|
|
|
// Copyright 2010 the V8 project authors. All rights reserved.
|
|
|
|
// Redistribution and use in source and binary forms, with or without
|
|
|
|
// modification, are permitted provided that the following conditions are
|
|
|
|
// met:
|
|
|
|
//
|
|
|
|
// * Redistributions of source code must retain the above copyright
|
|
|
|
// notice, this list of conditions and the following disclaimer.
|
|
|
|
// * Redistributions in binary form must reproduce the above
|
|
|
|
// copyright notice, this list of conditions and the following
|
|
|
|
// disclaimer in the documentation and/or other materials provided
|
|
|
|
// with the distribution.
|
|
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
|
|
// contributors may be used to endorse or promote products derived
|
|
|
|
// from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
|
|
#ifndef V8_X64_MACRO_ASSEMBLER_X64_H_
|
|
|
|
#define V8_X64_MACRO_ASSEMBLER_X64_H_
|
|
|
|
|
|
|
|
#include "assembler.h"
|
|
|
|
|
|
|
|
namespace v8 {
|
|
|
|
namespace internal {
|
|
|
|
|
|
|
|
// Flags used for the AllocateInNewSpace functions.
|
|
|
|
enum AllocationFlags {
|
|
|
|
// No special flags.
|
|
|
|
NO_ALLOCATION_FLAGS = 0,
|
|
|
|
// Return the pointer to the allocated already tagged as a heap object.
|
|
|
|
TAG_OBJECT = 1 << 0,
|
|
|
|
// The content of the result register already contains the allocation top in
|
|
|
|
// new space.
|
|
|
|
RESULT_CONTAINS_TOP = 1 << 1
|
|
|
|
};
|
|
|
|
|
|
|
|
// Default scratch register used by MacroAssembler (and other code that needs
|
|
|
|
// a spare register). The register isn't callee save, and not used by the
|
|
|
|
// function calling convention.
|
|
|
|
static const Register kScratchRegister = { 10 }; // r10.
|
|
|
|
static const Register kSmiConstantRegister = { 15 }; // r15 (callee save).
|
|
|
|
static const Register kRootRegister = { 13 }; // r13 (callee save).
|
|
|
|
// Value of smi in kSmiConstantRegister.
|
|
|
|
static const int kSmiConstantRegisterValue = 1;
|
|
|
|
|
|
|
|
// Convenience for platform-independent signatures.
|
|
|
|
typedef Operand MemOperand;
|
|
|
|
|
|
|
|
// Forward declaration.
|
|
|
|
class JumpTarget;
|
|
|
|
|
|
|
|
struct SmiIndex {
|
|
|
|
SmiIndex(Register index_register, ScaleFactor scale)
|
|
|
|
: reg(index_register),
|
|
|
|
scale(scale) {}
|
|
|
|
Register reg;
|
|
|
|
ScaleFactor scale;
|
|
|
|
};
|
|
|
|
|
|
|
|
// MacroAssembler implements a collection of frequently used macros.
|
|
|
|
class MacroAssembler: public Assembler {
|
|
|
|
public:
|
|
|
|
MacroAssembler(void* buffer, int size);
|
|
|
|
|
|
|
|
void LoadRoot(Register destination, Heap::RootListIndex index);
|
|
|
|
void CompareRoot(Register with, Heap::RootListIndex index);
|
|
|
|
void CompareRoot(const Operand& with, Heap::RootListIndex index);
|
|
|
|
void PushRoot(Heap::RootListIndex index);
|
|
|
|
void StoreRoot(Register source, Heap::RootListIndex index);
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// GC Support
|
|
|
|
|
|
|
|
// For page containing |object| mark region covering |addr| dirty.
|
|
|
|
// RecordWriteHelper only works if the object is not in new
|
|
|
|
// space.
|
|
|
|
void RecordWriteHelper(Register object,
|
|
|
|
Register addr,
|
|
|
|
Register scratch);
|
|
|
|
|
|
|
|
// Check if object is in new space. The condition cc can be equal or
|
|
|
|
// not_equal. If it is equal a jump will be done if the object is on new
|
|
|
|
// space. The register scratch can be object itself, but it will be clobbered.
|
|
|
|
template <typename LabelType>
|
|
|
|
void InNewSpace(Register object,
|
|
|
|
Register scratch,
|
|
|
|
Condition cc,
|
|
|
|
LabelType* branch);
|
|
|
|
|
|
|
|
// For page containing |object| mark region covering [object+offset]
|
|
|
|
// dirty. |object| is the object being stored into, |value| is the
|
|
|
|
// object being stored. If |offset| is zero, then the |scratch|
|
|
|
|
// register contains the array index into the elements array
|
|
|
|
// represented as an untagged 32-bit integer. All registers are
|
|
|
|
// clobbered by the operation. RecordWrite filters out smis so it
|
|
|
|
// does not update the write barrier if the value is a smi.
|
|
|
|
void RecordWrite(Register object,
|
|
|
|
int offset,
|
|
|
|
Register value,
|
|
|
|
Register scratch);
|
|
|
|
|
|
|
|
// For page containing |object| mark region covering [address]
|
|
|
|
// dirty. |object| is the object being stored into, |value| is the
|
|
|
|
// object being stored. All registers are clobbered by the
|
|
|
|
// operation. RecordWrite filters out smis so it does not update
|
|
|
|
// the write barrier if the value is a smi.
|
|
|
|
void RecordWrite(Register object,
|
|
|
|
Register address,
|
|
|
|
Register value);
|
|
|
|
|
|
|
|
// For page containing |object| mark region covering [object+offset] dirty.
|
|
|
|
// The value is known to not be a smi.
|
|
|
|
// object is the object being stored into, value is the object being stored.
|
|
|
|
// If offset is zero, then the scratch register contains the array index into
|
|
|
|
// the elements array represented as an untagged 32-bit integer.
|
|
|
|
// All registers are clobbered by the operation.
|
|
|
|
void RecordWriteNonSmi(Register object,
|
|
|
|
int offset,
|
|
|
|
Register value,
|
|
|
|
Register scratch);
|
|
|
|
|
|
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// Debugger Support
|
|
|
|
|
|
|
|
void DebugBreak();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// Activation frames
|
|
|
|
|
|
|
|
void EnterInternalFrame() { EnterFrame(StackFrame::INTERNAL); }
|
|
|
|
void LeaveInternalFrame() { LeaveFrame(StackFrame::INTERNAL); }
|
|
|
|
|
|
|
|
void EnterConstructFrame() { EnterFrame(StackFrame::CONSTRUCT); }
|
|
|
|
void LeaveConstructFrame() { LeaveFrame(StackFrame::CONSTRUCT); }
|
|
|
|
|
|
|
|
// Enter specific kind of exit frame; either in normal or
|
|
|
|
// debug mode. Expects the number of arguments in register rax and
|
|
|
|
// sets up the number of arguments in register rdi and the pointer
|
|
|
|
// to the first argument in register rsi.
|
|
|
|
//
|
|
|
|
// Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack
|
|
|
|
// accessible via StackSpaceOperand.
|
|
|
|
void EnterExitFrame(int arg_stack_space = 0, bool save_doubles = false);
|
|
|
|
|
|
|
|
// Enter specific kind of exit frame. Allocates arg_stack_space * kPointerSize
|
|
|
|
// memory (not GCed) on the stack accessible via StackSpaceOperand.
|
|
|
|
void EnterApiExitFrame(int arg_stack_space);
|
|
|
|
|
|
|
|
// Leave the current exit frame. Expects/provides the return value in
|
|
|
|
// register rax:rdx (untouched) and the pointer to the first
|
|
|
|
// argument in register rsi.
|
|
|
|
void LeaveExitFrame(bool save_doubles = false);
|
|
|
|
|
|
|
|
// Leave the current exit frame. Expects/provides the return value in
|
|
|
|
// register rax (untouched).
|
|
|
|
void LeaveApiExitFrame();
|
|
|
|
|
|
|
|
// Push and pop the registers that can hold pointers.
|
|
|
|
void PushSafepointRegisters() { Pushad(); }
|
|
|
|
void PopSafepointRegisters() { Popad(); }
|
|
|
|
static int SafepointRegisterStackIndex(int reg_code) {
|
|
|
|
return kNumSafepointRegisters - 1 -
|
|
|
|
kSafepointPushRegisterIndices[reg_code];
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// JavaScript invokes
|
|
|
|
|
|
|
|
// Invoke the JavaScript function code by either calling or jumping.
|
|
|
|
void InvokeCode(Register code,
|
|
|
|
const ParameterCount& expected,
|
|
|
|
const ParameterCount& actual,
|
|
|
|
InvokeFlag flag);
|
|
|
|
|
|
|
|
void InvokeCode(Handle<Code> code,
|
|
|
|
const ParameterCount& expected,
|
|
|
|
const ParameterCount& actual,
|
|
|
|
RelocInfo::Mode rmode,
|
|
|
|
InvokeFlag flag);
|
|
|
|
|
|
|
|
// Invoke the JavaScript function in the given register. Changes the
|
|
|
|
// current context to the context in the function before invoking.
|
|
|
|
void InvokeFunction(Register function,
|
|
|
|
const ParameterCount& actual,
|
|
|
|
InvokeFlag flag);
|
|
|
|
|
|
|
|
void InvokeFunction(JSFunction* function,
|
|
|
|
const ParameterCount& actual,
|
|
|
|
InvokeFlag flag);
|
|
|
|
|
|
|
|
// Invoke specified builtin JavaScript function. Adds an entry to
|
|
|
|
// the unresolved list if the name does not resolve.
|
|
|
|
void InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag);
|
|
|
|
|
|
|
|
// Store the function for the given builtin in the target register.
|
|
|
|
void GetBuiltinFunction(Register target, Builtins::JavaScript id);
|
|
|
|
|
|
|
|
// Store the code object for the given builtin in the target register.
|
|
|
|
void GetBuiltinEntry(Register target, Builtins::JavaScript id);
|
|
|
|
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// Smi tagging, untagging and operations on tagged smis.
|
|
|
|
|
|
|
|
void InitializeSmiConstantRegister() {
|
|
|
|
movq(kSmiConstantRegister,
|
|
|
|
reinterpret_cast<uint64_t>(Smi::FromInt(kSmiConstantRegisterValue)),
|
|
|
|
RelocInfo::NONE);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Conversions between tagged smi values and non-tagged integer values.
|
|
|
|
|
|
|
|
// Tag an integer value. The result must be known to be a valid smi value.
|
|
|
|
// Only uses the low 32 bits of the src register. Sets the N and Z flags
|
|
|
|
// based on the value of the resulting smi.
|
|
|
|
void Integer32ToSmi(Register dst, Register src);
|
|
|
|
|
|
|
|
// Stores an integer32 value into a memory field that already holds a smi.
|
|
|
|
void Integer32ToSmiField(const Operand& dst, Register src);
|
|
|
|
|
|
|
|
// Adds constant to src and tags the result as a smi.
|
|
|
|
// Result must be a valid smi.
|
|
|
|
void Integer64PlusConstantToSmi(Register dst, Register src, int constant);
|
|
|
|
|
|
|
|
// Convert smi to 32-bit integer. I.e., not sign extended into
|
|
|
|
// high 32 bits of destination.
|
|
|
|
void SmiToInteger32(Register dst, Register src);
|
|
|
|
void SmiToInteger32(Register dst, const Operand& src);
|
|
|
|
|
|
|
|
// Convert smi to 64-bit integer (sign extended if necessary).
|
|
|
|
void SmiToInteger64(Register dst, Register src);
|
|
|
|
void SmiToInteger64(Register dst, const Operand& src);
|
|
|
|
|
|
|
|
// Multiply a positive smi's integer value by a power of two.
|
|
|
|
// Provides result as 64-bit integer value.
|
|
|
|
void PositiveSmiTimesPowerOfTwoToInteger64(Register dst,
|
|
|
|
Register src,
|
|
|
|
int power);
|
|
|
|
|
|
|
|
// Divide a positive smi's integer value by a power of two.
|
|
|
|
// Provides result as 32-bit integer value.
|
|
|
|
void PositiveSmiDivPowerOfTwoToInteger32(Register dst,
|
|
|
|
Register src,
|
|
|
|
int power);
|
|
|
|
|
|
|
|
|
|
|
|
// Simple comparison of smis.
|
|
|
|
void SmiCompare(Register dst, Register src);
|
|
|
|
void SmiCompare(Register dst, Smi* src);
|
|
|
|
void SmiCompare(Register dst, const Operand& src);
|
|
|
|
void SmiCompare(const Operand& dst, Register src);
|
|
|
|
void SmiCompare(const Operand& dst, Smi* src);
|
|
|
|
// Compare the int32 in src register to the value of the smi stored at dst.
|
|
|
|
void SmiCompareInteger32(const Operand& dst, Register src);
|
|
|
|
// Sets sign and zero flags depending on value of smi in register.
|
|
|
|
void SmiTest(Register src);
|
|
|
|
|
|
|
|
// Functions performing a check on a known or potential smi. Returns
|
|
|
|
// a condition that is satisfied if the check is successful.
|
|
|
|
|
|
|
|
// Is the value a tagged smi.
|
|
|
|
Condition CheckSmi(Register src);
|
|
|
|
Condition CheckSmi(const Operand& src);
|
|
|
|
|
|
|
|
// Is the value a non-negative tagged smi.
|
|
|
|
Condition CheckNonNegativeSmi(Register src);
|
|
|
|
|
|
|
|
// Are both values tagged smis.
|
|
|
|
Condition CheckBothSmi(Register first, Register second);
|
|
|
|
|
|
|
|
// Are both values non-negative tagged smis.
|
|
|
|
Condition CheckBothNonNegativeSmi(Register first, Register second);
|
|
|
|
|
|
|
|
// Are either value a tagged smi.
|
|
|
|
Condition CheckEitherSmi(Register first,
|
|
|
|
Register second,
|
|
|
|
Register scratch = kScratchRegister);
|
|
|
|
|
|
|
|
// Is the value the minimum smi value (since we are using
|
|
|
|
// two's complement numbers, negating the value is known to yield
|
|
|
|
// a non-smi value).
|
|
|
|
Condition CheckIsMinSmi(Register src);
|
|
|
|
|
|
|
|
// Checks whether an 32-bit integer value is a valid for conversion
|
|
|
|
// to a smi.
|
|
|
|
Condition CheckInteger32ValidSmiValue(Register src);
|
|
|
|
|
|
|
|
// Checks whether an 32-bit unsigned integer value is a valid for
|
|
|
|
// conversion to a smi.
|
|
|
|
Condition CheckUInteger32ValidSmiValue(Register src);
|
|
|
|
|
|
|
|
// Check whether src is a Smi, and set dst to zero if it is a smi,
|
|
|
|
// and to one if it isn't.
|
|
|
|
void CheckSmiToIndicator(Register dst, Register src);
|
|
|
|
void CheckSmiToIndicator(Register dst, const Operand& src);
|
|
|
|
|
|
|
|
// Test-and-jump functions. Typically combines a check function
|
|
|
|
// above with a conditional jump.
|
|
|
|
|
|
|
|
// Jump if the value cannot be represented by a smi.
|
|
|
|
template <typename LabelType>
|
|
|
|
void JumpIfNotValidSmiValue(Register src, LabelType* on_invalid);
|
|
|
|
|
|
|
|
// Jump if the unsigned integer value cannot be represented by a smi.
|
|
|
|
template <typename LabelType>
|
|
|
|
void JumpIfUIntNotValidSmiValue(Register src, LabelType* on_invalid);
|
|
|
|
|
|
|
|
// Jump to label if the value is a tagged smi.
|
|
|
|
template <typename LabelType>
|
|
|
|
void JumpIfSmi(Register src, LabelType* on_smi);
|
|
|
|
|
|
|
|
// Jump to label if the value is not a tagged smi.
|
|
|
|
template <typename LabelType>
|
|
|
|
void JumpIfNotSmi(Register src, LabelType* on_not_smi);
|
|
|
|
|
|
|
|
// Jump to label if the value is not a non-negative tagged smi.
|
|
|
|
template <typename LabelType>
|
|
|
|
void JumpUnlessNonNegativeSmi(Register src, LabelType* on_not_smi);
|
|
|
|
|
|
|
|
// Jump to label if the value, which must be a tagged smi, has value equal
|
|
|
|
// to the constant.
|
|
|
|
template <typename LabelType>
|
|
|
|
void JumpIfSmiEqualsConstant(Register src,
|
|
|
|
Smi* constant,
|
|
|
|
LabelType* on_equals);
|
|
|
|
|
|
|
|
// Jump if either or both register are not smi values.
|
|
|
|
template <typename LabelType>
|
|
|
|
void JumpIfNotBothSmi(Register src1,
|
|
|
|
Register src2,
|
|
|
|
LabelType* on_not_both_smi);
|
|
|
|
|
|
|
|
// Jump if either or both register are not non-negative smi values.
|
|
|
|
template <typename LabelType>
|
|
|
|
void JumpUnlessBothNonNegativeSmi(Register src1, Register src2,
|
|
|
|
LabelType* on_not_both_smi);
|
|
|
|
|
|
|
|
// Operations on tagged smi values.
|
|
|
|
|
|
|
|
// Smis represent a subset of integers. The subset is always equivalent to
|
|
|
|
// a two's complement interpretation of a fixed number of bits.
|
|
|
|
|
|
|
|
// Optimistically adds an integer constant to a supposed smi.
|
|
|
|
// If the src is not a smi, or the result is not a smi, jump to
|
|
|
|
// the label.
|
|
|
|
template <typename LabelType>
|
|
|
|
void SmiTryAddConstant(Register dst,
|
|
|
|
Register src,
|
|
|
|
Smi* constant,
|
|
|
|
LabelType* on_not_smi_result);
|
|
|
|
|
|
|
|
// Add an integer constant to a tagged smi, giving a tagged smi as result.
|
|
|
|
// No overflow testing on the result is done.
|
|
|
|
void SmiAddConstant(Register dst, Register src, Smi* constant);
|
|
|
|
|
|
|
|
// Add an integer constant to a tagged smi, giving a tagged smi as result.
|
|
|
|
// No overflow testing on the result is done.
|
|
|
|
void SmiAddConstant(const Operand& dst, Smi* constant);
|
|
|
|
|
|
|
|
// Add an integer constant to a tagged smi, giving a tagged smi as result,
|
|
|
|
// or jumping to a label if the result cannot be represented by a smi.
|
|
|
|
template <typename LabelType>
|
|
|
|
void SmiAddConstant(Register dst,
|
|
|
|
Register src,
|
|
|
|
Smi* constant,
|
|
|
|
LabelType* on_not_smi_result);
|
|
|
|
|
|
|
|
// Subtract an integer constant from a tagged smi, giving a tagged smi as
|
|
|
|
// result. No testing on the result is done. Sets the N and Z flags
|
|
|
|
// based on the value of the resulting integer.
|
|
|
|
void SmiSubConstant(Register dst, Register src, Smi* constant);
|
|
|
|
|
|
|
|
// Subtract an integer constant from a tagged smi, giving a tagged smi as
|
|
|
|
// result, or jumping to a label if the result cannot be represented by a smi.
|
|
|
|
template <typename LabelType>
|
|
|
|
void SmiSubConstant(Register dst,
|
|
|
|
Register src,
|
|
|
|
Smi* constant,
|
|
|
|
LabelType* on_not_smi_result);
|
|
|
|
|
|
|
|
// Negating a smi can give a negative zero or too large positive value.
|
|
|
|
// NOTICE: This operation jumps on success, not failure!
|
|
|
|
template <typename LabelType>
|
|
|
|
void SmiNeg(Register dst,
|
|
|
|
Register src,
|
|
|
|
LabelType* on_smi_result);
|
|
|
|
|
|
|
|
// Adds smi values and return the result as a smi.
|
|
|
|
// If dst is src1, then src1 will be destroyed, even if
|
|
|
|
// the operation is unsuccessful.
|
|
|
|
template <typename LabelType>
|
|
|
|
void SmiAdd(Register dst,
|
|
|
|
Register src1,
|
|
|
|
Register src2,
|
|
|
|
LabelType* on_not_smi_result);
|
|
|
|
|
|
|
|
void SmiAdd(Register dst,
|
|
|
|
Register src1,
|
|
|
|
Register src2);
|
|
|
|
|
|
|
|
// Subtracts smi values and return the result as a smi.
|
|
|
|
// If dst is src1, then src1 will be destroyed, even if
|
|
|
|
// the operation is unsuccessful.
|
|
|
|
template <typename LabelType>
|
|
|
|
void SmiSub(Register dst,
|
|
|
|
Register src1,
|
|
|
|
Register src2,
|
|
|
|
LabelType* on_not_smi_result);
|
|
|
|
|
|
|
|
void SmiSub(Register dst,
|
|
|
|
Register src1,
|
|
|
|
Register src2);
|
|
|
|
|
|
|
|
template <typename LabelType>
|
|
|
|
void SmiSub(Register dst,
|
|
|
|
Register src1,
|
|
|
|
const Operand& src2,
|
|
|
|
LabelType* on_not_smi_result);
|
|
|
|
|
|
|
|
void SmiSub(Register dst,
|
|
|
|
Register src1,
|
|
|
|
const Operand& src2);
|
|
|
|
|
|
|
|
// Multiplies smi values and return the result as a smi,
|
|
|
|
// if possible.
|
|
|
|
// If dst is src1, then src1 will be destroyed, even if
|
|
|
|
// the operation is unsuccessful.
|
|
|
|
template <typename LabelType>
|
|
|
|
void SmiMul(Register dst,
|
|
|
|
Register src1,
|
|
|
|
Register src2,
|
|
|
|
LabelType* on_not_smi_result);
|
|
|
|
|
|
|
|
// Divides one smi by another and returns the quotient.
|
|
|
|
// Clobbers rax and rdx registers.
|
|
|
|
template <typename LabelType>
|
|
|
|
void SmiDiv(Register dst,
|
|
|
|
Register src1,
|
|
|
|
Register src2,
|
|
|
|
LabelType* on_not_smi_result);
|
|
|
|
|
|
|
|
// Divides one smi by another and returns the remainder.
|
|
|
|
// Clobbers rax and rdx registers.
|
|
|
|
template <typename LabelType>
|
|
|
|
void SmiMod(Register dst,
|
|
|
|
Register src1,
|
|
|
|
Register src2,
|
|
|
|
LabelType* on_not_smi_result);
|
|
|
|
|
|
|
|
// Bitwise operations.
|
|
|
|
void SmiNot(Register dst, Register src);
|
|
|
|
void SmiAnd(Register dst, Register src1, Register src2);
|
|
|
|
void SmiOr(Register dst, Register src1, Register src2);
|
|
|
|
void SmiXor(Register dst, Register src1, Register src2);
|
|
|
|
void SmiAndConstant(Register dst, Register src1, Smi* constant);
|
|
|
|
void SmiOrConstant(Register dst, Register src1, Smi* constant);
|
|
|
|
void SmiXorConstant(Register dst, Register src1, Smi* constant);
|
|
|
|
|
|
|
|
void SmiShiftLeftConstant(Register dst,
|
|
|
|
Register src,
|
|
|
|
int shift_value);
|
|
|
|
template <typename LabelType>
|
|
|
|
void SmiShiftLogicalRightConstant(Register dst,
|
|
|
|
Register src,
|
|
|
|
int shift_value,
|
|
|
|
LabelType* on_not_smi_result);
|
|
|
|
void SmiShiftArithmeticRightConstant(Register dst,
|
|
|
|
Register src,
|
|
|
|
int shift_value);
|
|
|
|
|
|
|
|
// Shifts a smi value to the left, and returns the result if that is a smi.
|
|
|
|
// Uses and clobbers rcx, so dst may not be rcx.
|
|
|
|
void SmiShiftLeft(Register dst,
|
|
|
|
Register src1,
|
|
|
|
Register src2);
|
|
|
|
// Shifts a smi value to the right, shifting in zero bits at the top, and
|
|
|
|
// returns the unsigned intepretation of the result if that is a smi.
|
|
|
|
// Uses and clobbers rcx, so dst may not be rcx.
|
|
|
|
template <typename LabelType>
|
|
|
|
void SmiShiftLogicalRight(Register dst,
|
|
|
|
Register src1,
|
|
|
|
Register src2,
|
|
|
|
LabelType* on_not_smi_result);
|
|
|
|
// Shifts a smi value to the right, sign extending the top, and
|
|
|
|
// returns the signed intepretation of the result. That will always
|
|
|
|
// be a valid smi value, since it's numerically smaller than the
|
|
|
|
// original.
|
|
|
|
// Uses and clobbers rcx, so dst may not be rcx.
|
|
|
|
void SmiShiftArithmeticRight(Register dst,
|
|
|
|
Register src1,
|
|
|
|
Register src2);
|
|
|
|
|
|
|
|
// Specialized operations
|
|
|
|
|
|
|
|
// Select the non-smi register of two registers where exactly one is a
|
|
|
|
// smi. If neither are smis, jump to the failure label.
|
|
|
|
template <typename LabelType>
|
|
|
|
void SelectNonSmi(Register dst,
|
|
|
|
Register src1,
|
|
|
|
Register src2,
|
|
|
|
LabelType* on_not_smis);
|
|
|
|
|
|
|
|
// Converts, if necessary, a smi to a combination of number and
|
|
|
|
// multiplier to be used as a scaled index.
|
|
|
|
// The src register contains a *positive* smi value. The shift is the
|
|
|
|
// power of two to multiply the index value by (e.g.
|
|
|
|
// to index by smi-value * kPointerSize, pass the smi and kPointerSizeLog2).
|
|
|
|
// The returned index register may be either src or dst, depending
|
|
|
|
// on what is most efficient. If src and dst are different registers,
|
|
|
|
// src is always unchanged.
|
|
|
|
SmiIndex SmiToIndex(Register dst, Register src, int shift);
|
|
|
|
|
|
|
|
// Converts a positive smi to a negative index.
|
|
|
|
SmiIndex SmiToNegativeIndex(Register dst, Register src, int shift);
|
|
|
|
|
|
|
|
// Basic Smi operations.
|
|
|
|
void Move(Register dst, Smi* source) {
|
|
|
|
LoadSmiConstant(dst, source);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Move(const Operand& dst, Smi* source) {
|
|
|
|
Register constant = GetSmiConstant(source);
|
|
|
|
movq(dst, constant);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Push(Smi* smi);
|
|
|
|
void Test(const Operand& dst, Smi* source);
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// String macros.
|
|
|
|
|
|
|
|
// If object is a string, its map is loaded into object_map.
|
|
|
|
template <typename LabelType>
|
|
|
|
void JumpIfNotString(Register object,
|
|
|
|
Register object_map,
|
|
|
|
LabelType* not_string);
|
|
|
|
|
|
|
|
|
|
|
|
template <typename LabelType>
|
|
|
|
void JumpIfNotBothSequentialAsciiStrings(Register first_object,
|
|
|
|
Register second_object,
|
|
|
|
Register scratch1,
|
|
|
|
Register scratch2,
|
|
|
|
LabelType* on_not_both_flat_ascii);
|
|
|
|
|
|
|
|
// Check whether the instance type represents a flat ascii string. Jump to the
|
|
|
|
// label if not. If the instance type can be scratched specify same register
|
|
|
|
// for both instance type and scratch.
|
|
|
|
template <typename LabelType>
|
|
|
|
void JumpIfInstanceTypeIsNotSequentialAscii(
|
|
|
|
Register instance_type,
|
|
|
|
Register scratch,
|
|
|
|
LabelType *on_not_flat_ascii_string);
|
|
|
|
|
|
|
|
template <typename LabelType>
|
|
|
|
void JumpIfBothInstanceTypesAreNotSequentialAscii(
|
|
|
|
Register first_object_instance_type,
|
|
|
|
Register second_object_instance_type,
|
|
|
|
Register scratch1,
|
|
|
|
Register scratch2,
|
|
|
|
LabelType* on_fail);
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// Macro instructions.
|
|
|
|
|
|
|
|
// Load a register with a long value as efficiently as possible.
|
|
|
|
void Set(Register dst, int64_t x);
|
|
|
|
void Set(const Operand& dst, int64_t x);
|
|
|
|
|
|
|
|
// Move if the registers are not identical.
|
|
|
|
void Move(Register target, Register source);
|
|
|
|
|
|
|
|
// Handle support
|
|
|
|
void Move(Register dst, Handle<Object> source);
|
|
|
|
void Move(const Operand& dst, Handle<Object> source);
|
|
|
|
void Cmp(Register dst, Handle<Object> source);
|
|
|
|
void Cmp(const Operand& dst, Handle<Object> source);
|
|
|
|
void Push(Handle<Object> source);
|
|
|
|
|
|
|
|
// Emit code to discard a non-negative number of pointer-sized elements
|
|
|
|
// from the stack, clobbering only the rsp register.
|
|
|
|
void Drop(int stack_elements);
|
|
|
|
|
|
|
|
void Call(Label* target) { call(target); }
|
|
|
|
|
|
|
|
// Control Flow
|
|
|
|
void Jump(Address destination, RelocInfo::Mode rmode);
|
|
|
|
void Jump(ExternalReference ext);
|
|
|
|
void Jump(Handle<Code> code_object, RelocInfo::Mode rmode);
|
|
|
|
|
|
|
|
void Call(Address destination, RelocInfo::Mode rmode);
|
|
|
|
void Call(ExternalReference ext);
|
|
|
|
void Call(Handle<Code> code_object, RelocInfo::Mode rmode);
|
|
|
|
|
|
|
|
// Emit call to the code we are currently generating.
|
|
|
|
void CallSelf() {
|
|
|
|
Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location()));
|
|
|
|
Call(self, RelocInfo::CODE_TARGET);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Non-x64 instructions.
|
|
|
|
// Push/pop all general purpose registers.
|
|
|
|
// Does not push rsp/rbp nor any of the assembler's special purpose registers
|
|
|
|
// (kScratchRegister, kSmiConstantRegister, kRootRegister).
|
|
|
|
void Pushad();
|
|
|
|
void Popad();
|
|
|
|
// Sets the stack as after performing Popad, without actually loading the
|
|
|
|
// registers.
|
|
|
|
void Dropad();
|
|
|
|
|
|
|
|
// Compare object type for heap object.
|
|
|
|
// Always use unsigned comparisons: above and below, not less and greater.
|
|
|
|
// Incoming register is heap_object and outgoing register is map.
|
|
|
|
// They may be the same register, and may be kScratchRegister.
|
|
|
|
void CmpObjectType(Register heap_object, InstanceType type, Register map);
|
|
|
|
|
|
|
|
// Compare instance type for map.
|
|
|
|
// Always use unsigned comparisons: above and below, not less and greater.
|
|
|
|
void CmpInstanceType(Register map, InstanceType type);
|
|
|
|
|
|
|
|
// Check if the map of an object is equal to a specified map and
|
|
|
|
// branch to label if not. Skip the smi check if not required
|
|
|
|
// (object is known to be a heap object)
|
|
|
|
void CheckMap(Register obj,
|
|
|
|
Handle<Map> map,
|
|
|
|
Label* fail,
|
|
|
|
bool is_heap_object);
|
|
|
|
|
|
|
|
// Check if the object in register heap_object is a string. Afterwards the
|
|
|
|
// register map contains the object map and the register instance_type
|
|
|
|
// contains the instance_type. The registers map and instance_type can be the
|
|
|
|
// same in which case it contains the instance type afterwards. Either of the
|
|
|
|
// registers map and instance_type can be the same as heap_object.
|
|
|
|
Condition IsObjectStringType(Register heap_object,
|
|
|
|
Register map,
|
|
|
|
Register instance_type);
|
|
|
|
|
|
|
|
// FCmp compares and pops the two values on top of the FPU stack.
|
|
|
|
// The flag results are similar to integer cmp, but requires unsigned
|
|
|
|
// jcc instructions (je, ja, jae, jb, jbe, je, and jz).
|
|
|
|
void FCmp();
|
|
|
|
|
|
|
|
// Abort execution if argument is not a number. Used in debug code.
|
|
|
|
void AbortIfNotNumber(Register object);
|
|
|
|
|
|
|
|
// Abort execution if argument is a smi. Used in debug code.
|
|
|
|
void AbortIfSmi(Register object);
|
|
|
|
|
|
|
|
// Abort execution if argument is not a smi. Used in debug code.
|
|
|
|
void AbortIfNotSmi(Register object);
|
|
|
|
|
|
|
|
// Abort execution if argument is a string. Used in debug code.
|
|
|
|
void AbortIfNotString(Register object);
|
|
|
|
|
|
|
|
// Abort execution if argument is not the root value with the given index.
|
|
|
|
void AbortIfNotRootValue(Register src,
|
|
|
|
Heap::RootListIndex root_value_index,
|
|
|
|
const char* message);
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// Exception handling
|
|
|
|
|
|
|
|
// Push a new try handler and link into try handler chain. The return
|
|
|
|
// address must be pushed before calling this helper.
|
|
|
|
void PushTryHandler(CodeLocation try_location, HandlerType type);
|
|
|
|
|
|
|
|
// Unlink the stack handler on top of the stack from the try handler chain.
|
|
|
|
void PopTryHandler();
|
|
|
|
|
|
|
|
// Activate the top handler in the try hander chain and pass the
|
|
|
|
// thrown value.
|
|
|
|
void Throw(Register value);
|
|
|
|
|
|
|
|
// Propagate an uncatchable exception out of the current JS stack.
|
|
|
|
void ThrowUncatchable(UncatchableExceptionType type, Register value);
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// Inline caching support
|
|
|
|
|
|
|
|
// Generate code for checking access rights - used for security checks
|
|
|
|
// on access to global objects across environments. The holder register
|
|
|
|
// is left untouched, but the scratch register and kScratchRegister,
|
|
|
|
// which must be different, are clobbered.
|
|
|
|
void CheckAccessGlobalProxy(Register holder_reg,
|
|
|
|
Register scratch,
|
|
|
|
Label* miss);
|
|
|
|
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// Allocation support
|
|
|
|
|
|
|
|
// Allocate an object in new space. If the new space is exhausted control
|
|
|
|
// continues at the gc_required label. The allocated object is returned in
|
|
|
|
// result and end of the new object is returned in result_end. The register
|
|
|
|
// scratch can be passed as no_reg in which case an additional object
|
|
|
|
// reference will be added to the reloc info. The returned pointers in result
|
|
|
|
// and result_end have not yet been tagged as heap objects. If
|
|
|
|
// result_contains_top_on_entry is true the content of result is known to be
|
|
|
|
// the allocation top on entry (could be result_end from a previous call to
|
|
|
|
// AllocateInNewSpace). If result_contains_top_on_entry is true scratch
|
|
|
|
// should be no_reg as it is never used.
|
|
|
|
void AllocateInNewSpace(int object_size,
|
|
|
|
Register result,
|
|
|
|
Register result_end,
|
|
|
|
Register scratch,
|
|
|
|
Label* gc_required,
|
|
|
|
AllocationFlags flags);
|
|
|
|
|
|
|
|
void AllocateInNewSpace(int header_size,
|
|
|
|
ScaleFactor element_size,
|
|
|
|
Register element_count,
|
|
|
|
Register result,
|
|
|
|
Register result_end,
|
|
|
|
Register scratch,
|
|
|
|
Label* gc_required,
|
|
|
|
AllocationFlags flags);
|
|
|
|
|
|
|
|
void AllocateInNewSpace(Register object_size,
|
|
|
|
Register result,
|
|
|
|
Register result_end,
|
|
|
|
Register scratch,
|
|
|
|
Label* gc_required,
|
|
|
|
AllocationFlags flags);
|
|
|
|
|
|
|
|
// Undo allocation in new space. The object passed and objects allocated after
|
|
|
|
// it will no longer be allocated. Make sure that no pointers are left to the
|
|
|
|
// object(s) no longer allocated as they would be invalid when allocation is
|
|
|
|
// un-done.
|
|
|
|
void UndoAllocationInNewSpace(Register object);
|
|
|
|
|
|
|
|
// Allocate a heap number in new space with undefined value. Returns
|
|
|
|
// tagged pointer in result register, or jumps to gc_required if new
|
|
|
|
// space is full.
|
|
|
|
void AllocateHeapNumber(Register result,
|
|
|
|
Register scratch,
|
|
|
|
Label* gc_required);
|
|
|
|
|
|
|
|
// Allocate a sequential string. All the header fields of the string object
|
|
|
|
// are initialized.
|
|
|
|
void AllocateTwoByteString(Register result,
|
|
|
|
Register length,
|
|
|
|
Register scratch1,
|
|
|
|
Register scratch2,
|
|
|
|
Register scratch3,
|
|
|
|
Label* gc_required);
|
|
|
|
void AllocateAsciiString(Register result,
|
|
|
|
Register length,
|
|
|
|
Register scratch1,
|
|
|
|
Register scratch2,
|
|
|
|
Register scratch3,
|
|
|
|
Label* gc_required);
|
|
|
|
|
|
|
|
// Allocate a raw cons string object. Only the map field of the result is
|
|
|
|
// initialized.
|
|
|
|
void AllocateConsString(Register result,
|
|
|
|
Register scratch1,
|
|
|
|
Register scratch2,
|
|
|
|
Label* gc_required);
|
|
|
|
void AllocateAsciiConsString(Register result,
|
|
|
|
Register scratch1,
|
|
|
|
Register scratch2,
|
|
|
|
Label* gc_required);
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// Support functions.
|
|
|
|
|
|
|
|
// Check if result is zero and op is negative.
|
|
|
|
void NegativeZeroTest(Register result, Register op, Label* then_label);
|
|
|
|
|
|
|
|
// Check if result is zero and op is negative in code using jump targets.
|
|
|
|
void NegativeZeroTest(CodeGenerator* cgen,
|
|
|
|
Register result,
|
|
|
|
Register op,
|
|
|
|
JumpTarget* then_target);
|
|
|
|
|
|
|
|
// Check if result is zero and any of op1 and op2 are negative.
|
|
|
|
// Register scratch is destroyed, and it must be different from op2.
|
|
|
|
void NegativeZeroTest(Register result, Register op1, Register op2,
|
|
|
|
Register scratch, Label* then_label);
|
|
|
|
|
|
|
|
// Try to get function prototype of a function and puts the value in
|
|
|
|
// the result register. Checks that the function really is a
|
|
|
|
// function and jumps to the miss label if the fast checks fail. The
|
|
|
|
// function register will be untouched; the other register may be
|
|
|
|
// clobbered.
|
|
|
|
void TryGetFunctionPrototype(Register function,
|
|
|
|
Register result,
|
|
|
|
Label* miss);
|
|
|
|
|
|
|
|
// Generates code for reporting that an illegal operation has
|
|
|
|
// occurred.
|
|
|
|
void IllegalOperation(int num_arguments);
|
|
|
|
|
|
|
|
// Picks out an array index from the hash field.
|
|
|
|
// Register use:
|
|
|
|
// hash - holds the index's hash. Clobbered.
|
|
|
|
// index - holds the overwritten index on exit.
|
|
|
|
void IndexFromHash(Register hash, Register index);
|
|
|
|
|
|
|
|
// Find the function context up the context chain.
|
|
|
|
void LoadContext(Register dst, int context_chain_length);
|
|
|
|
|
|
|
|
// Load the global function with the given index.
|
|
|
|
void LoadGlobalFunction(int index, Register function);
|
|
|
|
|
|
|
|
// Load the initial map from the global function. The registers
|
|
|
|
// function and map can be the same.
|
|
|
|
void LoadGlobalFunctionInitialMap(Register function, Register map);
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// Runtime calls
|
|
|
|
|
|
|
|
// Call a code stub.
|
|
|
|
void CallStub(CodeStub* stub);
|
|
|
|
|
|
|
|
// Call a code stub and return the code object called. Try to generate
|
|
|
|
// the code if necessary. Do not perform a GC but instead return a retry
|
|
|
|
// after GC failure.
|
|
|
|
MUST_USE_RESULT MaybeObject* TryCallStub(CodeStub* stub);
|
|
|
|
|
|
|
|
// Tail call a code stub (jump).
|
|
|
|
void TailCallStub(CodeStub* stub);
|
|
|
|
|
|
|
|
// Tail call a code stub (jump) and return the code object called. Try to
|
|
|
|
// generate the code if necessary. Do not perform a GC but instead return
|
|
|
|
// a retry after GC failure.
|
|
|
|
MUST_USE_RESULT MaybeObject* TryTailCallStub(CodeStub* stub);
|
|
|
|
|
|
|
|
// Return from a code stub after popping its arguments.
|
|
|
|
void StubReturn(int argc);
|
|
|
|
|
|
|
|
// Call a runtime routine.
|
|
|
|
void CallRuntime(Runtime::Function* f, int num_arguments);
|
|
|
|
|
|
|
|
// Call a runtime function and save the value of XMM registers.
|
|
|
|
void CallRuntimeSaveDoubles(Runtime::FunctionId id);
|
|
|
|
|
|
|
|
// Call a runtime function, returning the CodeStub object called.
|
|
|
|
// Try to generate the stub code if necessary. Do not perform a GC
|
|
|
|
// but instead return a retry after GC failure.
|
|
|
|
MUST_USE_RESULT MaybeObject* TryCallRuntime(Runtime::Function* f,
|
|
|
|
int num_arguments);
|
|
|
|
|
|
|
|
// Convenience function: Same as above, but takes the fid instead.
|
|
|
|
void CallRuntime(Runtime::FunctionId id, int num_arguments);
|
|
|
|
|
|
|
|
// Convenience function: Same as above, but takes the fid instead.
|
|
|
|
MUST_USE_RESULT MaybeObject* TryCallRuntime(Runtime::FunctionId id,
|
|
|
|
int num_arguments);
|
|
|
|
|
|
|
|
// Convenience function: call an external reference.
|
|
|
|
void CallExternalReference(const ExternalReference& ext,
|
|
|
|
int num_arguments);
|
|
|
|
|
|
|
|
// Tail call of a runtime routine (jump).
|
|
|
|
// Like JumpToExternalReference, but also takes care of passing the number
|
|
|
|
// of parameters.
|
|
|
|
void TailCallExternalReference(const ExternalReference& ext,
|
|
|
|
int num_arguments,
|
|
|
|
int result_size);
|
|
|
|
|
|
|
|
MUST_USE_RESULT MaybeObject* TryTailCallExternalReference(
|
|
|
|
const ExternalReference& ext, int num_arguments, int result_size);
|
|
|
|
|
|
|
|
// Convenience function: tail call a runtime routine (jump).
|
|
|
|
void TailCallRuntime(Runtime::FunctionId fid,
|
|
|
|
int num_arguments,
|
|
|
|
int result_size);
|
|
|
|
|
|
|
|
MUST_USE_RESULT MaybeObject* TryTailCallRuntime(Runtime::FunctionId fid,
|
|
|
|
int num_arguments,
|
|
|
|
int result_size);
|
|
|
|
|
|
|
|
// Jump to a runtime routine.
|
|
|
|
void JumpToExternalReference(const ExternalReference& ext, int result_size);
|
|
|
|
|
|
|
|
// Jump to a runtime routine.
|
|
|
|
MaybeObject* TryJumpToExternalReference(const ExternalReference& ext,
|
|
|
|
int result_size);
|
|
|
|
|
|
|
|
// Prepares stack to put arguments (aligns and so on).
|
|
|
|
// WIN64 calling convention requires to put the pointer to the return value
|
|
|
|
// slot into rcx (rcx must be preserverd until TryCallApiFunctionAndReturn).
|
|
|
|
// Saves context (rsi). Clobbers rax. Allocates arg_stack_space * kPointerSize
|
|
|
|
// inside the exit frame (not GCed) accessible via StackSpaceOperand.
|
|
|
|
void PrepareCallApiFunction(int arg_stack_space);
|
|
|
|
|
|
|
|
// Calls an API function. Allocates HandleScope, extracts
|
|
|
|
// returned value from handle and propagates exceptions.
|
|
|
|
// Clobbers r12, r14, rbx and caller-save registers. Restores context.
|
|
|
|
// On return removes stack_space * kPointerSize (GCed).
|
|
|
|
MUST_USE_RESULT MaybeObject* TryCallApiFunctionAndReturn(
|
|
|
|
ApiFunction* function, int stack_space);
|
|
|
|
|
|
|
|
// Before calling a C-function from generated code, align arguments on stack.
|
|
|
|
// After aligning the frame, arguments must be stored in esp[0], esp[4],
|
|
|
|
// etc., not pushed. The argument count assumes all arguments are word sized.
|
|
|
|
// The number of slots reserved for arguments depends on platform. On Windows
|
|
|
|
// stack slots are reserved for the arguments passed in registers. On other
|
|
|
|
// platforms stack slots are only reserved for the arguments actually passed
|
|
|
|
// on the stack.
|
|
|
|
void PrepareCallCFunction(int num_arguments);
|
|
|
|
|
|
|
|
// Calls a C function and cleans up the space for arguments allocated
|
|
|
|
// by PrepareCallCFunction. The called function is not allowed to trigger a
|
|
|
|
// garbage collection, since that might move the code and invalidate the
|
|
|
|
// return address (unless this is somehow accounted for by the called
|
|
|
|
// function).
|
|
|
|
void CallCFunction(ExternalReference function, int num_arguments);
|
|
|
|
void CallCFunction(Register function, int num_arguments);
|
|
|
|
|
|
|
|
// Calculate the number of stack slots to reserve for arguments when calling a
|
|
|
|
// C function.
|
|
|
|
int ArgumentStackSlotsForCFunctionCall(int num_arguments);
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// Utilities
|
|
|
|
|
|
|
|
void Ret();
|
|
|
|
|
|
|
|
// Return and drop arguments from stack, where the number of arguments
|
|
|
|
// may be bigger than 2^16 - 1. Requires a scratch register.
|
|
|
|
void Ret(int bytes_dropped, Register scratch);
|
|
|
|
|
|
|
|
Handle<Object> CodeObject() { return code_object_; }
|
|
|
|
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// StatsCounter support
|
|
|
|
|
|
|
|
void SetCounter(StatsCounter* counter, int value);
|
|
|
|
void IncrementCounter(StatsCounter* counter, int value);
|
|
|
|
void DecrementCounter(StatsCounter* counter, int value);
|
|
|
|
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// Debugging
|
|
|
|
|
|
|
|
// Calls Abort(msg) if the condition cc is not satisfied.
|
|
|
|
// Use --debug_code to enable.
|
|
|
|
void Assert(Condition cc, const char* msg);
|
|
|
|
|
|
|
|
void AssertFastElements(Register elements);
|
|
|
|
|
|
|
|
// Like Assert(), but always enabled.
|
|
|
|
void Check(Condition cc, const char* msg);
|
|
|
|
|
|
|
|
// Print a message to stdout and abort execution.
|
|
|
|
void Abort(const char* msg);
|
|
|
|
|
|
|
|
// Check that the stack is aligned.
|
|
|
|
void CheckStackAlignment();
|
|
|
|
|
|
|
|
// Verify restrictions about code generated in stubs.
|
|
|
|
void set_generating_stub(bool value) { generating_stub_ = value; }
|
|
|
|
bool generating_stub() { return generating_stub_; }
|
|
|
|
void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; }
|
|
|
|
bool allow_stub_calls() { return allow_stub_calls_; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
// Order general registers are pushed by Pushad.
|
|
|
|
// rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r12, r14.
|
|
|
|
static int kSafepointPushRegisterIndices[Register::kNumRegisters];
|
|
|
|
static const int kNumSafepointSavedRegisters = 11;
|
|
|
|
|
|
|
|
bool generating_stub_;
|
|
|
|
bool allow_stub_calls_;
|
|
|
|
|
|
|
|
// Returns a register holding the smi value. The register MUST NOT be
|
|
|
|
// modified. It may be the "smi 1 constant" register.
|
|
|
|
Register GetSmiConstant(Smi* value);
|
|
|
|
|
|
|
|
// Moves the smi value to the destination register.
|
|
|
|
void LoadSmiConstant(Register dst, Smi* value);
|
|
|
|
|
|
|
|
// This handle will be patched with the code object on installation.
|
|
|
|
Handle<Object> code_object_;
|
|
|
|
|
|
|
|
// Helper functions for generating invokes.
|
|
|
|
template <typename LabelType>
|
|
|
|
void InvokePrologue(const ParameterCount& expected,
|
|
|
|
const ParameterCount& actual,
|
|
|
|
Handle<Code> code_constant,
|
|
|
|
Register code_register,
|
|
|
|
LabelType* done,
|
|
|
|
InvokeFlag flag);
|
|
|
|
|
|
|
|
// Activation support.
|
|
|
|
void EnterFrame(StackFrame::Type type);
|
|
|
|
void LeaveFrame(StackFrame::Type type);
|
|
|
|
|
|
|
|
void EnterExitFramePrologue(bool save_rax);
|
|
|
|
|
|
|
|
// Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack
|
|
|
|
// accessible via StackSpaceOperand.
|
|
|
|
void EnterExitFrameEpilogue(int arg_stack_space, bool save_doubles);
|
|
|
|
|
|
|
|
void LeaveExitFrameEpilogue();
|
|
|
|
|
|
|
|
// Allocation support helpers.
|
|
|
|
// Loads the top of new-space into the result register.
|
|
|
|
// Otherwise the address of the new-space top is loaded into scratch (if
|
|
|
|
// scratch is valid), and the new-space top is loaded into result.
|
|
|
|
void LoadAllocationTopHelper(Register result,
|
|
|
|
Register scratch,
|
|
|
|
AllocationFlags flags);
|
|
|
|
// Update allocation top with value in result_end register.
|
|
|
|
// If scratch is valid, it contains the address of the allocation top.
|
|
|
|
void UpdateAllocationTopHelper(Register result_end, Register scratch);
|
|
|
|
|
|
|
|
// Helper for PopHandleScope. Allowed to perform a GC and returns
|
|
|
|
// NULL if gc_allowed. Does not perform a GC if !gc_allowed, and
|
|
|
|
// possibly returns a failure object indicating an allocation failure.
|
|
|
|
Object* PopHandleScopeHelper(Register saved,
|
|
|
|
Register scratch,
|
|
|
|
bool gc_allowed);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// The code patcher is used to patch (typically) small parts of code e.g. for
|
|
|
|
// debugging and other types of instrumentation. When using the code patcher
|
|
|
|
// the exact number of bytes specified must be emitted. Is not legal to emit
|
|
|
|
// relocation information. If any of these constraints are violated it causes
|
|
|
|
// an assertion.
|
|
|
|
class CodePatcher {
|
|
|
|
public:
|
|
|
|
CodePatcher(byte* address, int size);
|
|
|
|
virtual ~CodePatcher();
|
|
|
|
|
|
|
|
// Macro assembler to emit code.
|
|
|
|
MacroAssembler* masm() { return &masm_; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
byte* address_; // The address of the code being patched.
|
|
|
|
int size_; // Number of bytes of the expected patch size.
|
|
|
|
MacroAssembler masm_; // Macro assembler used to generate the code.
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
// Static helper functions.
|
|
|
|
|
|
|
|
// Generate an Operand for loading a field from an object.
|
|
|
|
static inline Operand FieldOperand(Register object, int offset) {
|
|
|
|
return Operand(object, offset - kHeapObjectTag);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Generate an Operand for loading an indexed field from an object.
|
|
|
|
static inline Operand FieldOperand(Register object,
|
|
|
|
Register index,
|
|
|
|
ScaleFactor scale,
|
|
|
|
int offset) {
|
|
|
|
return Operand(object, index, scale, offset - kHeapObjectTag);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static inline Operand ContextOperand(Register context, int index) {
|
|
|
|
return Operand(context, Context::SlotOffset(index));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static inline Operand GlobalObjectOperand() {
|
|
|
|
return ContextOperand(rsi, Context::GLOBAL_INDEX);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Provides access to exit frame stack space (not GCed).
|
|
|
|
static inline Operand StackSpaceOperand(int index) {
|
|
|
|
#ifdef _WIN64
|
|
|
|
const int kShaddowSpace = 4;
|
|
|
|
return Operand(rsp, (index + kShaddowSpace) * kPointerSize);
|
|
|
|
#else
|
|
|
|
return Operand(rsp, index * kPointerSize);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef GENERATED_CODE_COVERAGE
|
|
|
|
extern void LogGeneratedCodeCoverage(const char* file_line);
|
|
|
|
#define CODE_COVERAGE_STRINGIFY(x) #x
|
|
|
|
#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
|
|
|
|
#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
|
|
|
|
#define ACCESS_MASM(masm) { \
|
|
|
|
byte* x64_coverage_function = \
|
|
|
|
reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \
|
|
|
|
masm->pushfd(); \
|
|
|
|
masm->pushad(); \
|
|
|
|
masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__))); \
|
|
|
|
masm->call(x64_coverage_function, RelocInfo::RUNTIME_ENTRY); \
|
|
|
|
masm->pop(rax); \
|
|
|
|
masm->popad(); \
|
|
|
|
masm->popfd(); \
|
|
|
|
} \
|
|
|
|
masm->
|
|
|
|
#else
|
|
|
|
#define ACCESS_MASM(masm) masm->
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
// Template implementations.
|
|
|
|
|
|
|
|
static int kSmiShift = kSmiTagSize + kSmiShiftSize;
|
|
|
|
|
|
|
|
|
|
|
|
template <typename LabelType>
|
|
|
|
void MacroAssembler::SmiNeg(Register dst,
|
|
|
|
Register src,
|
|
|
|
LabelType* on_smi_result) {
|
|
|
|
if (dst.is(src)) {
|
|
|
|
ASSERT(!dst.is(kScratchRegister));
|
|
|
|
movq(kScratchRegister, src);
|
|
|
|
neg(dst); // Low 32 bits are retained as zero by negation.
|
|
|
|
// Test if result is zero or Smi::kMinValue.
|
|
|
|
cmpq(dst, kScratchRegister);
|
|
|
|
j(not_equal, on_smi_result);
|
|
|
|
movq(src, kScratchRegister);
|
|
|
|
} else {
|
|
|
|
movq(dst, src);
|
|
|
|
neg(dst);
|
|
|
|
cmpq(dst, src);
|
|
|
|
// If the result is zero or Smi::kMinValue, negation failed to create a smi.
|
|
|
|
j(not_equal, on_smi_result);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename LabelType>
|
|
|
|
void MacroAssembler::SmiAdd(Register dst,
|
|
|
|
Register src1,
|
|
|
|
Register src2,
|
|
|
|
LabelType* on_not_smi_result) {
|
|
|
|
ASSERT_NOT_NULL(on_not_smi_result);
|
|
|
|
ASSERT(!dst.is(src2));
|
|
|
|
if (dst.is(src1)) {
|
|
|
|
movq(kScratchRegister, src1);
|
|
|
|
addq(kScratchRegister, src2);
|
|
|
|
j(overflow, on_not_smi_result);
|
|
|
|
movq(dst, kScratchRegister);
|
|
|
|
} else {
|
|
|
|
movq(dst, src1);
|
|
|
|
addq(dst, src2);
|
|
|
|
j(overflow, on_not_smi_result);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename LabelType>
|
|
|
|
void MacroAssembler::SmiSub(Register dst,
|
|
|
|
Register src1,
|
|
|
|
Register src2,
|
|
|
|
LabelType* on_not_smi_result) {
|
|
|
|
ASSERT_NOT_NULL(on_not_smi_result);
|
|
|
|
ASSERT(!dst.is(src2));
|
|
|
|
if (dst.is(src1)) {
|
|
|
|
cmpq(dst, src2);
|
|
|
|
j(overflow, on_not_smi_result);
|
|
|
|
subq(dst, src2);
|
|
|
|
} else {
|
|
|
|
movq(dst, src1);
|
|
|
|
subq(dst, src2);
|
|
|
|
j(overflow, on_not_smi_result);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename LabelType>
|
|
|
|
void MacroAssembler::SmiSub(Register dst,
|
|
|
|
Register src1,
|
|
|
|
const Operand& src2,
|
|
|
|
LabelType* on_not_smi_result) {
|
|
|
|
ASSERT_NOT_NULL(on_not_smi_result);
|
|
|
|
if (dst.is(src1)) {
|
|
|
|
movq(kScratchRegister, src2);
|
|
|
|
cmpq(src1, kScratchRegister);
|
|
|
|
j(overflow, on_not_smi_result);
|
|
|
|
subq(src1, kScratchRegister);
|
|
|
|
} else {
|
|
|
|
movq(dst, src1);
|
|
|
|
subq(dst, src2);
|
|
|
|
j(overflow, on_not_smi_result);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename LabelType>
|
|
|
|
void MacroAssembler::SmiMul(Register dst,
|
|
|
|
Register src1,
|
|
|
|
Register src2,
|
|
|
|
LabelType* on_not_smi_result) {
|
|
|
|
ASSERT(!dst.is(src2));
|
|
|
|
ASSERT(!dst.is(kScratchRegister));
|
|
|
|
ASSERT(!src1.is(kScratchRegister));
|
|
|
|
ASSERT(!src2.is(kScratchRegister));
|
|
|
|
|
|
|
|
if (dst.is(src1)) {
|
|
|
|
NearLabel failure, zero_correct_result;
|
|
|
|
movq(kScratchRegister, src1); // Create backup for later testing.
|
|
|
|
SmiToInteger64(dst, src1);
|
|
|
|
imul(dst, src2);
|
|
|
|
j(overflow, &failure);
|
|
|
|
|
|
|
|
// Check for negative zero result. If product is zero, and one
|
|
|
|
// argument is negative, go to slow case.
|
|
|
|
NearLabel correct_result;
|
|
|
|
testq(dst, dst);
|
|
|
|
j(not_zero, &correct_result);
|
|
|
|
|
|
|
|
movq(dst, kScratchRegister);
|
|
|
|
xor_(dst, src2);
|
|
|
|
j(positive, &zero_correct_result); // Result was positive zero.
|
|
|
|
|
|
|
|
bind(&failure); // Reused failure exit, restores src1.
|
|
|
|
movq(src1, kScratchRegister);
|
|
|
|
jmp(on_not_smi_result);
|
|
|
|
|
|
|
|
bind(&zero_correct_result);
|
|
|
|
Set(dst, 0);
|
|
|
|
|
|
|
|
bind(&correct_result);
|
|
|
|
} else {
|
|
|
|
SmiToInteger64(dst, src1);
|
|
|
|
imul(dst, src2);
|
|
|
|
j(overflow, on_not_smi_result);
|
|
|
|
// Check for negative zero result. If product is zero, and one
|
|
|
|
// argument is negative, go to slow case.
|
|
|
|
NearLabel correct_result;
|
|
|
|
testq(dst, dst);
|
|
|
|
j(not_zero, &correct_result);
|
|
|
|
// One of src1 and src2 is zero, the check whether the other is
|
|
|
|
// negative.
|
|
|
|
movq(kScratchRegister, src1);
|
|
|
|
xor_(kScratchRegister, src2);
|
|
|
|
j(negative, on_not_smi_result);
|
|
|
|
bind(&correct_result);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename LabelType>
|
|
|
|
void MacroAssembler::SmiTryAddConstant(Register dst,
|
|
|
|
Register src,
|
|
|
|
Smi* constant,
|
|
|
|
LabelType* on_not_smi_result) {
|
|
|
|
// Does not assume that src is a smi.
|
|
|
|
ASSERT_EQ(static_cast<int>(1), static_cast<int>(kSmiTagMask));
|
|
|
|
ASSERT_EQ(0, kSmiTag);
|
|
|
|
ASSERT(!dst.is(kScratchRegister));
|
|
|
|
ASSERT(!src.is(kScratchRegister));
|
|
|
|
|
|
|
|
JumpIfNotSmi(src, on_not_smi_result);
|
|
|
|
Register tmp = (dst.is(src) ? kScratchRegister : dst);
|
|
|
|
LoadSmiConstant(tmp, constant);
|
|
|
|
addq(tmp, src);
|
|
|
|
j(overflow, on_not_smi_result);
|
|
|
|
if (dst.is(src)) {
|
|
|
|
movq(dst, tmp);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename LabelType>
|
|
|
|
void MacroAssembler::SmiAddConstant(Register dst,
|
|
|
|
Register src,
|
|
|
|
Smi* constant,
|
|
|
|
LabelType* on_not_smi_result) {
|
|
|
|
if (constant->value() == 0) {
|
|
|
|
if (!dst.is(src)) {
|
|
|
|
movq(dst, src);
|
|
|
|
}
|
|
|
|
} else if (dst.is(src)) {
|
|
|
|
ASSERT(!dst.is(kScratchRegister));
|
|
|
|
|
|
|
|
LoadSmiConstant(kScratchRegister, constant);
|
|
|
|
addq(kScratchRegister, src);
|
|
|
|
j(overflow, on_not_smi_result);
|
|
|
|
movq(dst, kScratchRegister);
|
|
|
|
} else {
|
|
|
|
LoadSmiConstant(dst, constant);
|
|
|
|
addq(dst, src);
|
|
|
|
j(overflow, on_not_smi_result);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename LabelType>
|
|
|
|
void MacroAssembler::SmiSubConstant(Register dst,
|
|
|
|
Register src,
|
|
|
|
Smi* constant,
|
|
|
|
LabelType* on_not_smi_result) {
|
|
|
|
if (constant->value() == 0) {
|
|
|
|
if (!dst.is(src)) {
|
|
|
|
movq(dst, src);
|
|
|
|
}
|
|
|
|
} else if (dst.is(src)) {
|
|
|
|
ASSERT(!dst.is(kScratchRegister));
|
|
|
|
if (constant->value() == Smi::kMinValue) {
|
|
|
|
// Subtracting min-value from any non-negative value will overflow.
|
|
|
|
// We test the non-negativeness before doing the subtraction.
|
|
|
|
testq(src, src);
|
|
|
|
j(not_sign, on_not_smi_result);
|
|
|
|
LoadSmiConstant(kScratchRegister, constant);
|
|
|
|
subq(dst, kScratchRegister);
|
|
|
|
} else {
|
|
|
|
// Subtract by adding the negation.
|
|
|
|
LoadSmiConstant(kScratchRegister, Smi::FromInt(-constant->value()));
|
|
|
|
addq(kScratchRegister, dst);
|
|
|
|
j(overflow, on_not_smi_result);
|
|
|
|
movq(dst, kScratchRegister);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (constant->value() == Smi::kMinValue) {
|
|
|
|
// Subtracting min-value from any non-negative value will overflow.
|
|
|
|
// We test the non-negativeness before doing the subtraction.
|
|
|
|
testq(src, src);
|
|
|
|
j(not_sign, on_not_smi_result);
|
|
|
|
LoadSmiConstant(dst, constant);
|
|
|
|
// Adding and subtracting the min-value gives the same result, it only
|
|
|
|
// differs on the overflow bit, which we don't check here.
|
|
|
|
addq(dst, src);
|
|
|
|
} else {
|
|
|
|
// Subtract by adding the negation.
|
|
|
|
LoadSmiConstant(dst, Smi::FromInt(-(constant->value())));
|
|
|
|
addq(dst, src);
|
|
|
|
j(overflow, on_not_smi_result);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename LabelType>
|
|
|
|
void MacroAssembler::SmiDiv(Register dst,
|
|
|
|
Register src1,
|
|
|
|
Register src2,
|
|
|
|
LabelType* on_not_smi_result) {
|
|
|
|
ASSERT(!src1.is(kScratchRegister));
|
|
|
|
ASSERT(!src2.is(kScratchRegister));
|
|
|
|
ASSERT(!dst.is(kScratchRegister));
|
|
|
|
ASSERT(!src2.is(rax));
|
|
|
|
ASSERT(!src2.is(rdx));
|
|
|
|
ASSERT(!src1.is(rdx));
|
|
|
|
|
|
|
|
// Check for 0 divisor (result is +/-Infinity).
|
|
|
|
NearLabel positive_divisor;
|
|
|
|
testq(src2, src2);
|
|
|
|
j(zero, on_not_smi_result);
|
|
|
|
|
|
|
|
if (src1.is(rax)) {
|
|
|
|
movq(kScratchRegister, src1);
|
|
|
|
}
|
|
|
|
SmiToInteger32(rax, src1);
|
|
|
|
// We need to rule out dividing Smi::kMinValue by -1, since that would
|
|
|
|
// overflow in idiv and raise an exception.
|
|
|
|
// We combine this with negative zero test (negative zero only happens
|
|
|
|
// when dividing zero by a negative number).
|
|
|
|
|
|
|
|
// We overshoot a little and go to slow case if we divide min-value
|
|
|
|
// by any negative value, not just -1.
|
|
|
|
NearLabel safe_div;
|
|
|
|
testl(rax, Immediate(0x7fffffff));
|
|
|
|
j(not_zero, &safe_div);
|
|
|
|
testq(src2, src2);
|
|
|
|
if (src1.is(rax)) {
|
|
|
|
j(positive, &safe_div);
|
|
|
|
movq(src1, kScratchRegister);
|
|
|
|
jmp(on_not_smi_result);
|
|
|
|
} else {
|
|
|
|
j(negative, on_not_smi_result);
|
|
|
|
}
|
|
|
|
bind(&safe_div);
|
|
|
|
|
|
|
|
SmiToInteger32(src2, src2);
|
|
|
|
// Sign extend src1 into edx:eax.
|
|
|
|
cdq();
|
|
|
|
idivl(src2);
|
|
|
|
Integer32ToSmi(src2, src2);
|
|
|
|
// Check that the remainder is zero.
|
|
|
|
testl(rdx, rdx);
|
|
|
|
if (src1.is(rax)) {
|
|
|
|
NearLabel smi_result;
|
|
|
|
j(zero, &smi_result);
|
|
|
|
movq(src1, kScratchRegister);
|
|
|
|
jmp(on_not_smi_result);
|
|
|
|
bind(&smi_result);
|
|
|
|
} else {
|
|
|
|
j(not_zero, on_not_smi_result);
|
|
|
|
}
|
|
|
|
if (!dst.is(src1) && src1.is(rax)) {
|
|
|
|
movq(src1, kScratchRegister);
|
|
|
|
}
|
|
|
|
Integer32ToSmi(dst, rax);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename LabelType>
|
|
|
|
void MacroAssembler::SmiMod(Register dst,
|
|
|
|
Register src1,
|
|
|
|
Register src2,
|
|
|
|
LabelType* on_not_smi_result) {
|
|
|
|
ASSERT(!dst.is(kScratchRegister));
|
|
|
|
ASSERT(!src1.is(kScratchRegister));
|
|
|
|
ASSERT(!src2.is(kScratchRegister));
|
|
|
|
ASSERT(!src2.is(rax));
|
|
|
|
ASSERT(!src2.is(rdx));
|
|
|
|
ASSERT(!src1.is(rdx));
|
|
|
|
ASSERT(!src1.is(src2));
|
|
|
|
|
|
|
|
testq(src2, src2);
|
|
|
|
j(zero, on_not_smi_result);
|
|
|
|
|
|
|
|
if (src1.is(rax)) {
|
|
|
|
movq(kScratchRegister, src1);
|
|
|
|
}
|
|
|
|
SmiToInteger32(rax, src1);
|
|
|
|
SmiToInteger32(src2, src2);
|
|
|
|
|
|
|
|
// Test for the edge case of dividing Smi::kMinValue by -1 (will overflow).
|
|
|
|
NearLabel safe_div;
|
|
|
|
cmpl(rax, Immediate(Smi::kMinValue));
|
|
|
|
j(not_equal, &safe_div);
|
|
|
|
cmpl(src2, Immediate(-1));
|
|
|
|
j(not_equal, &safe_div);
|
|
|
|
// Retag inputs and go slow case.
|
|
|
|
Integer32ToSmi(src2, src2);
|
|
|
|
if (src1.is(rax)) {
|
|
|
|
movq(src1, kScratchRegister);
|
|
|
|
}
|
|
|
|
jmp(on_not_smi_result);
|
|
|
|
bind(&safe_div);
|
|
|
|
|
|
|
|
// Sign extend eax into edx:eax.
|
|
|
|
cdq();
|
|
|
|
idivl(src2);
|
|
|
|
// Restore smi tags on inputs.
|
|
|
|
Integer32ToSmi(src2, src2);
|
|
|
|
if (src1.is(rax)) {
|
|
|
|
movq(src1, kScratchRegister);
|
|
|
|
}
|
|
|
|
// Check for a negative zero result. If the result is zero, and the
|
|
|
|
// dividend is negative, go slow to return a floating point negative zero.
|
|
|
|
NearLabel smi_result;
|
|
|
|
testl(rdx, rdx);
|
|
|
|
j(not_zero, &smi_result);
|
|
|
|
testq(src1, src1);
|
|
|
|
j(negative, on_not_smi_result);
|
|
|
|
bind(&smi_result);
|
|
|
|
Integer32ToSmi(dst, rdx);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename LabelType>
|
|
|
|
void MacroAssembler::SmiShiftLogicalRightConstant(
|
|
|
|
Register dst, Register src, int shift_value, LabelType* on_not_smi_result) {
|
|
|
|
// Logic right shift interprets its result as an *unsigned* number.
|
|
|
|
if (dst.is(src)) {
|
|
|
|
UNIMPLEMENTED(); // Not used.
|
|
|
|
} else {
|
|
|
|
movq(dst, src);
|
|
|
|
if (shift_value == 0) {
|
|
|
|
testq(dst, dst);
|
|
|
|
j(negative, on_not_smi_result);
|
|
|
|
}
|
|
|
|
shr(dst, Immediate(shift_value + kSmiShift));
|
|
|
|
shl(dst, Immediate(kSmiShift));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename LabelType>
|
|
|
|
void MacroAssembler::SmiShiftLogicalRight(Register dst,
|
|
|
|
Register src1,
|
|
|
|
Register src2,
|
|
|
|
LabelType* on_not_smi_result) {
|
|
|
|
ASSERT(!dst.is(kScratchRegister));
|
|
|
|
ASSERT(!src1.is(kScratchRegister));
|
|
|
|
ASSERT(!src2.is(kScratchRegister));
|
|
|
|
ASSERT(!dst.is(rcx));
|
|
|
|
// dst and src1 can be the same, because the one case that bails out
|
|
|
|
// is a shift by 0, which leaves dst, and therefore src1, unchanged.
|
|
|
|
NearLabel result_ok;
|
|
|
|
if (src1.is(rcx) || src2.is(rcx)) {
|
|
|
|
movq(kScratchRegister, rcx);
|
|
|
|
}
|
|
|
|
if (!dst.is(src1)) {
|
|
|
|
movq(dst, src1);
|
|
|
|
}
|
|
|
|
SmiToInteger32(rcx, src2);
|
|
|
|
orl(rcx, Immediate(kSmiShift));
|
|
|
|
shr_cl(dst); // Shift is rcx modulo 0x1f + 32.
|
|
|
|
shl(dst, Immediate(kSmiShift));
|
|
|
|
testq(dst, dst);
|
|
|
|
if (src1.is(rcx) || src2.is(rcx)) {
|
|
|
|
NearLabel positive_result;
|
|
|
|
j(positive, &positive_result);
|
|
|
|
if (src1.is(rcx)) {
|
|
|
|
movq(src1, kScratchRegister);
|
|
|
|
} else {
|
|
|
|
movq(src2, kScratchRegister);
|
|
|
|
}
|
|
|
|
jmp(on_not_smi_result);
|
|
|
|
bind(&positive_result);
|
|
|
|
} else {
|
|
|
|
j(negative, on_not_smi_result); // src2 was zero and src1 negative.
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename LabelType>
|
|
|
|
void MacroAssembler::SelectNonSmi(Register dst,
|
|
|
|
Register src1,
|
|
|
|
Register src2,
|
|
|
|
LabelType* on_not_smis) {
|
|
|
|
ASSERT(!dst.is(kScratchRegister));
|
|
|
|
ASSERT(!src1.is(kScratchRegister));
|
|
|
|
ASSERT(!src2.is(kScratchRegister));
|
|
|
|
ASSERT(!dst.is(src1));
|
|
|
|
ASSERT(!dst.is(src2));
|
|
|
|
// Both operands must not be smis.
|
|
|
|
#ifdef DEBUG
|
|
|
|
if (allow_stub_calls()) { // Check contains a stub call.
|
|
|
|
Condition not_both_smis = NegateCondition(CheckBothSmi(src1, src2));
|
|
|
|
Check(not_both_smis, "Both registers were smis in SelectNonSmi.");
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
ASSERT_EQ(0, kSmiTag);
|
|
|
|
ASSERT_EQ(0, Smi::FromInt(0));
|
|
|
|
movl(kScratchRegister, Immediate(kSmiTagMask));
|
|
|
|
and_(kScratchRegister, src1);
|
|
|
|
testl(kScratchRegister, src2);
|
|
|
|
// If non-zero then both are smis.
|
|
|
|
j(not_zero, on_not_smis);
|
|
|
|
|
|
|
|
// Exactly one operand is a smi.
|
|
|
|
ASSERT_EQ(1, static_cast<int>(kSmiTagMask));
|
|
|
|
// kScratchRegister still holds src1 & kSmiTag, which is either zero or one.
|
|
|
|
subq(kScratchRegister, Immediate(1));
|
|
|
|
// If src1 is a smi, then scratch register all 1s, else it is all 0s.
|
|
|
|
movq(dst, src1);
|
|
|
|
xor_(dst, src2);
|
|
|
|
and_(dst, kScratchRegister);
|
|
|
|
// If src1 is a smi, dst holds src1 ^ src2, else it is zero.
|
|
|
|
xor_(dst, src1);
|
|
|
|
// If src1 is a smi, dst is src2, else it is src1, i.e., the non-smi.
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename LabelType>
|
|
|
|
void MacroAssembler::JumpIfSmi(Register src, LabelType* on_smi) {
|
|
|
|
ASSERT_EQ(0, kSmiTag);
|
|
|
|
Condition smi = CheckSmi(src);
|
|
|
|
j(smi, on_smi);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename LabelType>
|
|
|
|
void MacroAssembler::JumpIfNotSmi(Register src, LabelType* on_not_smi) {
|
|
|
|
Condition smi = CheckSmi(src);
|
|
|
|
j(NegateCondition(smi), on_not_smi);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename LabelType>
|
|
|
|
void MacroAssembler::JumpUnlessNonNegativeSmi(
|
|
|
|
Register src, LabelType* on_not_smi_or_negative) {
|
|
|
|
Condition non_negative_smi = CheckNonNegativeSmi(src);
|
|
|
|
j(NegateCondition(non_negative_smi), on_not_smi_or_negative);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename LabelType>
|
|
|
|
void MacroAssembler::JumpIfSmiEqualsConstant(Register src,
|
|
|
|
Smi* constant,
|
|
|
|
LabelType* on_equals) {
|
|
|
|
SmiCompare(src, constant);
|
|
|
|
j(equal, on_equals);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename LabelType>
|
|
|
|
void MacroAssembler::JumpIfNotValidSmiValue(Register src,
|
|
|
|
LabelType* on_invalid) {
|
|
|
|
Condition is_valid = CheckInteger32ValidSmiValue(src);
|
|
|
|
j(NegateCondition(is_valid), on_invalid);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename LabelType>
|
|
|
|
void MacroAssembler::JumpIfUIntNotValidSmiValue(Register src,
|
|
|
|
LabelType* on_invalid) {
|
|
|
|
Condition is_valid = CheckUInteger32ValidSmiValue(src);
|
|
|
|
j(NegateCondition(is_valid), on_invalid);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename LabelType>
|
|
|
|
void MacroAssembler::JumpIfNotBothSmi(Register src1,
|
|
|
|
Register src2,
|
|
|
|
LabelType* on_not_both_smi) {
|
|
|
|
Condition both_smi = CheckBothSmi(src1, src2);
|
|
|
|
j(NegateCondition(both_smi), on_not_both_smi);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename LabelType>
|
|
|
|
void MacroAssembler::JumpUnlessBothNonNegativeSmi(Register src1,
|
|
|
|
Register src2,
|
|
|
|
LabelType* on_not_both_smi) {
|
|
|
|
Condition both_smi = CheckBothNonNegativeSmi(src1, src2);
|
|
|
|
j(NegateCondition(both_smi), on_not_both_smi);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename LabelType>
|
|
|
|
void MacroAssembler::JumpIfNotString(Register object,
|
|
|
|
Register object_map,
|
|
|
|
LabelType* not_string) {
|
|
|
|
Condition is_smi = CheckSmi(object);
|
|
|
|
j(is_smi, not_string);
|
|
|
|
CmpObjectType(object, FIRST_NONSTRING_TYPE, object_map);
|
|
|
|
j(above_equal, not_string);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename LabelType>
|
|
|
|
void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register first_object,
|
|
|
|
Register second_object,
|
|
|
|
Register scratch1,
|
|
|
|
Register scratch2,
|
|
|
|
LabelType* on_fail) {
|
|
|
|
// Check that both objects are not smis.
|
|
|
|
Condition either_smi = CheckEitherSmi(first_object, second_object);
|
|
|
|
j(either_smi, on_fail);
|
|
|
|
|
|
|
|
// Load instance type for both strings.
|
|
|
|
movq(scratch1, FieldOperand(first_object, HeapObject::kMapOffset));
|
|
|
|
movq(scratch2, FieldOperand(second_object, HeapObject::kMapOffset));
|
|
|
|
movzxbl(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset));
|
|
|
|
movzxbl(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset));
|
|
|
|
|
|
|
|
// Check that both are flat ascii strings.
|
|
|
|
ASSERT(kNotStringTag != 0);
|
|
|
|
const int kFlatAsciiStringMask =
|
|
|
|
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
|
|
|
|
const int kFlatAsciiStringTag = ASCII_STRING_TYPE;
|
|
|
|
|
|
|
|
andl(scratch1, Immediate(kFlatAsciiStringMask));
|
|
|
|
andl(scratch2, Immediate(kFlatAsciiStringMask));
|
|
|
|
// Interleave the bits to check both scratch1 and scratch2 in one test.
|
|
|
|
ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3));
|
|
|
|
lea(scratch1, Operand(scratch1, scratch2, times_8, 0));
|
|
|
|
cmpl(scratch1,
|
|
|
|
Immediate(kFlatAsciiStringTag + (kFlatAsciiStringTag << 3)));
|
|
|
|
j(not_equal, on_fail);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename LabelType>
|
|
|
|
void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(
|
|
|
|
Register instance_type,
|
|
|
|
Register scratch,
|
|
|
|
LabelType *failure) {
|
|
|
|
if (!scratch.is(instance_type)) {
|
|
|
|
movl(scratch, instance_type);
|
|
|
|
}
|
|
|
|
|
|
|
|
const int kFlatAsciiStringMask =
|
|
|
|
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
|
|
|
|
|
|
|
|
andl(scratch, Immediate(kFlatAsciiStringMask));
|
|
|
|
cmpl(scratch, Immediate(kStringTag | kSeqStringTag | kAsciiStringTag));
|
|
|
|
j(not_equal, failure);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename LabelType>
|
|
|
|
void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii(
|
|
|
|
Register first_object_instance_type,
|
|
|
|
Register second_object_instance_type,
|
|
|
|
Register scratch1,
|
|
|
|
Register scratch2,
|
|
|
|
LabelType* on_fail) {
|
|
|
|
// Load instance type for both strings.
|
|
|
|
movq(scratch1, first_object_instance_type);
|
|
|
|
movq(scratch2, second_object_instance_type);
|
|
|
|
|
|
|
|
// Check that both are flat ascii strings.
|
|
|
|
ASSERT(kNotStringTag != 0);
|
|
|
|
const int kFlatAsciiStringMask =
|
|
|
|
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
|
|
|
|
const int kFlatAsciiStringTag = ASCII_STRING_TYPE;
|
|
|
|
|
|
|
|
andl(scratch1, Immediate(kFlatAsciiStringMask));
|
|
|
|
andl(scratch2, Immediate(kFlatAsciiStringMask));
|
|
|
|
// Interleave the bits to check both scratch1 and scratch2 in one test.
|
|
|
|
ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3));
|
|
|
|
lea(scratch1, Operand(scratch1, scratch2, times_8, 0));
|
|
|
|
cmpl(scratch1,
|
|
|
|
Immediate(kFlatAsciiStringTag + (kFlatAsciiStringTag << 3)));
|
|
|
|
j(not_equal, on_fail);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename LabelType>
|
|
|
|
void MacroAssembler::InNewSpace(Register object,
|
|
|
|
Register scratch,
|
|
|
|
Condition cc,
|
|
|
|
LabelType* branch) {
|
|
|
|
if (Serializer::enabled()) {
|
|
|
|
// Can't do arithmetic on external references if it might get serialized.
|
|
|
|
// The mask isn't really an address. We load it as an external reference in
|
|
|
|
// case the size of the new space is different between the snapshot maker
|
|
|
|
// and the running system.
|
|
|
|
if (scratch.is(object)) {
|
|
|
|
movq(kScratchRegister, ExternalReference::new_space_mask());
|
|
|
|
and_(scratch, kScratchRegister);
|
|
|
|
} else {
|
|
|
|
movq(scratch, ExternalReference::new_space_mask());
|
|
|
|
and_(scratch, object);
|
|
|
|
}
|
|
|
|
movq(kScratchRegister, ExternalReference::new_space_start());
|
|
|
|
cmpq(scratch, kScratchRegister);
|
|
|
|
j(cc, branch);
|
|
|
|
} else {
|
|
|
|
ASSERT(is_int32(static_cast<int64_t>(Heap::NewSpaceMask())));
|
|
|
|
intptr_t new_space_start =
|
|
|
|
reinterpret_cast<intptr_t>(Heap::NewSpaceStart());
|
|
|
|
movq(kScratchRegister, -new_space_start, RelocInfo::NONE);
|
|
|
|
if (scratch.is(object)) {
|
|
|
|
addq(scratch, kScratchRegister);
|
|
|
|
} else {
|
|
|
|
lea(scratch, Operand(object, kScratchRegister, times_1, 0));
|
|
|
|
}
|
|
|
|
and_(scratch, Immediate(static_cast<int32_t>(Heap::NewSpaceMask())));
|
|
|
|
j(cc, branch);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename LabelType>
|
|
|
|
void MacroAssembler::InvokePrologue(const ParameterCount& expected,
|
|
|
|
const ParameterCount& actual,
|
|
|
|
Handle<Code> code_constant,
|
|
|
|
Register code_register,
|
|
|
|
LabelType* done,
|
|
|
|
InvokeFlag flag) {
|
|
|
|
bool definitely_matches = false;
|
|
|
|
NearLabel invoke;
|
|
|
|
if (expected.is_immediate()) {
|
|
|
|
ASSERT(actual.is_immediate());
|
|
|
|
if (expected.immediate() == actual.immediate()) {
|
|
|
|
definitely_matches = true;
|
|
|
|
} else {
|
|
|
|
Set(rax, actual.immediate());
|
|
|
|
if (expected.immediate() ==
|
|
|
|
SharedFunctionInfo::kDontAdaptArgumentsSentinel) {
|
|
|
|
// Don't worry about adapting arguments for built-ins that
|
|
|
|
// don't want that done. Skip adaption code by making it look
|
|
|
|
// like we have a match between expected and actual number of
|
|
|
|
// arguments.
|
|
|
|
definitely_matches = true;
|
|
|
|
} else {
|
|
|
|
Set(rbx, expected.immediate());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (actual.is_immediate()) {
|
|
|
|
// Expected is in register, actual is immediate. This is the
|
|
|
|
// case when we invoke function values without going through the
|
|
|
|
// IC mechanism.
|
|
|
|
cmpq(expected.reg(), Immediate(actual.immediate()));
|
|
|
|
j(equal, &invoke);
|
|
|
|
ASSERT(expected.reg().is(rbx));
|
|
|
|
Set(rax, actual.immediate());
|
|
|
|
} else if (!expected.reg().is(actual.reg())) {
|
|
|
|
// Both expected and actual are in (different) registers. This
|
|
|
|
// is the case when we invoke functions using call and apply.
|
|
|
|
cmpq(expected.reg(), actual.reg());
|
|
|
|
j(equal, &invoke);
|
|
|
|
ASSERT(actual.reg().is(rax));
|
|
|
|
ASSERT(expected.reg().is(rbx));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!definitely_matches) {
|
|
|
|
Handle<Code> adaptor =
|
|
|
|
Handle<Code>(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline));
|
|
|
|
if (!code_constant.is_null()) {
|
|
|
|
movq(rdx, code_constant, RelocInfo::EMBEDDED_OBJECT);
|
|
|
|
addq(rdx, Immediate(Code::kHeaderSize - kHeapObjectTag));
|
|
|
|
} else if (!code_register.is(rdx)) {
|
|
|
|
movq(rdx, code_register);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (flag == CALL_FUNCTION) {
|
|
|
|
Call(adaptor, RelocInfo::CODE_TARGET);
|
|
|
|
jmp(done);
|
|
|
|
} else {
|
|
|
|
Jump(adaptor, RelocInfo::CODE_TARGET);
|
|
|
|
}
|
|
|
|
bind(&invoke);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
} } // namespace v8::internal
|
|
|
|
|
|
|
|
#endif // V8_X64_MACRO_ASSEMBLER_X64_H_
|