whether you received or
* initiated the socket connection, so there are two entry points. */
return responder_handshake(conn, &daemon->id, &addr, return responder_handshake(conn, &daemon->id, &addr,
handshake_in_success, daemon); handshake_in_success, daemon);
} }
/*~ These are the mirror functions for the connecting-out case. */
static struct io_plan *handshake_out_success(struct io_conn *conn, static struct io_plan *handshake_out_success(struct io_conn *conn,
const struct pubkey *id, const struct pubkey *id,
const struct wireaddr_internal *addr, const struct wireaddr_internal *addr,
@ -393,6 +508,7 @@ struct io_plan *connection_out(struct io_conn *conn, struct connecting *connect)
handshake_out_success, connect); handshake_out_success, connect);
} }
/*~ When we've exhausted all addresses without success, we come here. */
static void PRINTF_FMT(5,6) static void PRINTF_FMT(5,6)
connect_failed(struct daemon *daemon, connect_failed(struct daemon *daemon,
const struct pubkey *id, const struct pubkey *id,
@ -416,7 +532,10 @@ static void PRINTF_FMT(5,6)
if (wait_seconds < INITIAL_WAIT_SECONDS) if (wait_seconds < INITIAL_WAIT_SECONDS)
wait_seconds = INITIAL_WAIT_SECONDS; wait_seconds = INITIAL_WAIT_SECONDS;
/* Tell any connect command what happened. */ /* lightningd may have a connect command waiting to know what
* happened. We leave it to lightningd to decide if it wants to try
* again, with the wait_seconds as a hint of how long before
* asking. */
msg = towire_connectctl_connect_failed(NULL, id, err, wait_seconds, msg = towire_connectctl_connect_failed(NULL, id, err, wait_seconds,
addrhint); addrhint);
daemon_conn_send(&daemon->master, take(msg)); daemon_conn_send(&daemon->master, take(msg));
@ -426,8 +545,16 @@ static void PRINTF_FMT(5,6)
err); err);
} }
/*~ This is the destructor for the (unsuccessful) connection. We accumulate
* the errors which occurred, so we can report to lightningd properly in case
* they all fail, and try the next address.
*
* This is a specialized form of destructor which takes an extra argument;
* it set up by either the creatively-named tal_add_destructor2(), or by
* the ccan/io-specific io_set_finish() on a connection. */
static void destroy_io_conn(struct io_conn *conn, struct connecting *connect) static void destroy_io_conn(struct io_conn *conn, struct connecting *connect)
{ {
/*~ tal_append_fmt appends to a tal string. It's terribly convenient */
tal_append_fmt(&connect->errors, tal_append_fmt(&connect->errors,
"%s: %s: %s. ", "%s: %s: %s. ",
type_to_string(tmpctx, struct wireaddr_internal, type_to_string(tmpctx, struct wireaddr_internal,
@ -437,9 +564,17 @@ static void destroy_io_conn(struct io_conn *conn, struct connecting *connect)
try_connect_one_addr(connect); try_connect_one_addr(connect);
} }
/* This initializes a fresh io_conn by setting it to io_connect to the
* destination */
static struct io_plan *conn_init(struct io_conn *conn, static struct io_plan *conn_init(struct io_conn *conn,
struct connecting *connect) struct connecting *connect)
{ {
/*~ I generally dislike the pattern of "set to NULL, assert if NULL at
* bottom". On -O2 and above the compiler will warn you at compile time
* if a there is a path by which the variable is not set, which is always
* preferable to a runtime assertion. In this case, it's the best way
* to use the "enum in a switch" trick to make sure we handle all enum
* cases, so I use it. */
struct addrinfo *ai = NULL; struct addrinfo *ai = NULL;
const struct wireaddr_internal *addr = &connect->addrs[connect->addrnum]; const struct wireaddr_internal *addr = &connect->addrs[connect->addrnum];
@ -470,6 +605,8 @@ static struct io_plan *conn_init(struct io_conn *conn,
return io_connect(conn, ai, connection_out, connect); return io_connect(conn, ai, connection_out, connect);
} }
/* This initializes a fresh io_conn by setting it to io_connect to the
* SOCKS proxy, as handled in tor.c. */
static struct io_plan *conn_proxy_init(struct io_conn *conn, static struct io_plan *conn_proxy_init(struct io_conn *conn,
struct connecting *connect) struct connecting *connect)
{ {
@ -501,12 +638,14 @@ static struct io_plan *conn_proxy_init(struct io_conn *conn,
connect); connect);
} }
/*~ This is the routine which tries to connect. */
static void try_connect_one_addr(struct connecting *connect) static void try_connect_one_addr(struct connecting *connect)
{ {
int fd, af; int fd, af;
bool use_proxy = connect->daemon->use_proxy_always; bool use_proxy = connect->daemon->use_proxy_always;
const struct wireaddr_internal *addr = &connect->addrs[connect->addrnum]; const struct wireaddr_internal *addr = &connect->addrs[connect->addrnum];
/* Out of addresses? */
if (connect->addrnum == tal_count(connect->addrs)) { if (connect->addrnum == tal_count(connect->addrs)) {
connect_failed(connect->daemon, &connect->id, connect_failed(connect->daemon, &connect->id,
connect->seconds_waited, connect->seconds_waited,
@ -565,23 +704,35 @@ static void try_connect_one_addr(struct connecting *connect)
} else } else
fd = socket(af, SOCK_STREAM, 0); fd = socket(af, SOCK_STREAM, 0);
/* We might not have eg. IPv6 support, or it might be an onion addr
* and we have no proxy. */
if (fd < 0) { if (fd < 0) {
tal_append_fmt(&connect->errors, tal_append_fmt(&connect->errors,
"%s: opening %i socket gave %s. ", "%s: opening %i socket gave %s. ",
type_to_string(tmpctx, struct wireaddr_internal, type_to_string(tmpctx, struct wireaddr_internal,
addr), addr),
af, strerror(errno)); af, strerror(errno));
/* This causes very limited recursion. */
connect->addrnum++; connect->addrnum++;
try_connect_one_addr(connect); try_connect_one_addr(connect);
return; return;
} }
/* This creates the new connection using our fd, with the initialization
* function one of the above. */
if (use_proxy) if (use_proxy)
io_new_conn(connect, fd, conn_proxy_init, connect); io_new_conn(connect, fd, conn_proxy_init, connect);
else else
io_new_conn(connect, fd, conn_init, connect); io_new_conn(connect, fd, conn_init, connect);
} }
/*~ connectd is responsible for incoming connections, but it's the process of
* setting up the listening ports which gives us information we need for startup
* (such as our own address). So we perform setup in two phases: first we bind
* the sockets according to the command line arguments (if any), then we start
* listening for connections to them once lightningd is ready.
*
* This stores the fds we're going to listen on: */
struct listen_fd { struct listen_fd {
int fd; int fd;
/* If we bind() IPv6 then IPv4 to same port, we *may* fail to listen() /* If we bind() IPv6 then IPv4 to same port, we *may* fail to listen()
@ -593,11 +744,22 @@ struct listen_fd {
static void add_listen_fd(struct daemon *daemon, int fd, bool mayfail) static void add_listen_fd(struct daemon *daemon, int fd, bool mayfail)
{ {
/*~ utils.h contains a convenience macro tal_arr_expand which
* reallocates a tal_arr to make it one longer, then returns a pointer
* to the (new) last element. */
struct listen_fd *l = tal_arr_expand(&daemon->listen_fds); struct listen_fd *l = tal_arr_expand(&daemon->listen_fds);
l->fd = fd; l->fd = fd;
l->mayfail = mayfail; l->mayfail = mayfail;
} }
/*~ Helper routine to create and bind a socket of a given type; like many
* daemons we set it SO_REUSEADDR so we won't have to wait 2 minutes to reuse
* it on restart.
*
* I generally avoid "return -1 on error", but for file-descriptors it's the
* UNIX standard, so it's not as offensive here as it would be in other
* contexts.
*/
static int make_listen_fd(int domain, void *addr, socklen_t len, bool mayfail) static int make_listen_fd(int domain, void *addr, socklen_t len, bool mayfail)
{ {
int fd = socket(domain, SOCK_STREAM, 0); int fd = socket(domain, SOCK_STREAM, 0);
@ -632,6 +794,8 @@ static int make_listen_fd(int domain, void *addr, socklen_t len, bool mayfail)
return fd; return fd;
fail: fail:
/*~ ccan/noerr contains convenient routines which don't clobber the
* errno global; in this case, the caller can report errno. */
close_noerr(fd); close_noerr(fd);
return -1; return -1;
} }
@ -645,6 +809,8 @@ static bool handle_wireaddr_listen(struct daemon *daemon,
struct sockaddr_in addr; struct sockaddr_in addr;
struct sockaddr_in6 addr6; struct sockaddr_in6 addr6;
/* Note the use of a switch() over enum here, even though it must be
* IPv4 or IPv6 here; that will catch future changes. */
switch (wireaddr->type) { switch (wireaddr->type) {
case ADDR_TYPE_IPV4: case ADDR_TYPE_IPV4:
wireaddr_to_ipv4(wireaddr, &addr); wireaddr_to_ipv4(wireaddr, &addr);
@ -684,6 +850,7 @@ static bool public_address(struct daemon *daemon, struct wireaddr *wireaddr)
return false; return false;
} }
/* --dev-allow-localhost treats the localhost as "public" for testing */
return address_routable(wireaddr, daemon->dev_allow_localhost); return address_routable(wireaddr, daemon->dev_allow_localhost);
} }
@ -699,12 +866,19 @@ static void add_binding(struct wireaddr_internal **binding,
*tal_arr_expand(binding) = *addr; *tal_arr_expand(binding) = *addr;
} }
/*~ ccan/asort provides a type-safe sorting function; it requires a comparison
* function, which takes an optional extra argument which is usually unused as
* here, but deeply painful if you need it and don't have it! */
static int wireaddr_cmp_type(const struct wireaddr *a, static int wireaddr_cmp_type(const struct wireaddr *a,
const struct wireaddr *b, void *unused) const struct wireaddr *b, void *unused)
{ {
/* Returns > 0 if a belongs after b, < 0 if before, == 0 if don't care */
return (int)a->type - (int)b->type; return (int)a->type - (int)b->type;
} }
/*~ The spec for we-can't-remember reasons specifies only one address of each
* type. I think there was a bias against "hubs" which would want this. So
* we sort and uniquify. */
static void finalize_announcable(struct wireaddr **announcable) static void finalize_announcable(struct wireaddr **announcable)
{ {
size_t n = tal_count(*announcable); size_t n = tal_count(*announcable);
@ -730,6 +904,8 @@ static void finalize_announcable(struct wireaddr **announcable)
&(*announcable)[i]), &(*announcable)[i]),
type_to_string(tmpctx, struct wireaddr, type_to_string(tmpctx, struct wireaddr,
&(*announcable)[i-1])); &(*announcable)[i-1]));
/* Move and shrink; step back because i++ above would skip. */
memmove(*announcable + i, memmove(*announcable + i,
*announcable + i + 1, *announcable + i + 1,
(n - i - 1) * sizeof((*announcable)[0])); (n - i - 1) * sizeof((*announcable)[0]));
@ -738,10 +914,20 @@ static void finalize_announcable(struct wireaddr **announcable)
} }
} }
/* Initializes daemon->announcable array, returns addresses we bound to. */ /*~ The user can specify three kinds of addresses: ones we bind to but don't
* announce, ones we announce but don't bind to, and ones we bind to and
* announce if they seem to be public addresses.
*
* This routine sorts out the mess: it populates the daemon->announcable array,
* and returns the addresses we bound to (by convention, return is allocated
* off `ctx` argument).
*/
static struct wireaddr_internal *setup_listeners(const tal_t *ctx, static struct wireaddr_internal *setup_listeners(const tal_t *ctx,
struct daemon *daemon, struct daemon *daemon,
/* The proposed address. */
const struct wireaddr_internal *proposed_wireaddr, const struct wireaddr_internal *proposed_wireaddr,
/* For each one, listen,
announce or both */
const enum addr_listen_announce *proposed_listen_announce, const enum addr_listen_announce *proposed_listen_announce,
const char *tor_password, const char *tor_password,
struct wireaddr **announcable) struct wireaddr **announcable)
@ -750,6 +936,7 @@ static struct wireaddr_internal *setup_listeners(const tal_t *ctx,
int fd; int fd;
struct wireaddr_internal *binding; struct wireaddr_internal *binding;
/* Start with empty arrays, for tal_arr_expand() */
binding = tal_arr(ctx, struct wireaddr_internal, 0); binding = tal_arr(ctx, struct wireaddr_internal, 0);
*announcable = tal_arr(ctx, struct wireaddr, 0); *announcable = tal_arr(ctx, struct wireaddr, 0);
@ -758,11 +945,12 @@ static struct wireaddr_internal *setup_listeners(const tal_t *ctx,
for (size_t i = 0; i < tal_count(proposed_wireaddr); i++) { for (size_t i = 0; i < tal_count(proposed_wireaddr); i++) {
struct wireaddr_internal wa = proposed_wireaddr[i]; struct wireaddr_internal wa = proposed_wireaddr[i];
/* We want announce-only addresses. */
if (proposed_listen_announce[i] & ADDR_LISTEN) if (proposed_listen_announce[i] & ADDR_LISTEN)
continue; continue;
assert(proposed_listen_announce[i] & ADDR_ANNOUNCE); assert(proposed_listen_announce[i] & ADDR_ANNOUNCE);
/* You can only announce wiretypes! */ /* You can only announce wiretypes, not internal formats! */
assert(proposed_wireaddr[i].itype assert(proposed_wireaddr[i].itype
== ADDR_INTERNAL_WIREADDR); == ADDR_INTERNAL_WIREADDR);
add_announcable(announcable, &wa.u.wireaddr); add_announcable(announcable, &wa.u.wireaddr);
@ -777,6 +965,7 @@ static struct wireaddr_internal *setup_listeners(const tal_t *ctx,
continue; continue;
switch (wa.itype) { switch (wa.itype) {
/* We support UNIX domain sockets, but can't announce */
case ADDR_INTERNAL_SOCKNAME: case ADDR_INTERNAL_SOCKNAME:
addrun.sun_family = AF_UNIX; addrun.sun_family = AF_UNIX;
memcpy(addrun.sun_path, wa.u.sockname, memcpy(addrun.sun_path, wa.u.sockname,
@ -793,6 +982,7 @@ static struct wireaddr_internal *setup_listeners(const tal_t *ctx,
case ADDR_INTERNAL_AUTOTOR: case ADDR_INTERNAL_AUTOTOR:
/* We handle these after we have all bindings. */ /* We handle these after we have all bindings. */
continue; continue;
/* Special case meaning IPv6 and IPv4 */
case ADDR_INTERNAL_ALLPROTO: { case ADDR_INTERNAL_ALLPROTO: {
bool ipv6_ok; bool ipv6_ok;
@ -831,6 +1021,7 @@ static struct wireaddr_internal *setup_listeners(const tal_t *ctx,
} }
continue; continue;
} }
/* This is a vanilla wireaddr as per BOLT #7 */
case ADDR_INTERNAL_WIREADDR: case ADDR_INTERNAL_WIREADDR:
handle_wireaddr_listen(daemon, &wa.u.wireaddr, false); handle_wireaddr_listen(daemon, &wa.u.wireaddr, false);
add_binding(&binding, &wa); add_binding(&binding, &wa);
@ -846,7 +1037,8 @@ static struct wireaddr_internal *setup_listeners(const tal_t *ctx,
proposed_wireaddr[i].itype); proposed_wireaddr[i].itype);
} }
/* Now we have bindings, set up any Tor auto addresses */ /* Now we have bindings, set up any Tor auto addresses: we will point
* it at the first bound IPv4 or IPv6 address we have. */
for (size_t i = 0; i < tal_count(proposed_wireaddr); i++) { for (size_t i = 0; i < tal_count(proposed_wireaddr); i++) {
if (!(proposed_listen_announce[i] & ADDR_LISTEN)) if (!(proposed_listen_announce[i] & ADDR_LISTEN))
continue; continue;
@ -864,15 +1056,16 @@ static struct wireaddr_internal *setup_listeners(const tal_t *ctx,
binding)); binding));
} }
/* Sort and uniquify. */
finalize_announcable(announcable); finalize_announcable(announcable);
return binding; return binding;
} }
/* Parse an incoming connect init message and assign config variables /*~ Parse the incoming connect init message from lightningd ("master") and
* to the daemon. * assign config variables to the daemon; it should be the first message we
*/ * get. */
static struct io_plan *connect_init(struct daemon_conn *master, static struct io_plan *connect_init(struct daemon_conn *master,
struct daemon *daemon, struct daemon *daemon,
const u8 *msg) const u8 *msg)
@ -884,6 +1077,7 @@ static struct io_plan *connect_init(struct daemon_conn *master,
struct wireaddr *announcable; struct wireaddr *announcable;
char *tor_password; char *tor_password;
/* Fields which require allocation are allocated off daemon */
if (!fromwire_connectctl_init( if (!fromwire_connectctl_init(
daemon, msg, daemon, msg,
&daemon->id, &daemon->globalfeatures, &daemon->id, &daemon->globalfeatures,
@ -892,10 +1086,13 @@ static struct io_plan *connect_init(struct daemon_conn *master,
&proxyaddr, &daemon->use_proxy_always, &proxyaddr, &daemon->use_proxy_always,
&daemon->dev_allow_localhost, &daemon->use_dns, &daemon->dev_allow_localhost, &daemon->use_dns,
&tor_password)) { &tor_password)) {
/* This is a helper which prints the type expected and the actual
* message, then exits (it should never be called!). */
master_badmsg(WIRE_CONNECTCTL_INIT, msg); master_badmsg(WIRE_CONNECTCTL_INIT, msg);
} }
/* Resolve Tor proxy address if any */ /* Resolve Tor proxy address if any: we need an addrinfo to connect()
* to. */
if (proxyaddr) { if (proxyaddr) {
status_trace("Proxy address: %s", status_trace("Proxy address: %s",
fmt_wireaddr(tmpctx, proxyaddr)); fmt_wireaddr(tmpctx, proxyaddr));
@ -908,20 +1105,24 @@ static struct io_plan *connect_init(struct daemon_conn *master,
"dummy replies"); "dummy replies");
} }
/* Figure out our addresses. */
binding = setup_listeners(tmpctx, daemon, binding = setup_listeners(tmpctx, daemon,
proposed_wireaddr, proposed_wireaddr,
proposed_listen_announce, proposed_listen_announce,
tor_password, tor_password,
&announcable); &announcable);
/* Tell it we're ready, handing it the addresses we have. */
daemon_conn_send(&daemon->master, daemon_conn_send(&daemon->master,
take(towire_connectctl_init_reply(NULL, take(towire_connectctl_init_reply(NULL,
binding, binding,
announcable))); announcable)));
/* Read the next message. */
return daemon_conn_read_next(master->conn, master); return daemon_conn_read_next(master->conn, master);
} }
/*~ lightningd tells us to go! */
static struct io_plan *connect_activate(struct daemon_conn *master, static struct io_plan *connect_activate(struct daemon_conn *master,
struct daemon *daemon, struct daemon *daemon,
const u8 *msg) const u8 *msg)
@ -931,6 +1132,7 @@ static struct io_plan *connect_activate(struct daemon_conn *master,
if (!fromwire_connectctl_activate(msg, &do_listen)) if (!fromwire_connectctl_activate(msg, &do_listen))
master_badmsg(WIRE_CONNECTCTL_ACTIVATE, msg); master_badmsg(WIRE_CONNECTCTL_ACTIVATE, msg);
/* If we're --offline, lightningd tells us not to actually listen. */
if (do_listen) { if (do_listen) {
for (size_t i = 0; i < tal_count(daemon->listen_fds); i++) { for (size_t i = 0; i < tal_count(daemon->listen_fds); i++) {
/* On Linux, at least, we may bind to all addresses /* On Linux, at least, we may bind to all addresses
@ -946,6 +1148,7 @@ static struct io_plan *connect_activate(struct daemon_conn *master,
connection_in, daemon); connection_in, daemon);
} }
} }
/* Free, with NULL assignment just as an extra sanity check. */
daemon->listen_fds = tal_free(daemon->listen_fds); daemon->listen_fds = tal_free(daemon->listen_fds);
/* OK, we're ready! */ /* OK, we're ready! */
@ -954,6 +1157,7 @@ static struct io_plan *connect_activate(struct daemon_conn *master,
return daemon_conn_read_next(master->conn, master); return daemon_conn_read_next(master->conn, master);
} }
/*~ This is where we'd put a BOLT #10 reference, but it doesn't exist :( */
static const char *seedname(const tal_t *ctx, const struct pubkey *id) static const char *seedname(const tal_t *ctx, const struct pubkey *id)
{ {
char bech32[100]; char bech32[100];
@ -966,6 +1170,13 @@ static const char *seedname(const tal_t *ctx, const struct pubkey *id)
return tal_fmt(ctx, "%s.lseed.bitcoinstats.com", bech32); return tal_fmt(ctx, "%s.lseed.bitcoinstats.com", bech32);
} }
/*~ As a last resort, we do a DNS lookup to the lightning DNS seed to
* resolve a node name when they say to connect to it. This is synchronous,
* so connectd blocks, but it's not very common so we haven't fixed it.
*
* This "seed by DNS" approach is similar to what bitcoind uses, and in fact
* has the nice property that DNS is cached, and the seed only sees a request
* from the ISP, not directly from the user. */
static void add_seed_addrs(struct wireaddr_internal **addrs, static void add_seed_addrs(struct wireaddr_internal **addrs,
const struct pubkey *id, const struct pubkey *id,
struct sockaddr *broken_reply) struct sockaddr *broken_reply)
@ -989,18 +1200,22 @@ static void add_seed_addrs(struct wireaddr_internal **addrs,
} }
} }
/*~ This asks gossipd for any addresses advertized by the node. */
static void add_gossip_addrs(struct wireaddr_internal **addrs, static void add_gossip_addrs(struct wireaddr_internal **addrs,
const struct pubkey *id) const struct pubkey *id)
{ {
u8 *msg; u8 *msg;
struct wireaddr *normal_addrs; struct wireaddr *normal_addrs;
/* For simplicity, we do this synchronous. */
msg = towire_gossip_get_addrs(NULL, id); msg = towire_gossip_get_addrs(NULL, id);
if (!wire_sync_write(GOSSIPCTL_FD, take(msg))) if (!wire_sync_write(GOSSIPCTL_FD, take(msg)))
status_failed(STATUS_FAIL_INTERNAL_ERROR, status_failed(STATUS_FAIL_INTERNAL_ERROR,
"Failed writing to gossipctl: %s", "Failed writing to gossipctl: %s",
strerror(errno)); strerror(errno));
/* This returns 'struct wireaddr's since that's what's supported by
* the BOLT #7 protocol. */
msg = wire_sync_read(tmpctx, GOSSIPCTL_FD); msg = wire_sync_read(tmpctx, GOSSIPCTL_FD);
if (!fromwire_gossip_get_addrs_reply(tmpctx, msg, &normal_addrs)) if (!fromwire_gossip_get_addrs_reply(tmpctx, msg, &normal_addrs))
status_failed(STATUS_FAIL_INTERNAL_ERROR, status_failed(STATUS_FAIL_INTERNAL_ERROR,
@ -1016,7 +1231,10 @@ static void add_gossip_addrs(struct wireaddr_internal **addrs,
} }
} }
/* Consumes addrhint if not NULL */ /*~ Consumes addrhint if not NULL.
*
* That's a pretty ugly interface: we should use TAKEN, but we only have one
* caller so it's marginal. */
static void try_connect_peer(struct daemon *daemon, static void try_connect_peer(struct daemon *daemon,
const struct pubkey *id, const struct pubkey *id,
u32 seconds_waited, u32 seconds_waited,
@ -1034,7 +1252,10 @@ static void try_connect_peer(struct daemon *daemon,
if (find_connecting(daemon, id)) if (find_connecting(daemon, id))
return; return;
/* Start an array of addresses to try. */
addrs = tal_arr(tmpctx, struct wireaddr_internal, 0); addrs = tal_arr(tmpctx, struct wireaddr_internal, 0);
/* They can supply an optional address for the connect RPC */
if (addrhint) if (addrhint)
*tal_arr_expand(&addrs) = *addrhint; *tal_arr_expand(&addrs) = *addrhint;
@ -1043,6 +1264,8 @@ static void try_connect_peer(struct daemon *daemon,
if (tal_count(addrs) == 0) { if (tal_count(addrs) == 0) {
/* Don't resolve via DNS seed if we're supposed to use proxy. */ /* Don't resolve via DNS seed if we're supposed to use proxy. */
if (use_proxy) { if (use_proxy) {
/* You're allowed to use names with proxies; in fact it's
* a good idea. */
struct wireaddr_internal unresolved; struct wireaddr_internal unresolved;
wireaddr_from_unresolved(&unresolved, wireaddr_from_unresolved(&unresolved,
seedname(tmpctx, id), seedname(tmpctx, id),
@ -1054,18 +1277,24 @@ static void try_connect_peer(struct daemon *daemon,
} }
} }
/* Still no address? Fail immediately. Lightningd can still choose
* to retry; an address may get gossiped or appear on the DNS seed. */
if (tal_count(addrs) == 0) { if (tal_count(addrs) == 0) {
connect_failed(daemon, id, seconds_waited, addrhint, connect_failed(daemon, id, seconds_waited, addrhint,
"No address known"); "No address known");
return; return;
} }
/* Start connecting to it */ /* Start connecting to it: since this is the only place we allocate
* a 'struct connecting' we don't write a separate new_connecting(). */
connect = tal(daemon, struct connecting); connect = tal(daemon, struct connecting);
connect->daemon = daemon; connect->daemon = daemon;
connect->id = *id; connect->id = *id;
connect->addrs = tal_steal(connect, addrs); connect->addrs = tal_steal(connect, addrs);
connect->addrnum = 0; connect->addrnum = 0;
/* connstate is supposed to be updated as we go, to give context for
* errors which occur. We miss it in a few places; would be nice to
* fix! */
connect->connstate = "Connection establishment"; connect->connstate = "Connection establishment";
connect->seconds_waited = seconds_waited; connect->seconds_waited = seconds_waited;
connect->addrhint = tal_steal(connect, addrhint); connect->addrhint = tal_steal(connect, addrhint);
@ -1073,9 +1302,11 @@ static void try_connect_peer(struct daemon *daemon,
list_add_tail(&daemon->connecting, &connect->list); list_add_tail(&daemon->connecting, &connect->list);
tal_add_destructor(connect, destroy_connecting); tal_add_destructor(connect, destroy_connecting);
/* Now we kick it off by trying connect->addrs[connect->addrnum] */
try_connect_one_addr(connect); try_connect_one_addr(connect);
} }
/* lightningd tells us to connect to a peer by id, with optional addr hint. */
static struct io_plan *connect_to_peer(struct io_conn *conn, static struct io_plan *connect_to_peer(struct io_conn *conn,
struct daemon *daemon, const u8 *msg) struct daemon *daemon, const u8 *msg)
{ {
@ -1092,6 +1323,7 @@ static struct io_plan *connect_to_peer(struct io_conn *conn,
return daemon_conn_read_next(conn, &daemon->master); return daemon_conn_read_next(conn, &daemon->master);
} }
/* lightningd tells us a peer has disconnected. */
static struct io_plan *peer_disconnected(struct io_conn *conn, static struct io_plan *peer_disconnected(struct io_conn *conn,
struct daemon *daemon, const u8 *msg) struct daemon *daemon, const u8 *msg)
{ {
@ -1100,6 +1332,7 @@ static struct io_plan *peer_disconnected(struct io_conn *conn,
if (!fromwire_connectctl_peer_disconnected(msg, &id)) if (!fromwire_connectctl_peer_disconnected(msg, &id))
master_badmsg(WIRE_CONNECTCTL_PEER_DISCONNECTED, msg); master_badmsg(WIRE_CONNECTCTL_PEER_DISCONNECTED, msg);
/* We should stay in sync with lightningd at all times. */
key = pubkey_set_get(&daemon->peers, &id); key = pubkey_set_get(&daemon->peers, &id);
if (!key) if (!key)
status_failed(STATUS_FAIL_INTERNAL_ERROR, status_failed(STATUS_FAIL_INTERNAL_ERROR,
@ -1107,10 +1340,14 @@ static struct io_plan *peer_disconnected(struct io_conn *conn,
type_to_string(tmpctx, struct pubkey, &id)); type_to_string(tmpctx, struct pubkey, &id));
pubkey_set_del(&daemon->peers, key); pubkey_set_del(&daemon->peers, key);
/* Wake up in case there's a reconnecting peer waiting. */ /* Wake up in case there's a reconnecting peer waiting in io_wait. */
io_wake(key); io_wake(key);
/* Note: deleting from a htable (a-la pubkey_set_del) does not free it:
* htable doesn't assume it's a tal object at all. */
tal_free(key); tal_free(key);
/* Read the next message from lightningd. */
return daemon_conn_read_next(conn, &daemon->master); return daemon_conn_read_next(conn, &daemon->master);
} }
@ -1119,6 +1356,8 @@ static struct io_plan *recv_req(struct io_conn *conn, struct daemon_conn *master
struct daemon *daemon = container_of(master, struct daemon, master); struct daemon *daemon = container_of(master, struct daemon, master);
enum connect_wire_type t = fromwire_peektype(master->msg_in); enum connect_wire_type t = fromwire_peektype(master->msg_in);
/* Demux requests from lightningd: we expect INIT then ACTIVATE, then
* connect requests and disconnected messages. */
switch (t) { switch (t) {
case WIRE_CONNECTCTL_INIT: case WIRE_CONNECTCTL_INIT:
return connect_init(master, daemon, master->msg_in); return connect_init(master, daemon, master->msg_in);
@ -1146,7 +1385,11 @@ static struct io_plan *recv_req(struct io_conn *conn, struct daemon_conn *master
t, tal_hex(tmpctx, master->msg_in)); t, tal_hex(tmpctx, master->msg_in));
} }
/* Helper for handshake.c */ /*~ Helper for handshake.c: we ask `hsmd` to do the ECDH to get the shared
* secret. It's here because it's nicer then giving the handshake code
* knowledge of the HSM, but also at one stage I made a hacky gossip vampire
* tool which used the handshake code, so it's nice to keep that
* standalone. */
bool hsm_do_ecdh(struct secret *ss, const struct pubkey *point) bool hsm_do_ecdh(struct secret *ss, const struct pubkey *point)
{ {
u8 *req = towire_hsm_ecdh_req(tmpctx, point), *resp; u8 *req = towire_hsm_ecdh_req(tmpctx, point), *resp;
@ -1161,6 +1404,12 @@ bool hsm_do_ecdh(struct secret *ss, const struct pubkey *point)
return true; return true;
} }
/*~ UNUSED is defined to an __attribute__ for GCC; at one stage we tried to use
* it ubiquitously to make us compile cleanly with -Wunused, but it's bitrotted
* and we'd need to start again.
*
* The C++ method of omitting unused parameter names is *much* neater, and I
* hope we'll eventually see it in a C standard. */
static void master_gone(struct io_conn *unused UNUSED, struct daemon_conn *dc UNUSED) static void master_gone(struct io_conn *unused UNUSED, struct daemon_conn *dc UNUSED)
{ {
/* Can't tell master, it's gone. */ /* Can't tell master, it's gone. */
@ -1173,8 +1422,10 @@ int main(int argc, char *argv[])
struct daemon *daemon; struct daemon *daemon;
/* Common subdaemon setup code. */
subdaemon_setup(argc, argv); subdaemon_setup(argc, argv);
/* Allocate and set up our simple top-level structure. */
daemon = tal(NULL, struct daemon); daemon = tal(NULL, struct daemon);
pubkey_set_init(&daemon->peers); pubkey_set_init(&daemon->peers);
list_head_init(&daemon->connecting); list_head_init(&daemon->connecting);
@ -1182,9 +1433,18 @@ int main(int argc, char *argv[])
/* stdin == control */ /* stdin == control */
daemon_conn_init(daemon, &daemon->master, STDIN_FILENO, recv_req, daemon_conn_init(daemon, &daemon->master, STDIN_FILENO, recv_req,
master_gone); master_gone);
/* This tells the status_* subsystem to use this connection to send
* our status_ and failed messages. */
status_setup_async(&daemon->master); status_setup_async(&daemon->master);
/* Should never exit. */ /* Should never exit. */
io_loop(NULL, NULL); io_loop(NULL, NULL);
abort(); abort();
} }
/*~ Getting bored? This was a pretty simple daemon!
*
* The good news is that the next daemon gossipd/gossipd.c is the most complex
* global daemon we have!
*/

Loading…
Cancel
Save