You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1548 lines
40 KiB

// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "data-flow.h"
#include "flow-graph.h"
#include "scopes.h"
namespace v8 {
namespace internal {
#ifdef DEBUG
void BitVector::Print() {
bool first = true;
PrintF("{");
for (int i = 0; i < length(); i++) {
if (Contains(i)) {
if (!first) PrintF(",");
first = false;
PrintF("%d");
}
}
PrintF("}");
}
#endif
void AstLabeler::Label(CompilationInfo* info) {
info_ = info;
VisitStatements(info_->function()->body());
}
void AstLabeler::VisitStatements(ZoneList<Statement*>* stmts) {
for (int i = 0, len = stmts->length(); i < len; i++) {
Visit(stmts->at(i));
}
}
void AstLabeler::VisitDeclarations(ZoneList<Declaration*>* decls) {
UNREACHABLE();
}
void AstLabeler::VisitBlock(Block* stmt) {
VisitStatements(stmt->statements());
}
void AstLabeler::VisitExpressionStatement(
ExpressionStatement* stmt) {
Visit(stmt->expression());
}
void AstLabeler::VisitEmptyStatement(EmptyStatement* stmt) {
// Do nothing.
}
void AstLabeler::VisitIfStatement(IfStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitContinueStatement(ContinueStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitBreakStatement(BreakStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitReturnStatement(ReturnStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitWithEnterStatement(
WithEnterStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitWithExitStatement(WithExitStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitSwitchStatement(SwitchStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitDoWhileStatement(DoWhileStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitWhileStatement(WhileStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitForStatement(ForStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitForInStatement(ForInStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitTryCatchStatement(TryCatchStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitTryFinallyStatement(
TryFinallyStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitDebuggerStatement(
DebuggerStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitFunctionLiteral(FunctionLiteral* expr) {
UNREACHABLE();
}
void AstLabeler::VisitSharedFunctionInfoLiteral(
SharedFunctionInfoLiteral* expr) {
UNREACHABLE();
}
void AstLabeler::VisitConditional(Conditional* expr) {
UNREACHABLE();
}
void AstLabeler::VisitSlot(Slot* expr) {
UNREACHABLE();
}
void AstLabeler::VisitVariableProxy(VariableProxy* expr) {
expr->set_num(next_number_++);
Variable* var = expr->var();
if (var->is_global() && !var->is_this()) {
info_->set_has_globals(true);
}
}
void AstLabeler::VisitLiteral(Literal* expr) {
UNREACHABLE();
}
void AstLabeler::VisitRegExpLiteral(RegExpLiteral* expr) {
UNREACHABLE();
}
void AstLabeler::VisitObjectLiteral(ObjectLiteral* expr) {
UNREACHABLE();
}
void AstLabeler::VisitArrayLiteral(ArrayLiteral* expr) {
UNREACHABLE();
}
void AstLabeler::VisitCatchExtensionObject(
CatchExtensionObject* expr) {
UNREACHABLE();
}
void AstLabeler::VisitAssignment(Assignment* expr) {
Property* prop = expr->target()->AsProperty();
ASSERT(prop != NULL);
ASSERT(prop->key()->IsPropertyName());
VariableProxy* proxy = prop->obj()->AsVariableProxy();
USE(proxy);
ASSERT(proxy != NULL && proxy->var()->is_this());
info()->set_has_this_properties(true);
prop->obj()->set_num(AstNode::kNoNumber);
prop->key()->set_num(AstNode::kNoNumber);
Visit(expr->value());
expr->set_num(next_number_++);
}
void AstLabeler::VisitThrow(Throw* expr) {
UNREACHABLE();
}
void AstLabeler::VisitProperty(Property* expr) {
ASSERT(expr->key()->IsPropertyName());
VariableProxy* proxy = expr->obj()->AsVariableProxy();
USE(proxy);
ASSERT(proxy != NULL && proxy->var()->is_this());
info()->set_has_this_properties(true);
expr->obj()->set_num(AstNode::kNoNumber);
expr->key()->set_num(AstNode::kNoNumber);
expr->set_num(next_number_++);
}
void AstLabeler::VisitCall(Call* expr) {
UNREACHABLE();
}
void AstLabeler::VisitCallNew(CallNew* expr) {
UNREACHABLE();
}
void AstLabeler::VisitCallRuntime(CallRuntime* expr) {
UNREACHABLE();
}
void AstLabeler::VisitUnaryOperation(UnaryOperation* expr) {
UNREACHABLE();
}
void AstLabeler::VisitCountOperation(CountOperation* expr) {
UNREACHABLE();
}
void AstLabeler::VisitBinaryOperation(BinaryOperation* expr) {
Visit(expr->left());
Visit(expr->right());
expr->set_num(next_number_++);
}
void AstLabeler::VisitCompareOperation(CompareOperation* expr) {
UNREACHABLE();
}
void AstLabeler::VisitThisFunction(ThisFunction* expr) {
UNREACHABLE();
}
void AstLabeler::VisitDeclaration(Declaration* decl) {
UNREACHABLE();
}
AssignedVariablesAnalyzer::AssignedVariablesAnalyzer(FunctionLiteral* fun)
: fun_(fun),
av_(fun->scope()->num_parameters() + fun->scope()->num_stack_slots()) {}
void AssignedVariablesAnalyzer::Analyze() {
ASSERT(av_.length() > 0);
VisitStatements(fun_->body());
}
Variable* AssignedVariablesAnalyzer::FindSmiLoopVariable(ForStatement* stmt) {
// The loop must have all necessary parts.
if (stmt->init() == NULL || stmt->cond() == NULL || stmt->next() == NULL) {
return NULL;
}
// The initialization statement has to be a simple assignment.
Assignment* init = stmt->init()->StatementAsSimpleAssignment();
if (init == NULL) return NULL;
// We only deal with local variables.
Variable* loop_var = init->target()->AsVariableProxy()->AsVariable();
if (loop_var == NULL || !loop_var->IsStackAllocated()) return NULL;
// The initial value has to be a smi.
Literal* init_lit = init->value()->AsLiteral();
if (init_lit == NULL || !init_lit->handle()->IsSmi()) return NULL;
int init_value = Smi::cast(*init_lit->handle())->value();
// The condition must be a compare of variable with <, <=, >, or >=.
CompareOperation* cond = stmt->cond()->AsCompareOperation();
if (cond == NULL) return NULL;
if (cond->op() != Token::LT
&& cond->op() != Token::LTE
&& cond->op() != Token::GT
&& cond->op() != Token::GTE) return NULL;
// The lhs must be the same variable as in the init expression.
if (cond->left()->AsVariableProxy()->AsVariable() != loop_var) return NULL;
// The rhs must be a smi.
Literal* term_lit = cond->right()->AsLiteral();
if (term_lit == NULL || !term_lit->handle()->IsSmi()) return NULL;
int term_value = Smi::cast(*term_lit->handle())->value();
// The count operation updates the same variable as in the init expression.
CountOperation* update = stmt->next()->StatementAsCountOperation();
if (update == NULL) return NULL;
if (update->expression()->AsVariableProxy()->AsVariable() != loop_var) {
return NULL;
}
// The direction of the count operation must agree with the start and the end
// value. We currently do not allow the initial value to be the same as the
// terminal value. This _would_ be ok as long as the loop body never executes
// or executes exactly one time.
if (init_value == term_value) return NULL;
if (init_value < term_value && update->op() != Token::INC) return NULL;
if (init_value > term_value && update->op() != Token::DEC) return NULL;
// Check that the update operation cannot overflow the smi range. This can
// occur in the two cases where the loop bound is equal to the largest or
// smallest smi.
if (update->op() == Token::INC && term_value == Smi::kMaxValue) return NULL;
if (update->op() == Token::DEC && term_value == Smi::kMinValue) return NULL;
// Found a smi loop variable.
return loop_var;
}
int AssignedVariablesAnalyzer::BitIndex(Variable* var) {
ASSERT(var != NULL);
ASSERT(var->IsStackAllocated());
Slot* slot = var->slot();
if (slot->type() == Slot::PARAMETER) {
return slot->index();
} else {
return fun_->scope()->num_parameters() + slot->index();
}
}
void AssignedVariablesAnalyzer::RecordAssignedVar(Variable* var) {
ASSERT(var != NULL);
if (var->IsStackAllocated()) {
av_.Add(BitIndex(var));
}
}
void AssignedVariablesAnalyzer::MarkIfTrivial(Expression* expr) {
Variable* var = expr->AsVariableProxy()->AsVariable();
if (var != NULL &&
var->IsStackAllocated() &&
!var->is_arguments() &&
var->mode() != Variable::CONST &&
(var->is_this() || !av_.Contains(BitIndex(var)))) {
expr->AsVariableProxy()->set_is_trivial(true);
}
}
void AssignedVariablesAnalyzer::ProcessExpression(Expression* expr) {
BitVector saved_av(av_);
av_.Clear();
Visit(expr);
av_.Union(saved_av);
}
void AssignedVariablesAnalyzer::VisitBlock(Block* stmt) {
VisitStatements(stmt->statements());
}
void AssignedVariablesAnalyzer::VisitExpressionStatement(
ExpressionStatement* stmt) {
ProcessExpression(stmt->expression());
}
void AssignedVariablesAnalyzer::VisitEmptyStatement(EmptyStatement* stmt) {
// Do nothing.
}
void AssignedVariablesAnalyzer::VisitIfStatement(IfStatement* stmt) {
ProcessExpression(stmt->condition());
Visit(stmt->then_statement());
Visit(stmt->else_statement());
}
void AssignedVariablesAnalyzer::VisitContinueStatement(
ContinueStatement* stmt) {
// Nothing to do.
}
void AssignedVariablesAnalyzer::VisitBreakStatement(BreakStatement* stmt) {
// Nothing to do.
}
void AssignedVariablesAnalyzer::VisitReturnStatement(ReturnStatement* stmt) {
ProcessExpression(stmt->expression());
}
void AssignedVariablesAnalyzer::VisitWithEnterStatement(
WithEnterStatement* stmt) {
ProcessExpression(stmt->expression());
}
void AssignedVariablesAnalyzer::VisitWithExitStatement(
WithExitStatement* stmt) {
// Nothing to do.
}
void AssignedVariablesAnalyzer::VisitSwitchStatement(SwitchStatement* stmt) {
BitVector result(av_);
av_.Clear();
Visit(stmt->tag());
result.Union(av_);
for (int i = 0; i < stmt->cases()->length(); i++) {
CaseClause* clause = stmt->cases()->at(i);
if (!clause->is_default()) {
av_.Clear();
Visit(clause->label());
result.Union(av_);
}
VisitStatements(clause->statements());
}
av_.Union(result);
}
void AssignedVariablesAnalyzer::VisitDoWhileStatement(DoWhileStatement* stmt) {
ProcessExpression(stmt->cond());
Visit(stmt->body());
}
void AssignedVariablesAnalyzer::VisitWhileStatement(WhileStatement* stmt) {
ProcessExpression(stmt->cond());
Visit(stmt->body());
}
void AssignedVariablesAnalyzer::VisitForStatement(ForStatement* stmt) {
if (stmt->init() != NULL) Visit(stmt->init());
if (stmt->cond() != NULL) ProcessExpression(stmt->cond());
if (stmt->next() != NULL) Visit(stmt->next());
// Process loop body. After visiting the loop body av_ contains
// the assigned variables of the loop body.
BitVector saved_av(av_);
av_.Clear();
Visit(stmt->body());
Variable* var = FindSmiLoopVariable(stmt);
if (var != NULL && !av_.Contains(BitIndex(var))) {
stmt->set_loop_variable(var);
}
av_.Union(saved_av);
}
void AssignedVariablesAnalyzer::VisitForInStatement(ForInStatement* stmt) {
ProcessExpression(stmt->each());
ProcessExpression(stmt->enumerable());
Visit(stmt->body());
}
void AssignedVariablesAnalyzer::VisitTryCatchStatement(
TryCatchStatement* stmt) {
Visit(stmt->try_block());
Visit(stmt->catch_block());
}
void AssignedVariablesAnalyzer::VisitTryFinallyStatement(
TryFinallyStatement* stmt) {
Visit(stmt->try_block());
Visit(stmt->finally_block());
}
void AssignedVariablesAnalyzer::VisitDebuggerStatement(
DebuggerStatement* stmt) {
// Nothing to do.
}
void AssignedVariablesAnalyzer::VisitFunctionLiteral(FunctionLiteral* expr) {
// Nothing to do.
ASSERT(av_.IsEmpty());
}
void AssignedVariablesAnalyzer::VisitSharedFunctionInfoLiteral(
SharedFunctionInfoLiteral* expr) {
// Nothing to do.
ASSERT(av_.IsEmpty());
}
void AssignedVariablesAnalyzer::VisitConditional(Conditional* expr) {
ASSERT(av_.IsEmpty());
Visit(expr->condition());
BitVector result(av_);
av_.Clear();
Visit(expr->then_expression());
result.Union(av_);
av_.Clear();
Visit(expr->else_expression());
av_.Union(result);
}
void AssignedVariablesAnalyzer::VisitSlot(Slot* expr) {
UNREACHABLE();
}
void AssignedVariablesAnalyzer::VisitVariableProxy(VariableProxy* expr) {
// Nothing to do.
ASSERT(av_.IsEmpty());
}
void AssignedVariablesAnalyzer::VisitLiteral(Literal* expr) {
// Nothing to do.
ASSERT(av_.IsEmpty());
}
void AssignedVariablesAnalyzer::VisitRegExpLiteral(RegExpLiteral* expr) {
// Nothing to do.
ASSERT(av_.IsEmpty());
}
void AssignedVariablesAnalyzer::VisitObjectLiteral(ObjectLiteral* expr) {
ASSERT(av_.IsEmpty());
BitVector result(av_.length());
for (int i = 0; i < expr->properties()->length(); i++) {
Visit(expr->properties()->at(i)->value());
result.Union(av_);
av_.Clear();
}
av_ = result;
}
void AssignedVariablesAnalyzer::VisitArrayLiteral(ArrayLiteral* expr) {
ASSERT(av_.IsEmpty());
BitVector result(av_.length());
for (int i = 0; i < expr->values()->length(); i++) {
Visit(expr->values()->at(i));
result.Union(av_);
av_.Clear();
}
av_ = result;
}
void AssignedVariablesAnalyzer::VisitCatchExtensionObject(
CatchExtensionObject* expr) {
ASSERT(av_.IsEmpty());
Visit(expr->key());
ProcessExpression(expr->value());
}
void AssignedVariablesAnalyzer::VisitAssignment(Assignment* expr) {
ASSERT(av_.IsEmpty());
if (expr->target()->AsProperty() != NULL) {
// Visit receiver and key of property store and rhs.
Visit(expr->target()->AsProperty()->obj());
ProcessExpression(expr->target()->AsProperty()->key());
ProcessExpression(expr->value());
// If we have a variable as a receiver in a property store, check if
// we can mark it as trivial.
MarkIfTrivial(expr->target()->AsProperty()->obj());
} else {
Visit(expr->target());
ProcessExpression(expr->value());
Variable* var = expr->target()->AsVariableProxy()->AsVariable();
if (var != NULL) RecordAssignedVar(var);
}
}
void AssignedVariablesAnalyzer::VisitThrow(Throw* expr) {
ASSERT(av_.IsEmpty());
Visit(expr->exception());
}
void AssignedVariablesAnalyzer::VisitProperty(Property* expr) {
ASSERT(av_.IsEmpty());
Visit(expr->obj());
ProcessExpression(expr->key());
// In case we have a variable as a receiver, check if we can mark
// it as trivial.
MarkIfTrivial(expr->obj());
}
void AssignedVariablesAnalyzer::VisitCall(Call* expr) {
ASSERT(av_.IsEmpty());
Visit(expr->expression());
BitVector result(av_);
for (int i = 0; i < expr->arguments()->length(); i++) {
av_.Clear();
Visit(expr->arguments()->at(i));
result.Union(av_);
}
av_ = result;
}
void AssignedVariablesAnalyzer::VisitCallNew(CallNew* expr) {
ASSERT(av_.IsEmpty());
Visit(expr->expression());
BitVector result(av_);
for (int i = 0; i < expr->arguments()->length(); i++) {
av_.Clear();
Visit(expr->arguments()->at(i));
result.Union(av_);
}
av_ = result;
}
void AssignedVariablesAnalyzer::VisitCallRuntime(CallRuntime* expr) {
ASSERT(av_.IsEmpty());
BitVector result(av_);
for (int i = 0; i < expr->arguments()->length(); i++) {
av_.Clear();
Visit(expr->arguments()->at(i));
result.Union(av_);
}
av_ = result;
}
void AssignedVariablesAnalyzer::VisitUnaryOperation(UnaryOperation* expr) {
ASSERT(av_.IsEmpty());
Visit(expr->expression());
}
void AssignedVariablesAnalyzer::VisitCountOperation(CountOperation* expr) {
ASSERT(av_.IsEmpty());
Visit(expr->expression());
Variable* var = expr->expression()->AsVariableProxy()->AsVariable();
if (var != NULL) RecordAssignedVar(var);
}
void AssignedVariablesAnalyzer::VisitBinaryOperation(BinaryOperation* expr) {
ASSERT(av_.IsEmpty());
Visit(expr->left());
ProcessExpression(expr->right());
// In case we have a variable on the left side, check if we can mark
// it as trivial.
MarkIfTrivial(expr->left());
}
void AssignedVariablesAnalyzer::VisitCompareOperation(CompareOperation* expr) {
ASSERT(av_.IsEmpty());
Visit(expr->left());
ProcessExpression(expr->right());
// In case we have a variable on the left side, check if we can mark
// it as trivial.
MarkIfTrivial(expr->left());
}
void AssignedVariablesAnalyzer::VisitThisFunction(ThisFunction* expr) {
// Nothing to do.
ASSERT(av_.IsEmpty());
}
void AssignedVariablesAnalyzer::VisitDeclaration(Declaration* decl) {
UNREACHABLE();
}
int ReachingDefinitions::IndexFor(Variable* var, int variable_count) {
// Parameters are numbered left-to-right from the beginning of the bit
// set. Stack-allocated locals are allocated right-to-left from the end.
ASSERT(var != NULL && var->IsStackAllocated());
Slot* slot = var->slot();
if (slot->type() == Slot::PARAMETER) {
return slot->index();
} else {
return (variable_count - 1) - slot->index();
}
}
void Node::InitializeReachingDefinitions(int definition_count,
List<BitVector*>* variables,
WorkList<Node>* worklist,
bool mark) {
ASSERT(!IsMarkedWith(mark));
rd_.Initialize(definition_count);
MarkWith(mark);
worklist->Insert(this);
}
void BlockNode::InitializeReachingDefinitions(int definition_count,
List<BitVector*>* variables,
WorkList<Node>* worklist,
bool mark) {
ASSERT(!IsMarkedWith(mark));
int instruction_count = instructions_.length();
int variable_count = variables->length();
rd_.Initialize(definition_count);
// The RD_in set for the entry node has a definition for each parameter
// and local.
if (predecessor_ == NULL) {
for (int i = 0; i < variable_count; i++) rd_.rd_in()->Add(i);
}
for (int i = 0; i < instruction_count; i++) {
Expression* expr = instructions_[i]->AsExpression();
if (expr == NULL) continue;
Variable* var = expr->AssignedVariable();
if (var == NULL || !var->IsStackAllocated()) continue;
// All definitions of this variable are killed.
BitVector* def_set =
variables->at(ReachingDefinitions::IndexFor(var, variable_count));
rd_.kill()->Union(*def_set);
// All previously generated definitions are not generated.
rd_.gen()->Subtract(*def_set);
// This one is generated.
rd_.gen()->Add(expr->num());
}
// Add all blocks except the entry node to the worklist.
if (predecessor_ != NULL) {
MarkWith(mark);
worklist->Insert(this);
}
}
void ExitNode::ComputeRDOut(BitVector* result) {
// Should not be the predecessor of any node.
UNREACHABLE();
}
void BlockNode::ComputeRDOut(BitVector* result) {
// All definitions reaching this block ...
*result = *rd_.rd_in();
// ... except those killed by the block ...
result->Subtract(*rd_.kill());
// ... but including those generated by the block.
result->Union(*rd_.gen());
}
void BranchNode::ComputeRDOut(BitVector* result) {
// Branch nodes don't kill or generate definitions.
*result = *rd_.rd_in();
}
void JoinNode::ComputeRDOut(BitVector* result) {
// Join nodes don't kill or generate definitions.
*result = *rd_.rd_in();
}
void ExitNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) {
// The exit node has no successors so we can just update in place. New
// RD_in is the union over all predecessors.
int definition_count = rd_.rd_in()->length();
rd_.rd_in()->Clear();
BitVector temp(definition_count);
for (int i = 0, len = predecessors_.length(); i < len; i++) {
// Because ComputeRDOut always overwrites temp and its value is
// always read out before calling ComputeRDOut again, we do not
// have to clear it on each iteration of the loop.
predecessors_[i]->ComputeRDOut(&temp);
rd_.rd_in()->Union(temp);
}
}
void BlockNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) {
// The entry block has no predecessor. Its RD_in does not change.
if (predecessor_ == NULL) return;
BitVector new_rd_in(rd_.rd_in()->length());
predecessor_->ComputeRDOut(&new_rd_in);
if (rd_.rd_in()->Equals(new_rd_in)) return;
// Update RD_in.
*rd_.rd_in() = new_rd_in;
// Add the successor to the worklist if not already present.
if (!successor_->IsMarkedWith(mark)) {
successor_->MarkWith(mark);
worklist->Insert(successor_);
}
}
void BranchNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) {
BitVector new_rd_in(rd_.rd_in()->length());
predecessor_->ComputeRDOut(&new_rd_in);
if (rd_.rd_in()->Equals(new_rd_in)) return;
// Update RD_in.
*rd_.rd_in() = new_rd_in;
// Add the successors to the worklist if not already present.
if (!successor0_->IsMarkedWith(mark)) {
successor0_->MarkWith(mark);
worklist->Insert(successor0_);
}
if (!successor1_->IsMarkedWith(mark)) {
successor1_->MarkWith(mark);
worklist->Insert(successor1_);
}
}
void JoinNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) {
int definition_count = rd_.rd_in()->length();
BitVector new_rd_in(definition_count);
// New RD_in is the union over all predecessors.
BitVector temp(definition_count);
for (int i = 0, len = predecessors_.length(); i < len; i++) {
predecessors_[i]->ComputeRDOut(&temp);
new_rd_in.Union(temp);
}
if (rd_.rd_in()->Equals(new_rd_in)) return;
// Update RD_in.
*rd_.rd_in() = new_rd_in;
// Add the successor to the worklist if not already present.
if (!successor_->IsMarkedWith(mark)) {
successor_->MarkWith(mark);
worklist->Insert(successor_);
}
}
void Node::PropagateReachingDefinitions(List<BitVector*>* variables) {
// Nothing to do.
}
void BlockNode::PropagateReachingDefinitions(List<BitVector*>* variables) {
// Propagate RD_in from the start of the block to all the variable
// references.
int variable_count = variables->length();
BitVector rd = *rd_.rd_in();
for (int i = 0, len = instructions_.length(); i < len; i++) {
Expression* expr = instructions_[i]->AsExpression();
if (expr == NULL) continue;
// Look for a variable reference to record its reaching definitions.
VariableProxy* proxy = expr->AsVariableProxy();
if (proxy == NULL) {
// Not a VariableProxy? Maybe it's a count operation.
CountOperation* count_operation = expr->AsCountOperation();
if (count_operation != NULL) {
proxy = count_operation->expression()->AsVariableProxy();
}
}
if (proxy == NULL) {
// OK, Maybe it's a compound assignment.
Assignment* assignment = expr->AsAssignment();
if (assignment != NULL && assignment->is_compound()) {
proxy = assignment->target()->AsVariableProxy();
}
}
if (proxy != NULL &&
proxy->var()->IsStackAllocated() &&
!proxy->var()->is_this()) {
// All definitions for this variable.
BitVector* definitions =
variables->at(ReachingDefinitions::IndexFor(proxy->var(),
variable_count));
BitVector* reaching_definitions = new BitVector(*definitions);
// Intersected with all definitions (of any variable) reaching this
// instruction.
reaching_definitions->Intersect(rd);
proxy->set_reaching_definitions(reaching_definitions);
}
// It may instead (or also) be a definition. If so update the running
// value of reaching definitions for the block.
Variable* var = expr->AssignedVariable();
if (var == NULL || !var->IsStackAllocated()) continue;
// All definitions of this variable are killed.
BitVector* def_set =
variables->at(ReachingDefinitions::IndexFor(var, variable_count));
rd.Subtract(*def_set);
// This definition is generated.
rd.Add(expr->num());
}
}
void ReachingDefinitions::Compute() {
// The definitions in the body plus an implicit definition for each
// variable at function entry.
int definition_count = body_definitions_->length() + variable_count_;
int node_count = postorder_->length();
// Step 1: For each stack-allocated variable, identify the set of all its
// definitions.
List<BitVector*> variables;
for (int i = 0; i < variable_count_; i++) {
// Add the initial definition for each variable.
BitVector* initial = new BitVector(definition_count);
initial->Add(i);
variables.Add(initial);
}
for (int i = 0, len = body_definitions_->length(); i < len; i++) {
// Account for each definition in the body as a definition of the
// defined variable.
Variable* var = body_definitions_->at(i)->AssignedVariable();
variables[IndexFor(var, variable_count_)]->Add(i + variable_count_);
}
// Step 2: Compute KILL and GEN for each block node, initialize RD_in for
// all nodes, and mark and add all nodes to the worklist in reverse
// postorder. All nodes should currently have the same mark.
bool mark = postorder_->at(0)->IsMarkedWith(false); // Negation of current.
WorkList<Node> worklist(node_count);
for (int i = node_count - 1; i >= 0; i--) {
postorder_->at(i)->InitializeReachingDefinitions(definition_count,
&variables,
&worklist,
mark);
}
// Step 3: Until the worklist is empty, remove an item compute and update
// its rd_in based on its predecessor's rd_out. If rd_in has changed, add
// all necessary successors to the worklist.
while (!worklist.is_empty()) {
Node* node = worklist.Remove();
node->MarkWith(!mark);
node->UpdateRDIn(&worklist, mark);
}
// Step 4: Based on RD_in for block nodes, propagate reaching definitions
// to all variable uses in the block.
for (int i = 0; i < node_count; i++) {
postorder_->at(i)->PropagateReachingDefinitions(&variables);
}
}
bool TypeAnalyzer::IsPrimitiveDef(int def_num) {
if (def_num < param_count_) return false;
if (def_num < variable_count_) return true;
return body_definitions_->at(def_num - variable_count_)->IsPrimitive();
}
void TypeAnalyzer::Compute() {
bool changed;
int count = 0;
do {
changed = false;
if (FLAG_print_graph_text) {
PrintF("TypeAnalyzer::Compute - iteration %d\n", count++);
}
for (int i = postorder_->length() - 1; i >= 0; --i) {
Node* node = postorder_->at(i);
if (node->IsBlockNode()) {
BlockNode* block = BlockNode::cast(node);
for (int j = 0; j < block->instructions()->length(); j++) {
Expression* expr = block->instructions()->at(j)->AsExpression();
if (expr != NULL) {
// For variable uses: Compute new type from reaching definitions.
VariableProxy* proxy = expr->AsVariableProxy();
if (proxy != NULL && proxy->reaching_definitions() != NULL) {
BitVector* rd = proxy->reaching_definitions();
bool prim_type = true;
// TODO(fsc): A sparse set representation of reaching
// definitions would speed up iterating here.
for (int k = 0; k < rd->length(); k++) {
if (rd->Contains(k) && !IsPrimitiveDef(k)) {
prim_type = false;
break;
}
}
// Reset changed flag if new type information was computed.
if (prim_type != proxy->IsPrimitive()) {
changed = true;
proxy->SetIsPrimitive(prim_type);
}
}
}
}
}
}
} while (changed);
}
void Node::MarkCriticalInstructions(
List<AstNode*>* stack,
ZoneList<Expression*>* body_definitions,
int variable_count) {
}
void BlockNode::MarkCriticalInstructions(
List<AstNode*>* stack,
ZoneList<Expression*>* body_definitions,
int variable_count) {
for (int i = instructions_.length() - 1; i >= 0; i--) {
// Only expressions can appear in the flow graph for now.
Expression* expr = instructions_[i]->AsExpression();
if (expr != NULL && !expr->is_live() &&
(expr->is_loop_condition() || expr->IsCritical())) {
expr->mark_as_live();
expr->ProcessNonLiveChildren(stack, body_definitions, variable_count);
}
}
}
void MarkLiveCode(ZoneList<Node*>* nodes,
ZoneList<Expression*>* body_definitions,
int variable_count) {
List<AstNode*> stack(20);
// Mark the critical AST nodes as live; mark their dependencies and
// add them to the marking stack.
for (int i = nodes->length() - 1; i >= 0; i--) {
nodes->at(i)->MarkCriticalInstructions(&stack, body_definitions,
variable_count);
}
// Continue marking dependencies until no more.
while (!stack.is_empty()) {
// Only expressions can appear in the flow graph for now.
Expression* expr = stack.RemoveLast()->AsExpression();
if (expr != NULL) {
expr->ProcessNonLiveChildren(&stack, body_definitions, variable_count);
}
}
}
#ifdef DEBUG
// Print a textual representation of an instruction in a flow graph. Using
// the AstVisitor is overkill because there is no recursion here. It is
// only used for printing in debug mode.
class TextInstructionPrinter: public AstVisitor {
public:
TextInstructionPrinter() : number_(0) {}
int NextNumber() { return number_; }
void AssignNumber(AstNode* node) { node->set_num(number_++); }
private:
// AST node visit functions.
#define DECLARE_VISIT(type) virtual void Visit##type(type* node);
AST_NODE_LIST(DECLARE_VISIT)
#undef DECLARE_VISIT
int number_;
DISALLOW_COPY_AND_ASSIGN(TextInstructionPrinter);
};
void TextInstructionPrinter::VisitDeclaration(Declaration* decl) {
UNREACHABLE();
}
void TextInstructionPrinter::VisitBlock(Block* stmt) {
PrintF("Block");
}
void TextInstructionPrinter::VisitExpressionStatement(
ExpressionStatement* stmt) {
PrintF("ExpressionStatement");
}
void TextInstructionPrinter::VisitEmptyStatement(EmptyStatement* stmt) {
PrintF("EmptyStatement");
}
void TextInstructionPrinter::VisitIfStatement(IfStatement* stmt) {
PrintF("IfStatement");
}
void TextInstructionPrinter::VisitContinueStatement(ContinueStatement* stmt) {
UNREACHABLE();
}
void TextInstructionPrinter::VisitBreakStatement(BreakStatement* stmt) {
UNREACHABLE();
}
void TextInstructionPrinter::VisitReturnStatement(ReturnStatement* stmt) {
PrintF("return @%d", stmt->expression()->num());
}
void TextInstructionPrinter::VisitWithEnterStatement(WithEnterStatement* stmt) {
PrintF("WithEnterStatement");
}
void TextInstructionPrinter::VisitWithExitStatement(WithExitStatement* stmt) {
PrintF("WithExitStatement");
}
void TextInstructionPrinter::VisitSwitchStatement(SwitchStatement* stmt) {
UNREACHABLE();
}
void TextInstructionPrinter::VisitDoWhileStatement(DoWhileStatement* stmt) {
PrintF("DoWhileStatement");
}
void TextInstructionPrinter::VisitWhileStatement(WhileStatement* stmt) {
PrintF("WhileStatement");
}
void TextInstructionPrinter::VisitForStatement(ForStatement* stmt) {
PrintF("ForStatement");
}
void TextInstructionPrinter::VisitForInStatement(ForInStatement* stmt) {
PrintF("ForInStatement");
}
void TextInstructionPrinter::VisitTryCatchStatement(TryCatchStatement* stmt) {
UNREACHABLE();
}
void TextInstructionPrinter::VisitTryFinallyStatement(
TryFinallyStatement* stmt) {
UNREACHABLE();
}
void TextInstructionPrinter::VisitDebuggerStatement(DebuggerStatement* stmt) {
PrintF("DebuggerStatement");
}
void TextInstructionPrinter::VisitFunctionLiteral(FunctionLiteral* expr) {
PrintF("FunctionLiteral");
}
void TextInstructionPrinter::VisitSharedFunctionInfoLiteral(
SharedFunctionInfoLiteral* expr) {
PrintF("SharedFunctionInfoLiteral");
}
void TextInstructionPrinter::VisitConditional(Conditional* expr) {
PrintF("Conditional");
}
void TextInstructionPrinter::VisitSlot(Slot* expr) {
UNREACHABLE();
}
void TextInstructionPrinter::VisitVariableProxy(VariableProxy* expr) {
Variable* var = expr->AsVariable();
if (var != NULL) {
PrintF("%s", *var->name()->ToCString());
if (var->IsStackAllocated() && expr->reaching_definitions() != NULL) {
expr->reaching_definitions()->Print();
}
} else {
ASSERT(expr->AsProperty() != NULL);
VisitProperty(expr->AsProperty());
}
}
void TextInstructionPrinter::VisitLiteral(Literal* expr) {
expr->handle()->ShortPrint();
}
void TextInstructionPrinter::VisitRegExpLiteral(RegExpLiteral* expr) {
PrintF("RegExpLiteral");
}
void TextInstructionPrinter::VisitObjectLiteral(ObjectLiteral* expr) {
PrintF("ObjectLiteral");
}
void TextInstructionPrinter::VisitArrayLiteral(ArrayLiteral* expr) {
PrintF("ArrayLiteral");
}
void TextInstructionPrinter::VisitCatchExtensionObject(
CatchExtensionObject* expr) {
PrintF("CatchExtensionObject");
}
void TextInstructionPrinter::VisitAssignment(Assignment* expr) {
Variable* var = expr->target()->AsVariableProxy()->AsVariable();
Property* prop = expr->target()->AsProperty();
if (var == NULL && prop == NULL) {
// Throw reference error.
Visit(expr->target());
return;
}
// Print the left-hand side.
if (var != NULL) {
PrintF("%s", *var->name()->ToCString());
} else if (prop != NULL) {
PrintF("@%d", prop->obj()->num());
if (prop->key()->IsPropertyName()) {
PrintF(".");
ASSERT(prop->key()->AsLiteral() != NULL);
prop->key()->AsLiteral()->handle()->Print();
} else {
PrintF("[@%d]", prop->key()->num());
}
}
// Print the operation.
if (expr->is_compound()) {
PrintF(" = ");
// Print the left-hand side again when compound.
if (var != NULL) {
PrintF("@%d", expr->target()->num());
} else {
PrintF("@%d", prop->obj()->num());
if (prop->key()->IsPropertyName()) {
PrintF(".");
ASSERT(prop->key()->AsLiteral() != NULL);
prop->key()->AsLiteral()->handle()->Print();
} else {
PrintF("[@%d]", prop->key()->num());
}
}
// Print the corresponding binary operator.
PrintF(" %s ", Token::String(expr->binary_op()));
} else {
PrintF(" %s ", Token::String(expr->op()));
}
// Print the right-hand side.
PrintF("@%d", expr->value()->num());
if (expr->num() != AstNode::kNoNumber) {
PrintF(" ;; D%d", expr->num());
}
}
void TextInstructionPrinter::VisitThrow(Throw* expr) {
PrintF("throw @%d", expr->exception()->num());
}
void TextInstructionPrinter::VisitProperty(Property* expr) {
if (expr->key()->IsPropertyName()) {
PrintF("@%d.", expr->obj()->num());
ASSERT(expr->key()->AsLiteral() != NULL);
expr->key()->AsLiteral()->handle()->Print();
} else {
PrintF("@%d[@%d]", expr->obj()->num(), expr->key()->num());
}
}
void TextInstructionPrinter::VisitCall(Call* expr) {
PrintF("@%d(", expr->expression()->num());
ZoneList<Expression*>* arguments = expr->arguments();
for (int i = 0, len = arguments->length(); i < len; i++) {
if (i != 0) PrintF(", ");
PrintF("@%d", arguments->at(i)->num());
}
PrintF(")");
}
void TextInstructionPrinter::VisitCallNew(CallNew* expr) {
PrintF("new @%d(", expr->expression()->num());
ZoneList<Expression*>* arguments = expr->arguments();
for (int i = 0, len = arguments->length(); i < len; i++) {
if (i != 0) PrintF(", ");
PrintF("@%d", arguments->at(i)->num());
}
PrintF(")");
}
void TextInstructionPrinter::VisitCallRuntime(CallRuntime* expr) {
PrintF("%s(", *expr->name()->ToCString());
ZoneList<Expression*>* arguments = expr->arguments();
for (int i = 0, len = arguments->length(); i < len; i++) {
if (i != 0) PrintF(", ");
PrintF("@%d", arguments->at(i)->num());
}
PrintF(")");
}
void TextInstructionPrinter::VisitUnaryOperation(UnaryOperation* expr) {
PrintF("%s(@%d)", Token::String(expr->op()), expr->expression()->num());
}
void TextInstructionPrinter::VisitCountOperation(CountOperation* expr) {
if (expr->is_prefix()) {
PrintF("%s@%d", Token::String(expr->op()), expr->expression()->num());
} else {
PrintF("@%d%s", expr->expression()->num(), Token::String(expr->op()));
}
if (expr->num() != AstNode::kNoNumber) {
PrintF(" ;; D%d", expr->num());
}
}
void TextInstructionPrinter::VisitBinaryOperation(BinaryOperation* expr) {
ASSERT(expr->op() != Token::COMMA);
ASSERT(expr->op() != Token::OR);
ASSERT(expr->op() != Token::AND);
PrintF("@%d %s @%d",
expr->left()->num(),
Token::String(expr->op()),
expr->right()->num());
}
void TextInstructionPrinter::VisitCompareOperation(CompareOperation* expr) {
PrintF("@%d %s @%d",
expr->left()->num(),
Token::String(expr->op()),
expr->right()->num());
}
void TextInstructionPrinter::VisitThisFunction(ThisFunction* expr) {
PrintF("ThisFunction");
}
static int node_count = 0;
static int instruction_count = 0;
void Node::AssignNodeNumber() {
set_number(node_count++);
}
void Node::PrintReachingDefinitions() {
if (rd_.rd_in() != NULL) {
ASSERT(rd_.kill() != NULL && rd_.gen() != NULL);
PrintF("RD_in = ");
rd_.rd_in()->Print();
PrintF("\n");
PrintF("RD_kill = ");
rd_.kill()->Print();
PrintF("\n");
PrintF("RD_gen = ");
rd_.gen()->Print();
PrintF("\n");
}
}
void ExitNode::PrintText() {
PrintReachingDefinitions();
PrintF("L%d: Exit\n\n", number());
}
void BlockNode::PrintText() {
PrintReachingDefinitions();
// Print the instructions in the block.
PrintF("L%d: Block\n", number());
TextInstructionPrinter printer;
for (int i = 0, len = instructions_.length(); i < len; i++) {
AstNode* instr = instructions_[i];
// Print a star next to dead instructions.
if (instr->AsExpression() != NULL && instr->AsExpression()->is_live()) {
PrintF(" ");
} else {
PrintF("* ");
}
PrintF("%d ", printer.NextNumber());
printer.Visit(instr);
printer.AssignNumber(instr);
PrintF("\n");
}
PrintF("goto L%d\n\n", successor_->number());
}
void BranchNode::PrintText() {
PrintReachingDefinitions();
PrintF("L%d: Branch\n", number());
PrintF("goto (L%d, L%d)\n\n", successor0_->number(), successor1_->number());
}
void JoinNode::PrintText() {
PrintReachingDefinitions();
PrintF("L%d: Join(", number());
for (int i = 0, len = predecessors_.length(); i < len; i++) {
if (i != 0) PrintF(", ");
PrintF("L%d", predecessors_[i]->number());
}
PrintF(")\ngoto L%d\n\n", successor_->number());
}
void FlowGraph::PrintText(FunctionLiteral* fun, ZoneList<Node*>* postorder) {
PrintF("\n========\n");
PrintF("name = %s\n", *fun->name()->ToCString());
// Number nodes and instructions in reverse postorder.
node_count = 0;
instruction_count = 0;
for (int i = postorder->length() - 1; i >= 0; i--) {
postorder->at(i)->AssignNodeNumber();
}
// Print basic blocks in reverse postorder.
for (int i = postorder->length() - 1; i >= 0; i--) {
postorder->at(i)->PrintText();
}
}
#endif // DEBUG
} } // namespace v8::internal