// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.
var common = require ( '../common' ) ;
var assert = require ( 'assert' ) ;
try {
var crypto = require ( 'crypto' ) ;
} catch ( e ) {
console . log ( 'Not compiled with OPENSSL support.' ) ;
process . exit ( ) ;
}
var fs = require ( 'fs' ) ;
var path = require ( 'path' ) ;
// Test Certificates
var caPem = fs . readFileSync ( common . fixturesDir + '/test_ca.pem' , 'ascii' ) ;
var certPem = fs . readFileSync ( common . fixturesDir + '/test_cert.pem' , 'ascii' ) ;
var keyPem = fs . readFileSync ( common . fixturesDir + '/test_key.pem' , 'ascii' ) ;
var rsaPubPem = fs . readFileSync ( common . fixturesDir + '/test_rsa_pubkey.pem' ,
'ascii' ) ;
var rsaKeyPem = fs . readFileSync ( common . fixturesDir + '/test_rsa_privkey.pem' ,
'ascii' ) ;
try {
var credentials = crypto . createCredentials (
{ key : keyPem ,
cert : certPem ,
ca : caPem } ) ;
} catch ( e ) {
console . log ( 'Not compiled with OPENSSL support.' ) ;
process . exit ( ) ;
}
// Test HMAC
var h1 = crypto . createHmac ( 'sha1' , 'Node' )
. update ( 'some data' )
. update ( 'to hmac' )
. digest ( 'hex' ) ;
assert . equal ( h1 , '19fd6e1ba73d9ed2224dd5094a71babe85d9a892' , 'test HMAC' ) ;
// Test HMAC-SHA-* (rfc 4231 Test Cases)
var rfc4231 = [
{
key : new Buffer ( '0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b' , 'hex' ) ,
data : new Buffer ( '4869205468657265' , 'hex' ) , // 'Hi There'
hmac : {
sha224 : '896fb1128abbdf196832107cd49df33f47b4b1169912ba4f53684b22' ,
sha256 : 'b0344c61d8db38535ca8afceaf0bf12b881dc200c9833da726e9376c2e32cff7' ,
sha384 : 'afd03944d84895626b0825f4ab46907f15f9dadbe4101ec682aa034c7cebc59cfaea9ea9076ede7f4af152e8b2fa9cb6' ,
sha512 : '87aa7cdea5ef619d4ff0b4241a1d6cb02379f4e2ce4ec2787ad0b30545e17cdedaa833b7d6b8a702038b274eaea3f4e4be9d914eeb61f1702e696c203a126854'
}
} ,
{
key : new Buffer ( '4a656665' , 'hex' ) , // 'Jefe'
data : new Buffer ( '7768617420646f2079612077616e7420666f72206e6f7468696e673f' , 'hex' ) , // 'what do ya want for nothing?'
hmac : {
sha224 : 'a30e01098bc6dbbf45690f3a7e9e6d0f8bbea2a39e6148008fd05e44' ,
sha256 : '5bdcc146bf60754e6a042426089575c75a003f089d2739839dec58b964ec3843' ,
sha384 : 'af45d2e376484031617f78d2b58a6b1b9c7ef464f5a01b47e42ec3736322445e8e2240ca5e69e2c78b3239ecfab21649' ,
sha512 : '164b7a7bfcf819e2e395fbe73b56e0a387bd64222e831fd610270cd7ea2505549758bf75c05a994a6d034f65f8f0e6fdcaeab1a34d4a6b4b636e070a38bce737'
}
} ,
{
key : new Buffer ( 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' , 'hex' ) ,
data : new Buffer ( 'dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd' , 'hex' ) ,
hmac : {
sha224 : '7fb3cb3588c6c1f6ffa9694d7d6ad2649365b0c1f65d69d1ec8333ea' ,
sha256 : '773ea91e36800e46854db8ebd09181a72959098b3ef8c122d9635514ced565fe' ,
sha384 : '88062608d3e6ad8a0aa2ace014c8a86f0aa635d947ac9febe83ef4e55966144b2a5ab39dc13814b94e3ab6e101a34f27' ,
sha512 : 'fa73b0089d56a284efb0f0756c890be9b1b5dbdd8ee81a3655f83e33b2279d39bf3e848279a722c806b485a47e67c807b946a337bee8942674278859e13292fb'
}
} ,
{
key : new Buffer ( '0102030405060708090a0b0c0d0e0f10111213141516171819' , 'hex' ) ,
data : new Buffer ( 'cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd' , 'hex' ) ,
hmac : {
sha224 : '6c11506874013cac6a2abc1bb382627cec6a90d86efc012de7afec5a' ,
sha256 : '82558a389a443c0ea4cc819899f2083a85f0faa3e578f8077a2e3ff46729665b' ,
sha384 : '3e8a69b7783c25851933ab6290af6ca77a9981480850009cc5577c6e1f573b4e6801dd23c4a7d679ccf8a386c674cffb' ,
sha512 : 'b0ba465637458c6990e5a8c5f61d4af7e576d97ff94b872de76f8050361ee3dba91ca5c11aa25eb4d679275cc5788063a5f19741120c4f2de2adebeb10a298dd'
}
} ,
{
key : new Buffer ( '0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c' , 'hex' ) ,
data : new Buffer ( '546573742057697468205472756e636174696f6e' , 'hex' ) , // 'Test With Truncation'
hmac : {
sha224 : '0e2aea68a90c8d37c988bcdb9fca6fa8' ,
sha256 : 'a3b6167473100ee06e0c796c2955552b' ,
sha384 : '3abf34c3503b2a23a46efc619baef897' ,
sha512 : '415fad6271580a531d4179bc891d87a6'
} ,
truncate : true
} ,
{
key : new Buffer ( 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' , 'hex' ) ,
data : new Buffer ( '54657374205573696e67204c6172676572205468616e20426c6f636b2d53697a65204b6579202d2048617368204b6579204669727374' , 'hex' ) , // 'Test Using Larger Than Block-Size Key - Hash Key First'
hmac : {
sha224 : '95e9a0db962095adaebe9b2d6f0dbce2d499f112f2d2b7273fa6870e' ,
sha256 : '60e431591ee0b67f0d8a26aacbf5b77f8e0bc6213728c5140546040f0ee37f54' ,
sha384 : '4ece084485813e9088d2c63a041bc5b44f9ef1012a2b588f3cd11f05033ac4c60c2ef6ab4030fe8296248df163f44952' ,
sha512 : '80b24263c7c1a3ebb71493c1dd7be8b49b46d1f41b4aeec1121b013783f8f3526b56d037e05f2598bd0fd2215d6a1e5295e64f73f63f0aec8b915a985d786598'
}
} ,
{
key : new Buffer ( 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' , 'hex' ) ,
data : new Buffer ( '5468697320697320612074657374207573696e672061206c6172676572207468616e20626c6f636b2d73697a65206b657920616e642061206c6172676572207468616e20626c6f636b2d73697a6520646174612e20546865206b6579206e6565647320746f20626520686173686564206265666f7265206265696e6720757365642062792074686520484d414320616c676f726974686d2e' , 'hex' ) , // 'This is a test using a larger than block-size key and a larger than block-size data. The key needs to be hashed before being used by the HMAC algorithm.'
hmac : {
sha224 : '3a854166ac5d9f023f54d517d0b39dbd946770db9c2b95c9f6f565d1' ,
sha256 : '9b09ffa71b942fcb27635fbcd5b0e944bfdc63644f0713938a7f51535c3a35e2' ,
sha384 : '6617178e941f020d351e2f254e8fd32c602420feb0b8fb9adccebb82461e99c5a678cc31e799176d3860e6110c46523e' ,
sha512 : 'e37b6a775dc87dbaa4dfa9f96e5e3ffddebd71f8867289865df5a32d20cdc944b6022cac3c4982b10d5eeb55c3e4de15134676fb6de0446065c97440fa8c6a58'
}
}
] ;
for ( var i = 0 , l = rfc4231 . length ; i < l ; i ++ ) {
for ( var hash in rfc4231 [ i ] [ 'hmac' ] ) {
var result = crypto . createHmac ( hash , rfc4231 [ i ] [ 'key' ] )
. update ( rfc4231 [ i ] [ 'data' ] )
. digest ( 'hex' ) ;
if ( rfc4231 [ i ] [ 'truncate' ] ) {
result = result . substr ( 0 , 32 ) ; // first 128 bits == 32 hex chars
}
assert . equal ( rfc4231 [ i ] [ 'hmac' ] [ hash ] ,
result ,
'Test HMAC-' + hash + ': Test case ' + ( i + 1 ) + ' rfc 4231' ) ;
}
}
// Test HMAC-MD5/SHA1 (rfc 2202 Test Cases)
var rfc2202_md5 = [
{
key : new Buffer ( '0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b' , 'hex' ) ,
data : 'Hi There' ,
hmac : '9294727a3638bb1c13f48ef8158bfc9d'
} ,
{
key : 'Jefe' ,
data : 'what do ya want for nothing?' ,
hmac : '750c783e6ab0b503eaa86e310a5db738'
} ,
{
key : new Buffer ( 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' , 'hex' ) ,
data : new Buffer ( 'dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd' , 'hex' ) ,
hmac : '56be34521d144c88dbb8c733f0e8b3f6'
} ,
{
key : new Buffer ( '0102030405060708090a0b0c0d0e0f10111213141516171819' , 'hex' ) ,
data : new Buffer ( 'cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd' , 'hex' ) ,
hmac : '697eaf0aca3a3aea3a75164746ffaa79'
} ,
{
key : new Buffer ( '0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c' , 'hex' ) ,
data : 'Test With Truncation' ,
hmac : '56461ef2342edc00f9bab995690efd4c'
} ,
{
key : new Buffer ( 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' , 'hex' ) ,
data : 'Test Using Larger Than Block-Size Key - Hash Key First' ,
hmac : '6b1ab7fe4bd7bf8f0b62e6ce61b9d0cd'
} ,
{
key : new Buffer ( 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' , 'hex' ) ,
data : 'Test Using Larger Than Block-Size Key and Larger Than One Block-Size Data' ,
hmac : '6f630fad67cda0ee1fb1f562db3aa53e'
}
] ;
var rfc2202_sha1 = [
{
key : new Buffer ( '0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b' , 'hex' ) ,
data : 'Hi There' ,
hmac : 'b617318655057264e28bc0b6fb378c8ef146be00'
} ,
{
key : 'Jefe' ,
data : 'what do ya want for nothing?' ,
hmac : 'effcdf6ae5eb2fa2d27416d5f184df9c259a7c79'
} ,
{
key : new Buffer ( 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' , 'hex' ) ,
data : new Buffer ( 'dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd' , 'hex' ) ,
hmac : '125d7342b9ac11cd91a39af48aa17b4f63f175d3'
} ,
{
key : new Buffer ( '0102030405060708090a0b0c0d0e0f10111213141516171819' , 'hex' ) ,
data : new Buffer ( 'cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd' , 'hex' ) ,
hmac : '4c9007f4026250c6bc8414f9bf50c86c2d7235da'
} ,
{
key : new Buffer ( '0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c' , 'hex' ) ,
data : 'Test With Truncation' ,
hmac : '4c1a03424b55e07fe7f27be1d58bb9324a9a5a04'
} ,
{
key : new Buffer ( 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' , 'hex' ) ,
data : 'Test Using Larger Than Block-Size Key - Hash Key First' ,
hmac : 'aa4ae5e15272d00e95705637ce8a3b55ed402112'
} ,
{
key : new Buffer ( 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' , 'hex' ) ,
data : 'Test Using Larger Than Block-Size Key and Larger Than One Block-Size Data' ,
hmac : 'e8e99d0f45237d786d6bbaa7965c7808bbff1a91'
}
] ;
for ( var i = 0 , l = rfc2202_md5 . length ; i < l ; i ++ ) {
assert . equal ( rfc2202_md5 [ i ] [ 'hmac' ] ,
crypto . createHmac ( 'md5' , rfc2202_md5 [ i ] [ 'key' ] )
. update ( rfc2202_md5 [ i ] [ 'data' ] )
. digest ( 'hex' ) ,
'Test HMAC-MD5 : Test case ' + ( i + 1 ) + ' rfc 2202' ) ;
}
for ( var i = 0 , l = rfc2202_sha1 . length ; i < l ; i ++ ) {
assert . equal ( rfc2202_sha1 [ i ] [ 'hmac' ] ,
crypto . createHmac ( 'sha1' , rfc2202_sha1 [ i ] [ 'key' ] )
. update ( rfc2202_sha1 [ i ] [ 'data' ] )
. digest ( 'hex' ) ,
'Test HMAC-SHA1 : Test case ' + ( i + 1 ) + ' rfc 2202' ) ;
}
// Test hashing
var a0 = crypto . createHash ( 'sha1' ) . update ( 'Test123' ) . digest ( 'hex' ) ;
var a1 = crypto . createHash ( 'md5' ) . update ( 'Test123' ) . digest ( 'binary' ) ;
var a2 = crypto . createHash ( 'sha256' ) . update ( 'Test123' ) . digest ( 'base64' ) ;
var a3 = crypto . createHash ( 'sha512' ) . update ( 'Test123' ) . digest ( ) ; // binary
assert . equal ( a0 , '8308651804facb7b9af8ffc53a33a22d6a1c8ac2' , 'Test SHA1' ) ;
assert . equal ( a1 , 'h\u00ea\u00cb\u0097\u00d8o\fF!\u00fa+\u000e\u0017\u00ca' +
'\u00bd\u008c' , 'Test MD5 as binary' ) ;
assert . equal ( a2 , '2bX1jws4GYKTlxhloUB09Z66PoJZW+y+hq5R8dnx9l4=' ,
'Test SHA256 as base64' ) ;
assert . equal ( a3 , '\u00c1(4\u00f1\u0003\u001fd\u0097!O\'\u00d4C/&Qz\u00d4' +
'\u0094\u0015l\u00b8\u008dQ+\u00db\u001d\u00c4\u00b5}\u00b2' +
'\u00d6\u0092\u00a3\u00df\u00a2i\u00a1\u009b\n\n*\u000f' +
'\u00d7\u00d6\u00a2\u00a8\u0085\u00e3<\u0083\u009c\u0093' +
'\u00c2\u0006\u00da0\u00a1\u00879(G\u00ed\'' ,
'Test SHA512 as assumed binary' ) ;
// Test multiple updates to same hash
var h1 = crypto . createHash ( 'sha1' ) . update ( 'Test123' ) . digest ( 'hex' ) ;
var h2 = crypto . createHash ( 'sha1' ) . update ( 'Test' ) . update ( '123' ) . digest ( 'hex' ) ;
assert . equal ( h1 , h2 , 'multipled updates' ) ;
// Test hashing for binary files
var fn = path . join ( common . fixturesDir , 'sample.png' ) ;
var sha1Hash = crypto . createHash ( 'sha1' ) ;
var fileStream = fs . createReadStream ( fn ) ;
fileStream . on ( 'data' , function ( data ) {
sha1Hash . update ( data ) ;
} ) ;
fileStream . on ( 'close' , function ( ) {
assert . equal ( sha1Hash . digest ( 'hex' ) ,
'22723e553129a336ad96e10f6aecdf0f45e4149e' ,
'Test SHA1 of sample.png' ) ;
} ) ;
// Issue #2227: unknown digest method should throw an error.
assert . throws ( function ( ) {
crypto . createHash ( 'xyzzy' ) ;
} ) ;
// Test signing and verifying
var s1 = crypto . createSign ( 'RSA-SHA1' )
. update ( 'Test123' )
. sign ( keyPem , 'base64' ) ;
var verified = crypto . createVerify ( 'RSA-SHA1' )
. update ( 'Test' )
. update ( '123' )
. verify ( certPem , s1 , 'base64' ) ;
assert . strictEqual ( verified , true , 'sign and verify (base 64)' ) ;
var s2 = crypto . createSign ( 'RSA-SHA256' )
. update ( 'Test123' )
. sign ( keyPem ) ; // binary
var verified = crypto . createVerify ( 'RSA-SHA256' )
. update ( 'Test' )
. update ( '123' )
. verify ( certPem , s2 ) ; // binary
assert . strictEqual ( verified , true , 'sign and verify (binary)' ) ;
// Test encryption and decryption
var plaintext = 'Keep this a secret? No! Tell everyone about node.js!' ;
var cipher = crypto . createCipher ( 'aes192' , 'MySecretKey123' ) ;
// encrypt plaintext which is in utf8 format
// to a ciphertext which will be in hex
var ciph = cipher . update ( plaintext , 'utf8' , 'hex' ) ;
// Only use binary or hex, not base64.
ciph += cipher . final ( 'hex' ) ;
var decipher = crypto . createDecipher ( 'aes192' , 'MySecretKey123' ) ;
var txt = decipher . update ( ciph , 'hex' , 'utf8' ) ;
txt += decipher . final ( 'utf8' ) ;
assert . equal ( txt , plaintext , 'encryption and decryption' ) ;
// encryption and decryption with Base64
// reported in https://github.com/joyent/node/issues/738
var plaintext =
'32|RmVZZkFUVmpRRkp0TmJaUm56ZU9qcnJkaXNNWVNpTTU*|iXmckfRWZBGWWELw' +
'eCBsThSsfUHLeRe0KCsK8ooHgxie0zOINpXxfZi/oNG7uq9JWFVCk70gfzQH8ZUJjAfaFg**' ;
var cipher = crypto . createCipher ( 'aes256' , '0123456789abcdef' ) ;
// encrypt plaintext which is in utf8 format
// to a ciphertext which will be in Base64
var ciph = cipher . update ( plaintext , 'utf8' , 'base64' ) ;
ciph += cipher . final ( 'base64' ) ;
var decipher = crypto . createDecipher ( 'aes256' , '0123456789abcdef' ) ;
var txt = decipher . update ( ciph , 'base64' , 'utf8' ) ;
txt += decipher . final ( 'utf8' ) ;
assert . equal ( txt , plaintext , 'encryption and decryption with Base64' ) ;
// Test encyrption and decryption with explicit key and iv
var encryption_key = '0123456789abcd0123456789' ;
var iv = '12345678' ;
var cipher = crypto . createCipheriv ( 'des-ede3-cbc' , encryption_key , iv ) ;
var ciph = cipher . update ( plaintext , 'utf8' , 'hex' ) ;
ciph += cipher . final ( 'hex' ) ;
var decipher = crypto . createDecipheriv ( 'des-ede3-cbc' , encryption_key , iv ) ;
var txt = decipher . update ( ciph , 'hex' , 'utf8' ) ;
txt += decipher . final ( 'utf8' ) ;
assert . equal ( txt , plaintext , 'encryption and decryption with key and iv' ) ;
// update() should only take buffers / strings
assert . throws ( function ( ) {
crypto . createHash ( 'sha1' ) . update ( { foo : 'bar' } ) ;
} , /string or buffer/ ) ;
// Test Diffie-Hellman with two parties sharing a secret,
// using various encodings as we go along
var dh1 = crypto . createDiffieHellman ( 256 ) ;
var p1 = dh1 . getPrime ( 'base64' ) ;
var dh2 = crypto . createDiffieHellman ( p1 , 'base64' ) ;
var key1 = dh1 . generateKeys ( ) ;
var key2 = dh2 . generateKeys ( 'hex' ) ;
var secret1 = dh1 . computeSecret ( key2 , 'hex' , 'base64' ) ;
var secret2 = dh2 . computeSecret ( key1 , 'binary' , 'base64' ) ;
assert . equal ( secret1 , secret2 ) ;
// Create "another dh1" using generated keys from dh1,
// and compute secret again
var dh3 = crypto . createDiffieHellman ( p1 , 'base64' ) ;
var privkey1 = dh1 . getPrivateKey ( ) ;
dh3 . setPublicKey ( key1 ) ;
dh3 . setPrivateKey ( privkey1 ) ;
assert . equal ( dh1 . getPrime ( ) , dh3 . getPrime ( ) ) ;
assert . equal ( dh1 . getGenerator ( ) , dh3 . getGenerator ( ) ) ;
assert . equal ( dh1 . getPublicKey ( ) , dh3 . getPublicKey ( ) ) ;
assert . equal ( dh1 . getPrivateKey ( ) , dh3 . getPrivateKey ( ) ) ;
var secret3 = dh3 . computeSecret ( key2 , 'hex' , 'base64' ) ;
assert . equal ( secret1 , secret3 ) ;
// https://github.com/joyent/node/issues/2338
assert . throws ( function ( ) {
var p = 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74' +
'020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F1437' +
'4FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' +
'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381FFFFFFFFFFFFFFFF' ;
crypto . createDiffieHellman ( p , 'hex' ) ;
} ) ;
// Test RSA key signing/verification
var rsaSign = crypto . createSign ( 'RSA-SHA1' ) ;
var rsaVerify = crypto . createVerify ( 'RSA-SHA1' ) ;
assert . ok ( rsaSign ) ;
assert . ok ( rsaVerify ) ;
rsaSign . update ( rsaPubPem ) ;
var rsaSignature = rsaSign . sign ( rsaKeyPem , 'hex' ) ;
assert . equal ( rsaSignature , '5c50e3145c4e2497aadb0eabc83b342d0b0021ece0d4c4a064b7c8f020d7e2688b122bfb54c724ac9ee169f83f66d2fe90abeb95e8e1290e7e177152a4de3d944cf7d4883114a20ed0f78e70e25ef0f60f06b858e6af42a2f276ede95bbc6bc9a9bbdda15bd663186a6f40819a7af19e577bb2efa5e579a1f5ce8a0d4ca8b8f6' ) ;
rsaVerify . update ( rsaPubPem ) ;
assert . strictEqual ( rsaVerify . verify ( rsaPubPem , rsaSignature , 'hex' ) , true ) ;
//
// Test RSA signing and verification
//
( function ( ) {
var privateKey = fs . readFileSync (
common . fixturesDir + '/test_rsa_privkey_2.pem' ) ;
var publicKey = fs . readFileSync (
common . fixturesDir + '/test_rsa_pubkey_2.pem' ) ;
var input = 'I AM THE WALRUS' ;
var signature = '79d59d34f56d0e94aa6a3e306882b52ed4191f07521f25f505a078dc2f89396e0c8ac89e996fde5717f4cb89199d8fec249961fcb07b74cd3d2a4ffa235417b69618e4bcd76b97e29975b7ce862299410e1b522a328e44ac9bb28195e0268da7eda23d9825ac43c724e86ceeee0d0d4465678652ccaf65010ddfb299bedeb1ad' ;
var sign = crypto . createSign ( 'RSA-SHA256' ) ;
sign . update ( input ) ;
var output = sign . sign ( privateKey , 'hex' ) ;
assert . equal ( output , signature ) ;
var verify = crypto . createVerify ( 'RSA-SHA256' ) ;
verify . update ( input ) ;
assert . strictEqual ( verify . verify ( publicKey , signature , 'hex' ) , true ) ;
} ) ( ) ;
//
// Test DSA signing and verification
//
( function ( ) {
var privateKey = fs . readFileSync (
common . fixturesDir + '/test_dsa_privkey.pem' ) ;
var publicKey = fs . readFileSync (
common . fixturesDir + '/test_dsa_pubkey.pem' ) ;
var input = 'I AM THE WALRUS' ;
// DSA signatures vary across runs so there is no static string to verify
// against
var sign = crypto . createSign ( 'DSS1' ) ;
sign . update ( input ) ;
var signature = sign . sign ( privateKey , 'hex' ) ;
var verify = crypto . createVerify ( 'DSS1' ) ;
verify . update ( input ) ;
assert . strictEqual ( verify . verify ( publicKey , signature , 'hex' ) , true ) ;
} ) ( ) ;
//
// Test PBKDF2 with RFC 6070 test vectors (except #4)
//
crypto . pbkdf2 ( 'password' , 'salt' , 1 , 20 , function ( err , result ) {
assert . equal ( result , '\x0c\x60\xc8\x0f\x96\x1f\x0e\x71\xf3\xa9\xb5\x24\xaf\x60\x12\x06\x2f\xe0\x37\xa6' , 'pbkdf1 test vector 1' ) ;
} ) ;
crypto . pbkdf2 ( 'password' , 'salt' , 2 , 20 , function ( err , result ) {
assert . equal ( result , '\xea\x6c\x01\x4d\xc7\x2d\x6f\x8c\xcd\x1e\xd9\x2a\xce\x1d\x41\xf0\xd8\xde\x89\x57' , 'pbkdf1 test vector 2' ) ;
} ) ;
crypto . pbkdf2 ( 'password' , 'salt' , 4096 , 20 , function ( err , result ) {
assert . equal ( result , '\x4b\x00\x79\x01\xb7\x65\x48\x9a\xbe\xad\x49\xd9\x26\xf7\x21\xd0\x65\xa4\x29\xc1' , 'pbkdf1 test vector 3' ) ;
} ) ;
crypto . pbkdf2 ( 'passwordPASSWORDpassword' , 'saltSALTsaltSALTsaltSALTsaltSALTsalt' , 4096 , 25 , function ( err , result ) {
assert . equal ( result , '\x3d\x2e\xec\x4f\xe4\x1c\x84\x9b\x80\xc8\xd8\x36\x62\xc0\xe4\x4a\x8b\x29\x1a\x96\x4c\xf2\xf0\x70\x38' , 'pbkdf1 test vector 5' ) ;
} ) ;
crypto . pbkdf2 ( 'pass\0word' , 'sa\0lt' , 4096 , 16 , function ( err , result ) {
assert . equal ( result , '\x56\xfa\x6a\xa7\x55\x48\x09\x9d\xcc\x37\xd7\xf0\x34\x25\xe0\xc3' , 'pbkdf1 test vector 6' ) ;
} ) ;
// Error path should not leak memory (check with valgrind).
assert . throws ( function ( ) {
crypto . pbkdf2 ( 'password' , 'salt' , 1 , 20 , null ) ;
} ) ;