|
|
|
// Copyright (c) 1994-2006 Sun Microsystems Inc.
|
|
|
|
// All Rights Reserved.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without
|
|
|
|
// modification, are permitted provided that the following conditions
|
|
|
|
// are met:
|
|
|
|
//
|
|
|
|
// - Redistributions of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// - Redistribution in binary form must reproduce the above copyright
|
|
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
|
|
// documentation and/or other materials provided with the
|
|
|
|
// distribution.
|
|
|
|
//
|
|
|
|
// - Neither the name of Sun Microsystems or the names of contributors may
|
|
|
|
// be used to endorse or promote products derived from this software without
|
|
|
|
// specific prior written permission.
|
|
|
|
//
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
|
|
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
|
|
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
|
|
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
|
|
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
|
|
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
|
|
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
|
|
// OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
|
|
// The original source code covered by the above license above has been modified
|
|
|
|
// significantly by Google Inc.
|
|
|
|
// Copyright 2006-2008 the V8 project authors. All rights reserved.
|
|
|
|
|
|
|
|
#ifndef V8_ARM_ASSEMBLER_ARM_INL_H_
|
|
|
|
#define V8_ARM_ASSEMBLER_ARM_INL_H_
|
|
|
|
|
|
|
|
#include "arm/assembler-arm.h"
|
|
|
|
#include "cpu.h"
|
|
|
|
|
|
|
|
|
|
|
|
namespace v8 {
|
|
|
|
namespace internal {
|
|
|
|
|
|
|
|
Condition NegateCondition(Condition cc) {
|
|
|
|
ASSERT(cc != al);
|
|
|
|
return static_cast<Condition>(cc ^ ne);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void RelocInfo::apply(intptr_t delta) {
|
|
|
|
if (RelocInfo::IsInternalReference(rmode_)) {
|
|
|
|
// absolute code pointer inside code object moves with the code object.
|
|
|
|
int32_t* p = reinterpret_cast<int32_t*>(pc_);
|
|
|
|
*p += delta; // relocate entry
|
|
|
|
}
|
|
|
|
// We do not use pc relative addressing on ARM, so there is
|
|
|
|
// nothing else to do.
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Address RelocInfo::target_address() {
|
|
|
|
ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
|
|
|
|
return Assembler::target_address_at(pc_);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Address RelocInfo::target_address_address() {
|
|
|
|
ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
|
|
|
|
return reinterpret_cast<Address>(Assembler::target_address_address_at(pc_));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void RelocInfo::set_target_address(Address target) {
|
|
|
|
ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
|
|
|
|
Assembler::set_target_address_at(pc_, target);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Object* RelocInfo::target_object() {
|
|
|
|
ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
|
|
|
|
return Memory::Object_at(Assembler::target_address_address_at(pc_));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
|
|
|
|
ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
|
|
|
|
return Memory::Object_Handle_at(Assembler::target_address_address_at(pc_));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Object** RelocInfo::target_object_address() {
|
|
|
|
ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
|
|
|
|
return reinterpret_cast<Object**>(Assembler::target_address_address_at(pc_));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void RelocInfo::set_target_object(Object* target) {
|
|
|
|
ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
|
|
|
|
Assembler::set_target_address_at(pc_, reinterpret_cast<Address>(target));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Address* RelocInfo::target_reference_address() {
|
|
|
|
ASSERT(rmode_ == EXTERNAL_REFERENCE);
|
|
|
|
return reinterpret_cast<Address*>(Assembler::target_address_address_at(pc_));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Address RelocInfo::call_address() {
|
|
|
|
ASSERT(IsPatchedReturnSequence());
|
|
|
|
// The 2 instructions offset assumes patched return sequence.
|
|
|
|
ASSERT(IsJSReturn(rmode()));
|
|
|
|
return Memory::Address_at(pc_ + 2 * Assembler::kInstrSize);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void RelocInfo::set_call_address(Address target) {
|
|
|
|
ASSERT(IsPatchedReturnSequence());
|
|
|
|
// The 2 instructions offset assumes patched return sequence.
|
|
|
|
ASSERT(IsJSReturn(rmode()));
|
|
|
|
Memory::Address_at(pc_ + 2 * Assembler::kInstrSize) = target;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Object* RelocInfo::call_object() {
|
|
|
|
return *call_object_address();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Object** RelocInfo::call_object_address() {
|
|
|
|
ASSERT(IsPatchedReturnSequence());
|
|
|
|
// The 2 instructions offset assumes patched return sequence.
|
|
|
|
ASSERT(IsJSReturn(rmode()));
|
|
|
|
return reinterpret_cast<Object**>(pc_ + 2 * Assembler::kInstrSize);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void RelocInfo::set_call_object(Object* target) {
|
|
|
|
*call_object_address() = target;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool RelocInfo::IsPatchedReturnSequence() {
|
|
|
|
// On ARM a "call instruction" is actually two instructions.
|
|
|
|
// mov lr, pc
|
|
|
|
// ldr pc, [pc, #XXX]
|
|
|
|
return (Assembler::instr_at(pc_) == kMovLrPc)
|
|
|
|
&& ((Assembler::instr_at(pc_ + Assembler::kInstrSize) & kLdrPCPattern)
|
|
|
|
== kLdrPCPattern);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Operand::Operand(int32_t immediate, RelocInfo::Mode rmode) {
|
|
|
|
rm_ = no_reg;
|
|
|
|
imm32_ = immediate;
|
|
|
|
rmode_ = rmode;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Operand::Operand(const char* s) {
|
|
|
|
rm_ = no_reg;
|
|
|
|
imm32_ = reinterpret_cast<int32_t>(s);
|
|
|
|
rmode_ = RelocInfo::EMBEDDED_STRING;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Operand::Operand(const ExternalReference& f) {
|
|
|
|
rm_ = no_reg;
|
|
|
|
imm32_ = reinterpret_cast<int32_t>(f.address());
|
|
|
|
rmode_ = RelocInfo::EXTERNAL_REFERENCE;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Operand::Operand(Smi* value) {
|
|
|
|
rm_ = no_reg;
|
|
|
|
imm32_ = reinterpret_cast<intptr_t>(value);
|
|
|
|
rmode_ = RelocInfo::NONE;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Operand::Operand(Register rm) {
|
|
|
|
rm_ = rm;
|
|
|
|
rs_ = no_reg;
|
|
|
|
shift_op_ = LSL;
|
|
|
|
shift_imm_ = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool Operand::is_reg() const {
|
|
|
|
return rm_.is_valid() &&
|
|
|
|
rs_.is(no_reg) &&
|
|
|
|
shift_op_ == LSL &&
|
|
|
|
shift_imm_ == 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Assembler::CheckBuffer() {
|
|
|
|
if (buffer_space() <= kGap) {
|
|
|
|
GrowBuffer();
|
|
|
|
}
|
|
|
|
if (pc_offset() >= next_buffer_check_) {
|
|
|
|
CheckConstPool(false, true);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Assembler::emit(Instr x) {
|
|
|
|
CheckBuffer();
|
|
|
|
*reinterpret_cast<Instr*>(pc_) = x;
|
|
|
|
pc_ += kInstrSize;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Address Assembler::target_address_address_at(Address pc) {
|
|
|
|
Address target_pc = pc;
|
|
|
|
Instr instr = Memory::int32_at(target_pc);
|
|
|
|
// If we have a bx instruction, the instruction before the bx is
|
|
|
|
// what we need to patch.
|
|
|
|
static const int32_t kBxInstMask = 0x0ffffff0;
|
|
|
|
static const int32_t kBxInstPattern = 0x012fff10;
|
|
|
|
if ((instr & kBxInstMask) == kBxInstPattern) {
|
|
|
|
target_pc -= kInstrSize;
|
|
|
|
instr = Memory::int32_at(target_pc);
|
|
|
|
}
|
|
|
|
// Verify that the instruction to patch is a
|
|
|
|
// ldr<cond> <Rd>, [pc +/- offset_12].
|
|
|
|
ASSERT((instr & 0x0f7f0000) == 0x051f0000);
|
|
|
|
int offset = instr & 0xfff; // offset_12 is unsigned
|
|
|
|
if ((instr & (1 << 23)) == 0) offset = -offset; // U bit defines offset sign
|
|
|
|
// Verify that the constant pool comes after the instruction referencing it.
|
|
|
|
ASSERT(offset >= -4);
|
|
|
|
return target_pc + offset + 8;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Address Assembler::target_address_at(Address pc) {
|
|
|
|
return Memory::Address_at(target_address_address_at(pc));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Assembler::set_target_at(Address constant_pool_entry,
|
|
|
|
Address target) {
|
|
|
|
Memory::Address_at(constant_pool_entry) = target;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Assembler::set_target_address_at(Address pc, Address target) {
|
|
|
|
Memory::Address_at(target_address_address_at(pc)) = target;
|
|
|
|
// Intuitively, we would think it is necessary to flush the instruction cache
|
|
|
|
// after patching a target address in the code as follows:
|
|
|
|
// CPU::FlushICache(pc, sizeof(target));
|
|
|
|
// However, on ARM, no instruction was actually patched by the assignment
|
|
|
|
// above; the target address is not part of an instruction, it is patched in
|
|
|
|
// the constant pool and is read via a data access; the instruction accessing
|
|
|
|
// this address in the constant pool remains unchanged.
|
|
|
|
}
|
|
|
|
|
|
|
|
} } // namespace v8::internal
|
|
|
|
|
|
|
|
#endif // V8_ARM_ASSEMBLER_ARM_INL_H_
|