|
|
|
// Copyright 2006-2008 the V8 project authors. All rights reserved.
|
|
|
|
// Redistribution and use in source and binary forms, with or without
|
|
|
|
// modification, are permitted provided that the following conditions are
|
|
|
|
// met:
|
|
|
|
//
|
|
|
|
// * Redistributions of source code must retain the above copyright
|
|
|
|
// notice, this list of conditions and the following disclaimer.
|
|
|
|
// * Redistributions in binary form must reproduce the above
|
|
|
|
// copyright notice, this list of conditions and the following
|
|
|
|
// disclaimer in the documentation and/or other materials provided
|
|
|
|
// with the distribution.
|
|
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
|
|
// contributors may be used to endorse or promote products derived
|
|
|
|
// from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
|
|
#ifndef V8_UTILS_H_
|
|
|
|
#define V8_UTILS_H_
|
|
|
|
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <string.h>
|
|
|
|
|
|
|
|
namespace v8 {
|
|
|
|
namespace internal {
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
// General helper functions
|
|
|
|
|
|
|
|
#define IS_POWER_OF_TWO(x) (((x) & ((x) - 1)) == 0)
|
|
|
|
|
|
|
|
// Returns true iff x is a power of 2 (or zero). Cannot be used with the
|
|
|
|
// maximally negative value of the type T (the -1 overflows).
|
|
|
|
template <typename T>
|
|
|
|
static inline bool IsPowerOf2(T x) {
|
|
|
|
return IS_POWER_OF_TWO(x);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// X must be a power of 2. Returns the number of trailing zeros.
|
|
|
|
template <typename T>
|
|
|
|
static inline int WhichPowerOf2(T x) {
|
|
|
|
ASSERT(IsPowerOf2(x));
|
|
|
|
ASSERT(x != 0);
|
|
|
|
if (x < 0) return 31;
|
|
|
|
int bits = 0;
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_x = x;
|
|
|
|
#endif
|
|
|
|
if (x >= 0x10000) {
|
|
|
|
bits += 16;
|
|
|
|
x >>= 16;
|
|
|
|
}
|
|
|
|
if (x >= 0x100) {
|
|
|
|
bits += 8;
|
|
|
|
x >>= 8;
|
|
|
|
}
|
|
|
|
if (x >= 0x10) {
|
|
|
|
bits += 4;
|
|
|
|
x >>= 4;
|
|
|
|
}
|
|
|
|
switch (x) {
|
|
|
|
default: UNREACHABLE();
|
|
|
|
case 8: bits++; // Fall through.
|
|
|
|
case 4: bits++; // Fall through.
|
|
|
|
case 2: bits++; // Fall through.
|
|
|
|
case 1: break;
|
|
|
|
}
|
|
|
|
ASSERT_EQ(1 << bits, original_x);
|
|
|
|
return bits;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// The C++ standard leaves the semantics of '>>' undefined for
|
|
|
|
// negative signed operands. Most implementations do the right thing,
|
|
|
|
// though.
|
|
|
|
static inline int ArithmeticShiftRight(int x, int s) {
|
|
|
|
return x >> s;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Compute the 0-relative offset of some absolute value x of type T.
|
|
|
|
// This allows conversion of Addresses and integral types into
|
|
|
|
// 0-relative int offsets.
|
|
|
|
template <typename T>
|
|
|
|
static inline intptr_t OffsetFrom(T x) {
|
|
|
|
return x - static_cast<T>(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Compute the absolute value of type T for some 0-relative offset x.
|
|
|
|
// This allows conversion of 0-relative int offsets into Addresses and
|
|
|
|
// integral types.
|
|
|
|
template <typename T>
|
|
|
|
static inline T AddressFrom(intptr_t x) {
|
|
|
|
return static_cast<T>(static_cast<T>(0) + x);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Return the largest multiple of m which is <= x.
|
|
|
|
template <typename T>
|
|
|
|
static inline T RoundDown(T x, int m) {
|
|
|
|
ASSERT(IsPowerOf2(m));
|
|
|
|
return AddressFrom<T>(OffsetFrom(x) & -m);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Return the smallest multiple of m which is >= x.
|
|
|
|
template <typename T>
|
|
|
|
static inline T RoundUp(T x, int m) {
|
|
|
|
return RoundDown(x + m - 1, m);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
static int Compare(const T& a, const T& b) {
|
|
|
|
if (a == b)
|
|
|
|
return 0;
|
|
|
|
else if (a < b)
|
|
|
|
return -1;
|
|
|
|
else
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
static int PointerValueCompare(const T* a, const T* b) {
|
|
|
|
return Compare<T>(*a, *b);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Returns the smallest power of two which is >= x. If you pass in a
|
|
|
|
// number that is already a power of two, it is returned as is.
|
|
|
|
uint32_t RoundUpToPowerOf2(uint32_t x);
|
|
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
static inline bool IsAligned(T value, T alignment) {
|
|
|
|
ASSERT(IsPowerOf2(alignment));
|
|
|
|
return (value & (alignment - 1)) == 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Returns true if (addr + offset) is aligned.
|
|
|
|
static inline bool IsAddressAligned(Address addr,
|
|
|
|
intptr_t alignment,
|
|
|
|
int offset) {
|
|
|
|
intptr_t offs = OffsetFrom(addr + offset);
|
|
|
|
return IsAligned(offs, alignment);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Returns the maximum of the two parameters.
|
|
|
|
template <typename T>
|
|
|
|
static T Max(T a, T b) {
|
|
|
|
return a < b ? b : a;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Returns the minimum of the two parameters.
|
|
|
|
template <typename T>
|
|
|
|
static T Min(T a, T b) {
|
|
|
|
return a < b ? a : b;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline int StrLength(const char* string) {
|
|
|
|
size_t length = strlen(string);
|
|
|
|
ASSERT(length == static_cast<size_t>(static_cast<int>(length)));
|
|
|
|
return static_cast<int>(length);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
// BitField is a help template for encoding and decode bitfield with
|
|
|
|
// unsigned content.
|
|
|
|
template<class T, int shift, int size>
|
|
|
|
class BitField {
|
|
|
|
public:
|
|
|
|
// Tells whether the provided value fits into the bit field.
|
|
|
|
static bool is_valid(T value) {
|
|
|
|
return (static_cast<uint32_t>(value) & ~((1U << (size)) - 1)) == 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Returns a uint32_t mask of bit field.
|
|
|
|
static uint32_t mask() {
|
|
|
|
// To use all bits of a uint32 in a bitfield without compiler warnings we
|
|
|
|
// have to compute 2^32 without using a shift count of 32.
|
|
|
|
return ((1U << shift) << size) - (1U << shift);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Returns a uint32_t with the bit field value encoded.
|
|
|
|
static uint32_t encode(T value) {
|
|
|
|
ASSERT(is_valid(value));
|
|
|
|
return static_cast<uint32_t>(value) << shift;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Extracts the bit field from the value.
|
|
|
|
static T decode(uint32_t value) {
|
|
|
|
return static_cast<T>((value & mask()) >> shift);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
// Hash function.
|
|
|
|
|
|
|
|
uint32_t ComputeIntegerHash(uint32_t key);
|
|
|
|
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
// I/O support.
|
|
|
|
|
|
|
|
// Our version of printf(). Avoids compilation errors that we get
|
|
|
|
// with standard printf when attempting to print pointers, etc.
|
|
|
|
// (the errors are due to the extra compilation flags, which we
|
|
|
|
// want elsewhere).
|
|
|
|
void PrintF(const char* format, ...);
|
|
|
|
|
|
|
|
// Our version of fflush.
|
|
|
|
void Flush();
|
|
|
|
|
|
|
|
|
|
|
|
// Read a line of characters after printing the prompt to stdout. The resulting
|
|
|
|
// char* needs to be disposed off with DeleteArray by the caller.
|
|
|
|
char* ReadLine(const char* prompt);
|
|
|
|
|
|
|
|
|
|
|
|
// Read and return the raw bytes in a file. the size of the buffer is returned
|
|
|
|
// in size.
|
|
|
|
// The returned buffer must be freed by the caller.
|
|
|
|
byte* ReadBytes(const char* filename, int* size, bool verbose = true);
|
|
|
|
|
|
|
|
|
|
|
|
// Write size chars from str to the file given by filename.
|
|
|
|
// The file is overwritten. Returns the number of chars written.
|
|
|
|
int WriteChars(const char* filename,
|
|
|
|
const char* str,
|
|
|
|
int size,
|
|
|
|
bool verbose = true);
|
|
|
|
|
|
|
|
|
|
|
|
// Write size bytes to the file given by filename.
|
|
|
|
// The file is overwritten. Returns the number of bytes written.
|
|
|
|
int WriteBytes(const char* filename,
|
|
|
|
const byte* bytes,
|
|
|
|
int size,
|
|
|
|
bool verbose = true);
|
|
|
|
|
|
|
|
|
|
|
|
// Write the C code
|
|
|
|
// const char* <varname> = "<str>";
|
|
|
|
// const int <varname>_len = <len>;
|
|
|
|
// to the file given by filename. Only the first len chars are written.
|
|
|
|
int WriteAsCFile(const char* filename, const char* varname,
|
|
|
|
const char* str, int size, bool verbose = true);
|
|
|
|
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
// Miscellaneous
|
|
|
|
|
|
|
|
// A static resource holds a static instance that can be reserved in
|
|
|
|
// a local scope using an instance of Access. Attempts to re-reserve
|
|
|
|
// the instance will cause an error.
|
|
|
|
template <typename T>
|
|
|
|
class StaticResource {
|
|
|
|
public:
|
|
|
|
StaticResource() : is_reserved_(false) {}
|
|
|
|
|
|
|
|
private:
|
|
|
|
template <typename S> friend class Access;
|
|
|
|
T instance_;
|
|
|
|
bool is_reserved_;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// Locally scoped access to a static resource.
|
|
|
|
template <typename T>
|
|
|
|
class Access {
|
|
|
|
public:
|
|
|
|
explicit Access(StaticResource<T>* resource)
|
|
|
|
: resource_(resource)
|
|
|
|
, instance_(&resource->instance_) {
|
|
|
|
ASSERT(!resource->is_reserved_);
|
|
|
|
resource->is_reserved_ = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
~Access() {
|
|
|
|
resource_->is_reserved_ = false;
|
|
|
|
resource_ = NULL;
|
|
|
|
instance_ = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
T* value() { return instance_; }
|
|
|
|
T* operator -> () { return instance_; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
StaticResource<T>* resource_;
|
|
|
|
T* instance_;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
class Vector {
|
|
|
|
public:
|
|
|
|
Vector() : start_(NULL), length_(0) {}
|
|
|
|
Vector(T* data, int length) : start_(data), length_(length) {
|
|
|
|
ASSERT(length == 0 || (length > 0 && data != NULL));
|
|
|
|
}
|
|
|
|
|
|
|
|
static Vector<T> New(int length) {
|
|
|
|
return Vector<T>(NewArray<T>(length), length);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Returns a vector using the same backing storage as this one,
|
|
|
|
// spanning from and including 'from', to but not including 'to'.
|
|
|
|
Vector<T> SubVector(int from, int to) {
|
|
|
|
ASSERT(from < length_);
|
|
|
|
ASSERT(to <= length_);
|
|
|
|
ASSERT(from < to);
|
|
|
|
return Vector<T>(start() + from, to - from);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Returns the length of the vector.
|
|
|
|
int length() const { return length_; }
|
|
|
|
|
|
|
|
// Returns whether or not the vector is empty.
|
|
|
|
bool is_empty() const { return length_ == 0; }
|
|
|
|
|
|
|
|
// Returns the pointer to the start of the data in the vector.
|
|
|
|
T* start() const { return start_; }
|
|
|
|
|
|
|
|
// Access individual vector elements - checks bounds in debug mode.
|
|
|
|
T& operator[](int index) const {
|
|
|
|
ASSERT(0 <= index && index < length_);
|
|
|
|
return start_[index];
|
|
|
|
}
|
|
|
|
|
|
|
|
T& first() { return start_[0]; }
|
|
|
|
|
|
|
|
T& last() { return start_[length_ - 1]; }
|
|
|
|
|
|
|
|
// Returns a clone of this vector with a new backing store.
|
|
|
|
Vector<T> Clone() const {
|
|
|
|
T* result = NewArray<T>(length_);
|
|
|
|
for (int i = 0; i < length_; i++) result[i] = start_[i];
|
|
|
|
return Vector<T>(result, length_);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Sort(int (*cmp)(const T*, const T*)) {
|
|
|
|
typedef int (*RawComparer)(const void*, const void*);
|
|
|
|
qsort(start(),
|
|
|
|
length(),
|
|
|
|
sizeof(T),
|
|
|
|
reinterpret_cast<RawComparer>(cmp));
|
|
|
|
}
|
|
|
|
|
|
|
|
void Sort() {
|
|
|
|
Sort(PointerValueCompare<T>);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Truncate(int length) {
|
|
|
|
ASSERT(length <= length_);
|
|
|
|
length_ = length;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Releases the array underlying this vector. Once disposed the
|
|
|
|
// vector is empty.
|
|
|
|
void Dispose() {
|
|
|
|
DeleteArray(start_);
|
|
|
|
start_ = NULL;
|
|
|
|
length_ = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Vector<T> operator+(int offset) {
|
|
|
|
ASSERT(offset < length_);
|
|
|
|
return Vector<T>(start_ + offset, length_ - offset);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Factory method for creating empty vectors.
|
|
|
|
static Vector<T> empty() { return Vector<T>(NULL, 0); }
|
|
|
|
|
|
|
|
protected:
|
|
|
|
void set_start(T* start) { start_ = start; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
T* start_;
|
|
|
|
int length_;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// A temporary assignment sets a (non-local) variable to a value on
|
|
|
|
// construction and resets it the value on destruction.
|
|
|
|
template <typename T>
|
|
|
|
class TempAssign {
|
|
|
|
public:
|
|
|
|
TempAssign(T* var, T value): var_(var), old_value_(*var) {
|
|
|
|
*var = value;
|
|
|
|
}
|
|
|
|
|
|
|
|
~TempAssign() { *var_ = old_value_; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
T* var_;
|
|
|
|
T old_value_;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
template <typename T, int kSize>
|
|
|
|
class EmbeddedVector : public Vector<T> {
|
|
|
|
public:
|
|
|
|
EmbeddedVector() : Vector<T>(buffer_, kSize) { }
|
|
|
|
|
|
|
|
// When copying, make underlying Vector to reference our buffer.
|
|
|
|
EmbeddedVector(const EmbeddedVector& rhs)
|
|
|
|
: Vector<T>(rhs) {
|
|
|
|
memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize);
|
|
|
|
set_start(buffer_);
|
|
|
|
}
|
|
|
|
|
|
|
|
EmbeddedVector& operator=(const EmbeddedVector& rhs) {
|
|
|
|
if (this == &rhs) return *this;
|
|
|
|
Vector<T>::operator=(rhs);
|
|
|
|
memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize);
|
|
|
|
this->set_start(buffer_);
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
T buffer_[kSize];
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
class ScopedVector : public Vector<T> {
|
|
|
|
public:
|
|
|
|
explicit ScopedVector(int length) : Vector<T>(NewArray<T>(length), length) { }
|
|
|
|
~ScopedVector() {
|
|
|
|
DeleteArray(this->start());
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ScopedVector);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
inline Vector<const char> CStrVector(const char* data) {
|
|
|
|
return Vector<const char>(data, StrLength(data));
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Vector<char> MutableCStrVector(char* data) {
|
|
|
|
return Vector<char>(data, StrLength(data));
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Vector<char> MutableCStrVector(char* data, int max) {
|
|
|
|
int length = StrLength(data);
|
|
|
|
return Vector<char>(data, (length < max) ? length : max);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
inline Vector< Handle<Object> > HandleVector(v8::internal::Handle<T>* elms,
|
|
|
|
int length) {
|
|
|
|
return Vector< Handle<Object> >(
|
|
|
|
reinterpret_cast<v8::internal::Handle<Object>*>(elms), length);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Simple support to read a file into a 0-terminated C-string.
|
|
|
|
// The returned buffer must be freed by the caller.
|
|
|
|
// On return, *exits tells whether the file existed.
|
|
|
|
Vector<const char> ReadFile(const char* filename,
|
|
|
|
bool* exists,
|
|
|
|
bool verbose = true);
|
|
|
|
|
|
|
|
|
|
|
|
// Simple wrapper that allows an ExternalString to refer to a
|
|
|
|
// Vector<const char>. Doesn't assume ownership of the data.
|
|
|
|
class AsciiStringAdapter: public v8::String::ExternalAsciiStringResource {
|
|
|
|
public:
|
|
|
|
explicit AsciiStringAdapter(Vector<const char> data) : data_(data) {}
|
|
|
|
|
|
|
|
virtual const char* data() const { return data_.start(); }
|
|
|
|
|
|
|
|
virtual size_t length() const { return data_.length(); }
|
|
|
|
|
|
|
|
private:
|
|
|
|
Vector<const char> data_;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// Helper class for building result strings in a character buffer. The
|
|
|
|
// purpose of the class is to use safe operations that checks the
|
|
|
|
// buffer bounds on all operations in debug mode.
|
|
|
|
class StringBuilder {
|
|
|
|
public:
|
|
|
|
// Create a string builder with a buffer of the given size. The
|
|
|
|
// buffer is allocated through NewArray<char> and must be
|
|
|
|
// deallocated by the caller of Finalize().
|
|
|
|
explicit StringBuilder(int size);
|
|
|
|
|
|
|
|
StringBuilder(char* buffer, int size)
|
|
|
|
: buffer_(buffer, size), position_(0) { }
|
|
|
|
|
|
|
|
~StringBuilder() { if (!is_finalized()) Finalize(); }
|
|
|
|
|
|
|
|
int size() const { return buffer_.length(); }
|
|
|
|
|
|
|
|
// Get the current position in the builder.
|
|
|
|
int position() const {
|
|
|
|
ASSERT(!is_finalized());
|
|
|
|
return position_;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Reset the position.
|
|
|
|
void Reset() { position_ = 0; }
|
|
|
|
|
|
|
|
// Add a single character to the builder. It is not allowed to add
|
|
|
|
// 0-characters; use the Finalize() method to terminate the string
|
|
|
|
// instead.
|
|
|
|
void AddCharacter(char c) {
|
|
|
|
ASSERT(c != '\0');
|
|
|
|
ASSERT(!is_finalized() && position_ < buffer_.length());
|
|
|
|
buffer_[position_++] = c;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Add an entire string to the builder. Uses strlen() internally to
|
|
|
|
// compute the length of the input string.
|
|
|
|
void AddString(const char* s);
|
|
|
|
|
|
|
|
// Add the first 'n' characters of the given string 's' to the
|
|
|
|
// builder. The input string must have enough characters.
|
|
|
|
void AddSubstring(const char* s, int n);
|
|
|
|
|
|
|
|
// Add formatted contents to the builder just like printf().
|
|
|
|
void AddFormatted(const char* format, ...);
|
|
|
|
|
|
|
|
// Add character padding to the builder. If count is non-positive,
|
|
|
|
// nothing is added to the builder.
|
|
|
|
void AddPadding(char c, int count);
|
|
|
|
|
|
|
|
// Finalize the string by 0-terminating it and returning the buffer.
|
|
|
|
char* Finalize();
|
|
|
|
|
|
|
|
private:
|
|
|
|
Vector<char> buffer_;
|
|
|
|
int position_;
|
|
|
|
|
|
|
|
bool is_finalized() const { return position_ < 0; }
|
|
|
|
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// Custom memcpy implementation for platforms where the standard version
|
|
|
|
// may not be good enough.
|
|
|
|
// TODO(lrn): Check whether some IA32 platforms should be excluded.
|
|
|
|
#if defined(V8_TARGET_ARCH_IA32)
|
|
|
|
|
|
|
|
// TODO(lrn): Extend to other platforms as needed.
|
|
|
|
|
|
|
|
typedef void (*MemCopyFunction)(void* dest, const void* src, size_t size);
|
|
|
|
|
|
|
|
// Implemented in codegen-<arch>.cc.
|
|
|
|
MemCopyFunction CreateMemCopyFunction();
|
|
|
|
|
|
|
|
// Copy memory area to disjoint memory area.
|
|
|
|
static inline void MemCopy(void* dest, const void* src, size_t size) {
|
|
|
|
static MemCopyFunction memcopy = CreateMemCopyFunction();
|
|
|
|
(*memcopy)(dest, src, size);
|
|
|
|
#ifdef DEBUG
|
|
|
|
CHECK_EQ(0, memcmp(dest, src, size));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Limit below which the extra overhead of the MemCopy function is likely
|
|
|
|
// to outweigh the benefits of faster copying.
|
|
|
|
// TODO(lrn): Try to find a more precise value.
|
|
|
|
static const int kMinComplexMemCopy = 64;
|
|
|
|
|
|
|
|
#else // V8_TARGET_ARCH_IA32
|
|
|
|
|
|
|
|
static inline void MemCopy(void* dest, const void* src, size_t size) {
|
|
|
|
memcpy(dest, src, size);
|
|
|
|
}
|
|
|
|
|
|
|
|
static const int kMinComplexMemCopy = 256;
|
|
|
|
|
|
|
|
#endif // V8_TARGET_ARCH_IA32
|
|
|
|
|
|
|
|
|
|
|
|
// Copy from ASCII/16bit chars to ASCII/16bit chars.
|
|
|
|
template <typename sourcechar, typename sinkchar>
|
|
|
|
static inline void CopyChars(sinkchar* dest, const sourcechar* src, int chars) {
|
|
|
|
sinkchar* limit = dest + chars;
|
|
|
|
#ifdef V8_HOST_CAN_READ_UNALIGNED
|
|
|
|
if (sizeof(*dest) == sizeof(*src)) {
|
|
|
|
if (chars >= static_cast<int>(kMinComplexMemCopy / sizeof(*dest))) {
|
|
|
|
MemCopy(dest, src, chars * sizeof(*dest));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// Number of characters in a uintptr_t.
|
|
|
|
static const int kStepSize = sizeof(uintptr_t) / sizeof(*dest); // NOLINT
|
|
|
|
while (dest <= limit - kStepSize) {
|
|
|
|
*reinterpret_cast<uintptr_t*>(dest) =
|
|
|
|
*reinterpret_cast<const uintptr_t*>(src);
|
|
|
|
dest += kStepSize;
|
|
|
|
src += kStepSize;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
while (dest < limit) {
|
|
|
|
*dest++ = static_cast<sinkchar>(*src++);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Compare ASCII/16bit chars to ASCII/16bit chars.
|
|
|
|
template <typename lchar, typename rchar>
|
|
|
|
static inline int CompareChars(const lchar* lhs, const rchar* rhs, int chars) {
|
|
|
|
const lchar* limit = lhs + chars;
|
|
|
|
#ifdef V8_HOST_CAN_READ_UNALIGNED
|
|
|
|
if (sizeof(*lhs) == sizeof(*rhs)) {
|
|
|
|
// Number of characters in a uintptr_t.
|
|
|
|
static const int kStepSize = sizeof(uintptr_t) / sizeof(*lhs); // NOLINT
|
|
|
|
while (lhs <= limit - kStepSize) {
|
|
|
|
if (*reinterpret_cast<const uintptr_t*>(lhs) !=
|
|
|
|
*reinterpret_cast<const uintptr_t*>(rhs)) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
lhs += kStepSize;
|
|
|
|
rhs += kStepSize;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
while (lhs < limit) {
|
|
|
|
int r = static_cast<int>(*lhs) - static_cast<int>(*rhs);
|
|
|
|
if (r != 0) return r;
|
|
|
|
++lhs;
|
|
|
|
++rhs;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
static inline void MemsetPointer(T** dest, T* value, int counter) {
|
|
|
|
#if defined(V8_HOST_ARCH_IA32)
|
|
|
|
#define STOS "stosl"
|
|
|
|
#elif defined(V8_HOST_ARCH_X64)
|
|
|
|
#define STOS "stosq"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(__GNUC__) && defined(STOS)
|
|
|
|
asm volatile(
|
|
|
|
"cld;"
|
|
|
|
"rep ; " STOS
|
|
|
|
: "+&c" (counter), "+&D" (dest)
|
|
|
|
: "a" (value)
|
|
|
|
: "memory", "cc");
|
|
|
|
#else
|
|
|
|
for (int i = 0; i < counter; i++) {
|
|
|
|
dest[i] = value;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#undef STOS
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Copies data from |src| to |dst|. The data spans MUST not overlap.
|
|
|
|
inline void CopyWords(Object** dst, Object** src, int num_words) {
|
|
|
|
ASSERT(Min(dst, src) + num_words <= Max(dst, src));
|
|
|
|
ASSERT(num_words > 0);
|
|
|
|
|
|
|
|
// Use block copying memcpy if the segment we're copying is
|
|
|
|
// enough to justify the extra call/setup overhead.
|
|
|
|
static const int kBlockCopyLimit = 16;
|
|
|
|
|
|
|
|
if (num_words >= kBlockCopyLimit) {
|
|
|
|
memcpy(dst, src, num_words * kPointerSize);
|
|
|
|
} else {
|
|
|
|
int remaining = num_words;
|
|
|
|
do {
|
|
|
|
remaining--;
|
|
|
|
*dst++ = *src++;
|
|
|
|
} while (remaining > 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Calculate 10^exponent.
|
|
|
|
int TenToThe(int exponent);
|
|
|
|
|
|
|
|
|
|
|
|
// The type-based aliasing rule allows the compiler to assume that pointers of
|
|
|
|
// different types (for some definition of different) never alias each other.
|
|
|
|
// Thus the following code does not work:
|
|
|
|
//
|
|
|
|
// float f = foo();
|
|
|
|
// int fbits = *(int*)(&f);
|
|
|
|
//
|
|
|
|
// The compiler 'knows' that the int pointer can't refer to f since the types
|
|
|
|
// don't match, so the compiler may cache f in a register, leaving random data
|
|
|
|
// in fbits. Using C++ style casts makes no difference, however a pointer to
|
|
|
|
// char data is assumed to alias any other pointer. This is the 'memcpy
|
|
|
|
// exception'.
|
|
|
|
//
|
|
|
|
// Bit_cast uses the memcpy exception to move the bits from a variable of one
|
|
|
|
// type of a variable of another type. Of course the end result is likely to
|
|
|
|
// be implementation dependent. Most compilers (gcc-4.2 and MSVC 2005)
|
|
|
|
// will completely optimize BitCast away.
|
|
|
|
//
|
|
|
|
// There is an additional use for BitCast.
|
|
|
|
// Recent gccs will warn when they see casts that may result in breakage due to
|
|
|
|
// the type-based aliasing rule. If you have checked that there is no breakage
|
|
|
|
// you can use BitCast to cast one pointer type to another. This confuses gcc
|
|
|
|
// enough that it can no longer see that you have cast one pointer type to
|
|
|
|
// another thus avoiding the warning.
|
|
|
|
template <class Dest, class Source>
|
|
|
|
inline Dest BitCast(const Source& source) {
|
|
|
|
// Compile time assertion: sizeof(Dest) == sizeof(Source)
|
|
|
|
// A compile error here means your Dest and Source have different sizes.
|
|
|
|
typedef char VerifySizesAreEqual[sizeof(Dest) == sizeof(Source) ? 1 : -1];
|
|
|
|
|
|
|
|
Dest dest;
|
|
|
|
memcpy(&dest, &source, sizeof(dest));
|
|
|
|
return dest;
|
|
|
|
}
|
|
|
|
|
|
|
|
} } // namespace v8::internal
|
|
|
|
|
|
|
|
|
|
|
|
#endif // V8_UTILS_H_
|