|
|
|
// Copyright 2010 the V8 project authors. All rights reserved.
|
|
|
|
// Redistribution and use in source and binary forms, with or without
|
|
|
|
// modification, are permitted provided that the following conditions are
|
|
|
|
// met:
|
|
|
|
//
|
|
|
|
// * Redistributions of source code must retain the above copyright
|
|
|
|
// notice, this list of conditions and the following disclaimer.
|
|
|
|
// * Redistributions in binary form must reproduce the above
|
|
|
|
// copyright notice, this list of conditions and the following
|
|
|
|
// disclaimer in the documentation and/or other materials provided
|
|
|
|
// with the distribution.
|
|
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
|
|
// contributors may be used to endorse or promote products derived
|
|
|
|
// from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
|
|
#include "v8.h"
|
|
|
|
|
|
|
|
#include "data-flow.h"
|
|
|
|
#include "scopes.h"
|
|
|
|
|
|
|
|
namespace v8 {
|
|
|
|
namespace internal {
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
void BitVector::Print() {
|
|
|
|
bool first = true;
|
|
|
|
PrintF("{");
|
|
|
|
for (int i = 0; i < length(); i++) {
|
|
|
|
if (Contains(i)) {
|
|
|
|
if (!first) PrintF(",");
|
|
|
|
first = false;
|
|
|
|
PrintF("%d");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
PrintF("}");
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraph::AppendInstruction(AstNode* instruction) {
|
|
|
|
// Add a (non-null) AstNode to the end of the graph fragment.
|
|
|
|
ASSERT(instruction != NULL);
|
|
|
|
if (exit()->IsExitNode()) return;
|
|
|
|
if (!exit()->IsBlockNode()) AppendNode(new BlockNode());
|
|
|
|
BlockNode::cast(exit())->AddInstruction(instruction);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraph::AppendNode(Node* node) {
|
|
|
|
// Add a node to the end of the graph. An empty block is added to
|
|
|
|
// maintain edge-split form (that no join nodes or exit nodes as
|
|
|
|
// successors to branch nodes).
|
|
|
|
ASSERT(node != NULL);
|
|
|
|
if (exit()->IsExitNode()) return;
|
|
|
|
if (exit()->IsBranchNode() && (node->IsJoinNode() || node->IsExitNode())) {
|
|
|
|
AppendNode(new BlockNode());
|
|
|
|
}
|
|
|
|
exit()->AddSuccessor(node);
|
|
|
|
node->AddPredecessor(exit());
|
|
|
|
exit_ = node;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraph::AppendGraph(FlowGraph* graph) {
|
|
|
|
// Add a flow graph fragment to the end of this one. An empty block is
|
|
|
|
// added to maintain edge-split form (that no join nodes or exit nodes as
|
|
|
|
// successors to branch nodes).
|
|
|
|
ASSERT(graph != NULL);
|
|
|
|
if (exit()->IsExitNode()) return;
|
|
|
|
Node* node = graph->entry();
|
|
|
|
if (exit()->IsBranchNode() && (node->IsJoinNode() || node->IsExitNode())) {
|
|
|
|
AppendNode(new BlockNode());
|
|
|
|
}
|
|
|
|
exit()->AddSuccessor(node);
|
|
|
|
node->AddPredecessor(exit());
|
|
|
|
exit_ = graph->exit();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraph::Split(BranchNode* branch,
|
|
|
|
FlowGraph* left,
|
|
|
|
FlowGraph* right,
|
|
|
|
JoinNode* join) {
|
|
|
|
// Add the branch node, left flowgraph, join node.
|
|
|
|
AppendNode(branch);
|
|
|
|
AppendGraph(left);
|
|
|
|
AppendNode(join);
|
|
|
|
|
|
|
|
// Splice in the right flowgraph.
|
|
|
|
right->AppendNode(join);
|
|
|
|
branch->AddSuccessor(right->entry());
|
|
|
|
right->entry()->AddPredecessor(branch);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraph::Loop(JoinNode* join,
|
|
|
|
FlowGraph* condition,
|
|
|
|
BranchNode* branch,
|
|
|
|
FlowGraph* body) {
|
|
|
|
// Add the join, condition and branch. Add join's predecessors in
|
|
|
|
// left-to-right order.
|
|
|
|
AppendNode(join);
|
|
|
|
body->AppendNode(join);
|
|
|
|
AppendGraph(condition);
|
|
|
|
AppendNode(branch);
|
|
|
|
|
|
|
|
// Splice in the body flowgraph.
|
|
|
|
branch->AddSuccessor(body->entry());
|
|
|
|
body->entry()->AddPredecessor(branch);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ExitNode::Traverse(bool mark,
|
|
|
|
ZoneList<Node*>* preorder,
|
|
|
|
ZoneList<Node*>* postorder) {
|
|
|
|
preorder->Add(this);
|
|
|
|
postorder->Add(this);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void BlockNode::Traverse(bool mark,
|
|
|
|
ZoneList<Node*>* preorder,
|
|
|
|
ZoneList<Node*>* postorder) {
|
|
|
|
ASSERT(successor_ != NULL);
|
|
|
|
preorder->Add(this);
|
|
|
|
if (!successor_->IsMarkedWith(mark)) {
|
|
|
|
successor_->MarkWith(mark);
|
|
|
|
successor_->Traverse(mark, preorder, postorder);
|
|
|
|
}
|
|
|
|
postorder->Add(this);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void BranchNode::Traverse(bool mark,
|
|
|
|
ZoneList<Node*>* preorder,
|
|
|
|
ZoneList<Node*>* postorder) {
|
|
|
|
ASSERT(successor0_ != NULL && successor1_ != NULL);
|
|
|
|
preorder->Add(this);
|
|
|
|
if (!successor1_->IsMarkedWith(mark)) {
|
|
|
|
successor1_->MarkWith(mark);
|
|
|
|
successor1_->Traverse(mark, preorder, postorder);
|
|
|
|
}
|
|
|
|
if (!successor0_->IsMarkedWith(mark)) {
|
|
|
|
successor0_->MarkWith(mark);
|
|
|
|
successor0_->Traverse(mark, preorder, postorder);
|
|
|
|
}
|
|
|
|
postorder->Add(this);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void JoinNode::Traverse(bool mark,
|
|
|
|
ZoneList<Node*>* preorder,
|
|
|
|
ZoneList<Node*>* postorder) {
|
|
|
|
ASSERT(successor_ != NULL);
|
|
|
|
preorder->Add(this);
|
|
|
|
if (!successor_->IsMarkedWith(mark)) {
|
|
|
|
successor_->MarkWith(mark);
|
|
|
|
successor_->Traverse(mark, preorder, postorder);
|
|
|
|
}
|
|
|
|
postorder->Add(this);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::Build(FunctionLiteral* lit) {
|
|
|
|
global_exit_ = new ExitNode();
|
|
|
|
VisitStatements(lit->body());
|
|
|
|
|
|
|
|
if (HasStackOverflow()) return;
|
|
|
|
|
|
|
|
// The graph can end with a branch node (if the function ended with a
|
|
|
|
// loop). Maintain edge-split form (no join nodes or exit nodes as
|
|
|
|
// successors to branch nodes).
|
|
|
|
if (graph_.exit()->IsBranchNode()) graph_.AppendNode(new BlockNode());
|
|
|
|
graph_.AppendNode(global_exit_);
|
|
|
|
|
|
|
|
// Build preorder and postorder traversal orders. All the nodes in
|
|
|
|
// the graph have the same mark flag. For the traversal, use that
|
|
|
|
// flag's negation. Traversal will flip all the flags.
|
|
|
|
bool mark = graph_.entry()->IsMarkedWith(false);
|
|
|
|
graph_.entry()->MarkWith(mark);
|
|
|
|
graph_.entry()->Traverse(mark, &preorder_, &postorder_);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// This function peels off one iteration of a for-loop. The return value
|
|
|
|
// is either a block statement containing the peeled loop or NULL in case
|
|
|
|
// there is a stack overflow.
|
|
|
|
static Statement* PeelForLoop(ForStatement* stmt) {
|
|
|
|
// Mark this for-statement as processed.
|
|
|
|
stmt->set_peel_this_loop(false);
|
|
|
|
|
|
|
|
// Create new block containing the init statement of the for-loop and
|
|
|
|
// an if-statement containing the peeled iteration and the original
|
|
|
|
// loop without the init-statement.
|
|
|
|
Block* block = new Block(NULL, 2, false);
|
|
|
|
if (stmt->init() != NULL) {
|
|
|
|
Statement* init = stmt->init();
|
|
|
|
// The init statement gets the statement position of the for-loop
|
|
|
|
// to make debugging of peeled loops possible.
|
|
|
|
init->set_statement_pos(stmt->statement_pos());
|
|
|
|
block->AddStatement(init);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Copy the condition.
|
|
|
|
CopyAstVisitor copy_visitor;
|
|
|
|
Expression* cond_copy = stmt->cond() != NULL
|
|
|
|
? copy_visitor.DeepCopyExpr(stmt->cond())
|
|
|
|
: new Literal(Factory::true_value());
|
|
|
|
if (copy_visitor.HasStackOverflow()) return NULL;
|
|
|
|
|
|
|
|
// Construct a block with the peeled body and the rest of the for-loop.
|
|
|
|
Statement* body_copy = copy_visitor.DeepCopyStmt(stmt->body());
|
|
|
|
if (copy_visitor.HasStackOverflow()) return NULL;
|
|
|
|
|
|
|
|
Statement* next_copy = stmt->next() != NULL
|
|
|
|
? copy_visitor.DeepCopyStmt(stmt->next())
|
|
|
|
: new EmptyStatement();
|
|
|
|
if (copy_visitor.HasStackOverflow()) return NULL;
|
|
|
|
|
|
|
|
Block* peeled_body = new Block(NULL, 3, false);
|
|
|
|
peeled_body->AddStatement(body_copy);
|
|
|
|
peeled_body->AddStatement(next_copy);
|
|
|
|
peeled_body->AddStatement(stmt);
|
|
|
|
|
|
|
|
// Remove the duplicated init statement from the for-statement.
|
|
|
|
stmt->set_init(NULL);
|
|
|
|
|
|
|
|
// Create new test at the top and add it to the newly created block.
|
|
|
|
IfStatement* test = new IfStatement(cond_copy,
|
|
|
|
peeled_body,
|
|
|
|
new EmptyStatement());
|
|
|
|
block->AddStatement(test);
|
|
|
|
return block;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitStatements(ZoneList<Statement*>* stmts) {
|
|
|
|
for (int i = 0, len = stmts->length(); i < len; i++) {
|
|
|
|
stmts->at(i) = ProcessStatement(stmts->at(i));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Statement* FlowGraphBuilder::ProcessStatement(Statement* stmt) {
|
|
|
|
if (FLAG_loop_peeling &&
|
|
|
|
stmt->AsForStatement() != NULL &&
|
|
|
|
stmt->AsForStatement()->peel_this_loop()) {
|
|
|
|
Statement* tmp_stmt = PeelForLoop(stmt->AsForStatement());
|
|
|
|
if (tmp_stmt == NULL) {
|
|
|
|
SetStackOverflow();
|
|
|
|
} else {
|
|
|
|
stmt = tmp_stmt;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
Visit(stmt);
|
|
|
|
return stmt;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitDeclaration(Declaration* decl) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitBlock(Block* stmt) {
|
|
|
|
VisitStatements(stmt->statements());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitExpressionStatement(ExpressionStatement* stmt) {
|
|
|
|
Visit(stmt->expression());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitEmptyStatement(EmptyStatement* stmt) {
|
|
|
|
// Nothing to do.
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitIfStatement(IfStatement* stmt) {
|
|
|
|
Visit(stmt->condition());
|
|
|
|
|
|
|
|
BranchNode* branch = new BranchNode();
|
|
|
|
FlowGraph original = graph_;
|
|
|
|
graph_ = FlowGraph::Empty();
|
|
|
|
stmt->set_then_statement(ProcessStatement(stmt->then_statement()));
|
|
|
|
|
|
|
|
FlowGraph left = graph_;
|
|
|
|
graph_ = FlowGraph::Empty();
|
|
|
|
stmt->set_else_statement(ProcessStatement(stmt->else_statement()));
|
|
|
|
|
|
|
|
if (HasStackOverflow()) return;
|
|
|
|
JoinNode* join = new JoinNode();
|
|
|
|
original.Split(branch, &left, &graph_, join);
|
|
|
|
graph_ = original;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitContinueStatement(ContinueStatement* stmt) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitBreakStatement(BreakStatement* stmt) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitReturnStatement(ReturnStatement* stmt) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitWithEnterStatement(WithEnterStatement* stmt) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitWithExitStatement(WithExitStatement* stmt) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitSwitchStatement(SwitchStatement* stmt) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitDoWhileStatement(DoWhileStatement* stmt) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitWhileStatement(WhileStatement* stmt) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitForStatement(ForStatement* stmt) {
|
|
|
|
if (stmt->init() != NULL) stmt->set_init(ProcessStatement(stmt->init()));
|
|
|
|
|
|
|
|
JoinNode* join = new JoinNode();
|
|
|
|
FlowGraph original = graph_;
|
|
|
|
graph_ = FlowGraph::Empty();
|
|
|
|
if (stmt->cond() != NULL) Visit(stmt->cond());
|
|
|
|
|
|
|
|
BranchNode* branch = new BranchNode();
|
|
|
|
FlowGraph condition = graph_;
|
|
|
|
graph_ = FlowGraph::Empty();
|
|
|
|
stmt->set_body(ProcessStatement(stmt->body()));
|
|
|
|
|
|
|
|
if (stmt->next() != NULL) stmt->set_next(ProcessStatement(stmt->next()));
|
|
|
|
|
|
|
|
if (HasStackOverflow()) return;
|
|
|
|
original.Loop(join, &condition, branch, &graph_);
|
|
|
|
graph_ = original;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitForInStatement(ForInStatement* stmt) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitTryCatchStatement(TryCatchStatement* stmt) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitTryFinallyStatement(TryFinallyStatement* stmt) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitDebuggerStatement(DebuggerStatement* stmt) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitFunctionLiteral(FunctionLiteral* expr) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitSharedFunctionInfoLiteral(
|
|
|
|
SharedFunctionInfoLiteral* expr) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitConditional(Conditional* expr) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitSlot(Slot* expr) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitVariableProxy(VariableProxy* expr) {
|
|
|
|
graph_.AppendInstruction(expr);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitLiteral(Literal* expr) {
|
|
|
|
graph_.AppendInstruction(expr);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitRegExpLiteral(RegExpLiteral* expr) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitObjectLiteral(ObjectLiteral* expr) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitArrayLiteral(ArrayLiteral* expr) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitCatchExtensionObject(CatchExtensionObject* expr) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitAssignment(Assignment* expr) {
|
|
|
|
Variable* var = expr->target()->AsVariableProxy()->AsVariable();
|
|
|
|
Property* prop = expr->target()->AsProperty();
|
|
|
|
// Left-hand side can be a variable or property (or reference error) but
|
|
|
|
// not both.
|
|
|
|
ASSERT(var == NULL || prop == NULL);
|
|
|
|
if (var != NULL) {
|
|
|
|
if (expr->is_compound()) Visit(expr->target());
|
|
|
|
Visit(expr->value());
|
|
|
|
if (var->IsStackAllocated()) {
|
|
|
|
// The first definition in the body is numbered n, where n is the
|
|
|
|
// number of parameters and stack-allocated locals.
|
|
|
|
expr->set_num(body_definitions_.length() + variable_count_);
|
|
|
|
body_definitions_.Add(expr);
|
|
|
|
}
|
|
|
|
|
|
|
|
} else if (prop != NULL) {
|
|
|
|
Visit(prop->obj());
|
|
|
|
if (!prop->key()->IsPropertyName()) Visit(prop->key());
|
|
|
|
Visit(expr->value());
|
|
|
|
}
|
|
|
|
|
|
|
|
if (HasStackOverflow()) return;
|
|
|
|
graph_.AppendInstruction(expr);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitThrow(Throw* expr) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitProperty(Property* expr) {
|
|
|
|
Visit(expr->obj());
|
|
|
|
if (!expr->key()->IsPropertyName()) Visit(expr->key());
|
|
|
|
|
|
|
|
if (HasStackOverflow()) return;
|
|
|
|
graph_.AppendInstruction(expr);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitCall(Call* expr) {
|
|
|
|
Visit(expr->expression());
|
|
|
|
ZoneList<Expression*>* arguments = expr->arguments();
|
|
|
|
for (int i = 0, len = arguments->length(); i < len; i++) {
|
|
|
|
Visit(arguments->at(i));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (HasStackOverflow()) return;
|
|
|
|
graph_.AppendInstruction(expr);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitCallNew(CallNew* expr) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitCallRuntime(CallRuntime* expr) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitUnaryOperation(UnaryOperation* expr) {
|
|
|
|
switch (expr->op()) {
|
|
|
|
case Token::NOT:
|
|
|
|
case Token::BIT_NOT:
|
|
|
|
case Token::DELETE:
|
|
|
|
case Token::TYPEOF:
|
|
|
|
case Token::VOID:
|
|
|
|
SetStackOverflow();
|
|
|
|
break;
|
|
|
|
|
|
|
|
case Token::ADD:
|
|
|
|
case Token::SUB:
|
|
|
|
Visit(expr->expression());
|
|
|
|
if (HasStackOverflow()) return;
|
|
|
|
graph_.AppendInstruction(expr);
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitCountOperation(CountOperation* expr) {
|
|
|
|
Visit(expr->expression());
|
|
|
|
Variable* var = expr->expression()->AsVariableProxy()->AsVariable();
|
|
|
|
if (var != NULL && var->IsStackAllocated()) {
|
|
|
|
// The first definition in the body is numbered n, where n is the number
|
|
|
|
// of parameters and stack-allocated locals.
|
|
|
|
expr->set_num(body_definitions_.length() + variable_count_);
|
|
|
|
body_definitions_.Add(expr);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (HasStackOverflow()) return;
|
|
|
|
graph_.AppendInstruction(expr);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitBinaryOperation(BinaryOperation* expr) {
|
|
|
|
switch (expr->op()) {
|
|
|
|
case Token::COMMA:
|
|
|
|
case Token::OR:
|
|
|
|
case Token::AND:
|
|
|
|
SetStackOverflow();
|
|
|
|
break;
|
|
|
|
|
|
|
|
case Token::BIT_OR:
|
|
|
|
case Token::BIT_XOR:
|
|
|
|
case Token::BIT_AND:
|
|
|
|
case Token::SHL:
|
|
|
|
case Token::SHR:
|
|
|
|
case Token::ADD:
|
|
|
|
case Token::SUB:
|
|
|
|
case Token::MUL:
|
|
|
|
case Token::DIV:
|
|
|
|
case Token::MOD:
|
|
|
|
case Token::SAR:
|
|
|
|
Visit(expr->left());
|
|
|
|
Visit(expr->right());
|
|
|
|
if (HasStackOverflow()) return;
|
|
|
|
graph_.AppendInstruction(expr);
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitCompareOperation(CompareOperation* expr) {
|
|
|
|
switch (expr->op()) {
|
|
|
|
case Token::EQ:
|
|
|
|
case Token::NE:
|
|
|
|
case Token::EQ_STRICT:
|
|
|
|
case Token::NE_STRICT:
|
|
|
|
case Token::INSTANCEOF:
|
|
|
|
case Token::IN:
|
|
|
|
SetStackOverflow();
|
|
|
|
break;
|
|
|
|
|
|
|
|
case Token::LT:
|
|
|
|
case Token::GT:
|
|
|
|
case Token::LTE:
|
|
|
|
case Token::GTE:
|
|
|
|
Visit(expr->left());
|
|
|
|
Visit(expr->right());
|
|
|
|
if (HasStackOverflow()) return;
|
|
|
|
graph_.AppendInstruction(expr);
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraphBuilder::VisitThisFunction(ThisFunction* expr) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::Label(CompilationInfo* info) {
|
|
|
|
info_ = info;
|
|
|
|
VisitStatements(info_->function()->body());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitStatements(ZoneList<Statement*>* stmts) {
|
|
|
|
for (int i = 0, len = stmts->length(); i < len; i++) {
|
|
|
|
Visit(stmts->at(i));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitDeclarations(ZoneList<Declaration*>* decls) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitBlock(Block* stmt) {
|
|
|
|
VisitStatements(stmt->statements());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitExpressionStatement(
|
|
|
|
ExpressionStatement* stmt) {
|
|
|
|
Visit(stmt->expression());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitEmptyStatement(EmptyStatement* stmt) {
|
|
|
|
// Do nothing.
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitIfStatement(IfStatement* stmt) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitContinueStatement(ContinueStatement* stmt) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitBreakStatement(BreakStatement* stmt) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitReturnStatement(ReturnStatement* stmt) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitWithEnterStatement(
|
|
|
|
WithEnterStatement* stmt) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitWithExitStatement(WithExitStatement* stmt) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitSwitchStatement(SwitchStatement* stmt) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitDoWhileStatement(DoWhileStatement* stmt) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitWhileStatement(WhileStatement* stmt) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitForStatement(ForStatement* stmt) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitForInStatement(ForInStatement* stmt) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitTryCatchStatement(TryCatchStatement* stmt) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitTryFinallyStatement(
|
|
|
|
TryFinallyStatement* stmt) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitDebuggerStatement(
|
|
|
|
DebuggerStatement* stmt) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitFunctionLiteral(FunctionLiteral* expr) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitSharedFunctionInfoLiteral(
|
|
|
|
SharedFunctionInfoLiteral* expr) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitConditional(Conditional* expr) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitSlot(Slot* expr) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitVariableProxy(VariableProxy* expr) {
|
|
|
|
expr->set_num(next_number_++);
|
|
|
|
Variable* var = expr->var();
|
|
|
|
if (var->is_global() && !var->is_this()) {
|
|
|
|
info_->set_has_globals(true);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitLiteral(Literal* expr) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitRegExpLiteral(RegExpLiteral* expr) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitObjectLiteral(ObjectLiteral* expr) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitArrayLiteral(ArrayLiteral* expr) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitCatchExtensionObject(
|
|
|
|
CatchExtensionObject* expr) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitAssignment(Assignment* expr) {
|
|
|
|
Property* prop = expr->target()->AsProperty();
|
|
|
|
ASSERT(prop != NULL);
|
|
|
|
ASSERT(prop->key()->IsPropertyName());
|
|
|
|
VariableProxy* proxy = prop->obj()->AsVariableProxy();
|
|
|
|
USE(proxy);
|
|
|
|
ASSERT(proxy != NULL && proxy->var()->is_this());
|
|
|
|
info()->set_has_this_properties(true);
|
|
|
|
|
|
|
|
prop->obj()->set_num(AstNode::kNoNumber);
|
|
|
|
prop->key()->set_num(AstNode::kNoNumber);
|
|
|
|
Visit(expr->value());
|
|
|
|
expr->set_num(next_number_++);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitThrow(Throw* expr) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitProperty(Property* expr) {
|
|
|
|
ASSERT(expr->key()->IsPropertyName());
|
|
|
|
VariableProxy* proxy = expr->obj()->AsVariableProxy();
|
|
|
|
USE(proxy);
|
|
|
|
ASSERT(proxy != NULL && proxy->var()->is_this());
|
|
|
|
info()->set_has_this_properties(true);
|
|
|
|
|
|
|
|
expr->obj()->set_num(AstNode::kNoNumber);
|
|
|
|
expr->key()->set_num(AstNode::kNoNumber);
|
|
|
|
expr->set_num(next_number_++);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitCall(Call* expr) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitCallNew(CallNew* expr) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitCallRuntime(CallRuntime* expr) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitUnaryOperation(UnaryOperation* expr) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitCountOperation(CountOperation* expr) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitBinaryOperation(BinaryOperation* expr) {
|
|
|
|
Visit(expr->left());
|
|
|
|
Visit(expr->right());
|
|
|
|
expr->set_num(next_number_++);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitCompareOperation(CompareOperation* expr) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitThisFunction(ThisFunction* expr) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstLabeler::VisitDeclaration(Declaration* decl) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
AssignedVariablesAnalyzer::AssignedVariablesAnalyzer(FunctionLiteral* fun)
|
|
|
|
: fun_(fun),
|
|
|
|
av_(fun->scope()->num_parameters() + fun->scope()->num_stack_slots()) {}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::Analyze() {
|
|
|
|
ASSERT(av_.length() > 0);
|
|
|
|
VisitStatements(fun_->body());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Variable* AssignedVariablesAnalyzer::FindSmiLoopVariable(ForStatement* stmt) {
|
|
|
|
// The loop must have all necessary parts.
|
|
|
|
if (stmt->init() == NULL || stmt->cond() == NULL || stmt->next() == NULL) {
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
// The initialization statement has to be a simple assignment.
|
|
|
|
Assignment* init = stmt->init()->StatementAsSimpleAssignment();
|
|
|
|
if (init == NULL) return NULL;
|
|
|
|
|
|
|
|
// We only deal with local variables.
|
|
|
|
Variable* loop_var = init->target()->AsVariableProxy()->AsVariable();
|
|
|
|
if (loop_var == NULL || !loop_var->IsStackAllocated()) return NULL;
|
|
|
|
|
|
|
|
// The initial value has to be a smi.
|
|
|
|
Literal* init_lit = init->value()->AsLiteral();
|
|
|
|
if (init_lit == NULL || !init_lit->handle()->IsSmi()) return NULL;
|
|
|
|
int init_value = Smi::cast(*init_lit->handle())->value();
|
|
|
|
|
|
|
|
// The condition must be a compare of variable with <, <=, >, or >=.
|
|
|
|
CompareOperation* cond = stmt->cond()->AsCompareOperation();
|
|
|
|
if (cond == NULL) return NULL;
|
|
|
|
if (cond->op() != Token::LT
|
|
|
|
&& cond->op() != Token::LTE
|
|
|
|
&& cond->op() != Token::GT
|
|
|
|
&& cond->op() != Token::GTE) return NULL;
|
|
|
|
|
|
|
|
// The lhs must be the same variable as in the init expression.
|
|
|
|
if (cond->left()->AsVariableProxy()->AsVariable() != loop_var) return NULL;
|
|
|
|
|
|
|
|
// The rhs must be a smi.
|
|
|
|
Literal* term_lit = cond->right()->AsLiteral();
|
|
|
|
if (term_lit == NULL || !term_lit->handle()->IsSmi()) return NULL;
|
|
|
|
int term_value = Smi::cast(*term_lit->handle())->value();
|
|
|
|
|
|
|
|
// The count operation updates the same variable as in the init expression.
|
|
|
|
CountOperation* update = stmt->next()->StatementAsCountOperation();
|
|
|
|
if (update == NULL) return NULL;
|
|
|
|
if (update->expression()->AsVariableProxy()->AsVariable() != loop_var) {
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
// The direction of the count operation must agree with the start and the end
|
|
|
|
// value. We currently do not allow the initial value to be the same as the
|
|
|
|
// terminal value. This _would_ be ok as long as the loop body never executes
|
|
|
|
// or executes exactly one time.
|
|
|
|
if (init_value == term_value) return NULL;
|
|
|
|
if (init_value < term_value && update->op() != Token::INC) return NULL;
|
|
|
|
if (init_value > term_value && update->op() != Token::DEC) return NULL;
|
|
|
|
|
|
|
|
// Check that the update operation cannot overflow the smi range. This can
|
|
|
|
// occur in the two cases where the loop bound is equal to the largest or
|
|
|
|
// smallest smi.
|
|
|
|
if (update->op() == Token::INC && term_value == Smi::kMaxValue) return NULL;
|
|
|
|
if (update->op() == Token::DEC && term_value == Smi::kMinValue) return NULL;
|
|
|
|
|
|
|
|
// Found a smi loop variable.
|
|
|
|
return loop_var;
|
|
|
|
}
|
|
|
|
|
|
|
|
int AssignedVariablesAnalyzer::BitIndex(Variable* var) {
|
|
|
|
ASSERT(var != NULL);
|
|
|
|
ASSERT(var->IsStackAllocated());
|
|
|
|
Slot* slot = var->slot();
|
|
|
|
if (slot->type() == Slot::PARAMETER) {
|
|
|
|
return slot->index();
|
|
|
|
} else {
|
|
|
|
return fun_->scope()->num_parameters() + slot->index();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::RecordAssignedVar(Variable* var) {
|
|
|
|
ASSERT(var != NULL);
|
|
|
|
if (var->IsStackAllocated()) {
|
|
|
|
av_.Add(BitIndex(var));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::MarkIfTrivial(Expression* expr) {
|
|
|
|
Variable* var = expr->AsVariableProxy()->AsVariable();
|
|
|
|
if (var != NULL &&
|
|
|
|
var->IsStackAllocated() &&
|
|
|
|
!var->is_arguments() &&
|
|
|
|
var->mode() != Variable::CONST &&
|
|
|
|
(var->is_this() || !av_.Contains(BitIndex(var)))) {
|
|
|
|
expr->AsVariableProxy()->set_is_trivial(true);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::ProcessExpression(Expression* expr) {
|
|
|
|
BitVector saved_av(av_);
|
|
|
|
av_.Clear();
|
|
|
|
Visit(expr);
|
|
|
|
av_.Union(saved_av);
|
|
|
|
}
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitBlock(Block* stmt) {
|
|
|
|
VisitStatements(stmt->statements());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitExpressionStatement(
|
|
|
|
ExpressionStatement* stmt) {
|
|
|
|
ProcessExpression(stmt->expression());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitEmptyStatement(EmptyStatement* stmt) {
|
|
|
|
// Do nothing.
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitIfStatement(IfStatement* stmt) {
|
|
|
|
ProcessExpression(stmt->condition());
|
|
|
|
Visit(stmt->then_statement());
|
|
|
|
Visit(stmt->else_statement());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitContinueStatement(
|
|
|
|
ContinueStatement* stmt) {
|
|
|
|
// Nothing to do.
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitBreakStatement(BreakStatement* stmt) {
|
|
|
|
// Nothing to do.
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitReturnStatement(ReturnStatement* stmt) {
|
|
|
|
ProcessExpression(stmt->expression());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitWithEnterStatement(
|
|
|
|
WithEnterStatement* stmt) {
|
|
|
|
ProcessExpression(stmt->expression());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitWithExitStatement(
|
|
|
|
WithExitStatement* stmt) {
|
|
|
|
// Nothing to do.
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitSwitchStatement(SwitchStatement* stmt) {
|
|
|
|
BitVector result(av_);
|
|
|
|
av_.Clear();
|
|
|
|
Visit(stmt->tag());
|
|
|
|
result.Union(av_);
|
|
|
|
for (int i = 0; i < stmt->cases()->length(); i++) {
|
|
|
|
CaseClause* clause = stmt->cases()->at(i);
|
|
|
|
if (!clause->is_default()) {
|
|
|
|
av_.Clear();
|
|
|
|
Visit(clause->label());
|
|
|
|
result.Union(av_);
|
|
|
|
}
|
|
|
|
VisitStatements(clause->statements());
|
|
|
|
}
|
|
|
|
av_.Union(result);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitDoWhileStatement(DoWhileStatement* stmt) {
|
|
|
|
ProcessExpression(stmt->cond());
|
|
|
|
Visit(stmt->body());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitWhileStatement(WhileStatement* stmt) {
|
|
|
|
ProcessExpression(stmt->cond());
|
|
|
|
Visit(stmt->body());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitForStatement(ForStatement* stmt) {
|
|
|
|
if (stmt->init() != NULL) Visit(stmt->init());
|
|
|
|
|
|
|
|
if (stmt->cond() != NULL) ProcessExpression(stmt->cond());
|
|
|
|
|
|
|
|
if (stmt->next() != NULL) Visit(stmt->next());
|
|
|
|
|
|
|
|
// Process loop body. After visiting the loop body av_ contains
|
|
|
|
// the assigned variables of the loop body.
|
|
|
|
BitVector saved_av(av_);
|
|
|
|
av_.Clear();
|
|
|
|
Visit(stmt->body());
|
|
|
|
|
|
|
|
Variable* var = FindSmiLoopVariable(stmt);
|
|
|
|
if (var != NULL && !av_.Contains(BitIndex(var))) {
|
|
|
|
stmt->set_loop_variable(var);
|
|
|
|
}
|
|
|
|
|
|
|
|
av_.Union(saved_av);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitForInStatement(ForInStatement* stmt) {
|
|
|
|
ProcessExpression(stmt->each());
|
|
|
|
ProcessExpression(stmt->enumerable());
|
|
|
|
Visit(stmt->body());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitTryCatchStatement(
|
|
|
|
TryCatchStatement* stmt) {
|
|
|
|
Visit(stmt->try_block());
|
|
|
|
Visit(stmt->catch_block());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitTryFinallyStatement(
|
|
|
|
TryFinallyStatement* stmt) {
|
|
|
|
Visit(stmt->try_block());
|
|
|
|
Visit(stmt->finally_block());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitDebuggerStatement(
|
|
|
|
DebuggerStatement* stmt) {
|
|
|
|
// Nothing to do.
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitFunctionLiteral(FunctionLiteral* expr) {
|
|
|
|
// Nothing to do.
|
|
|
|
ASSERT(av_.IsEmpty());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitSharedFunctionInfoLiteral(
|
|
|
|
SharedFunctionInfoLiteral* expr) {
|
|
|
|
// Nothing to do.
|
|
|
|
ASSERT(av_.IsEmpty());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitConditional(Conditional* expr) {
|
|
|
|
ASSERT(av_.IsEmpty());
|
|
|
|
|
|
|
|
Visit(expr->condition());
|
|
|
|
|
|
|
|
BitVector result(av_);
|
|
|
|
av_.Clear();
|
|
|
|
Visit(expr->then_expression());
|
|
|
|
result.Union(av_);
|
|
|
|
|
|
|
|
av_.Clear();
|
|
|
|
Visit(expr->else_expression());
|
|
|
|
av_.Union(result);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitSlot(Slot* expr) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitVariableProxy(VariableProxy* expr) {
|
|
|
|
// Nothing to do.
|
|
|
|
ASSERT(av_.IsEmpty());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitLiteral(Literal* expr) {
|
|
|
|
// Nothing to do.
|
|
|
|
ASSERT(av_.IsEmpty());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitRegExpLiteral(RegExpLiteral* expr) {
|
|
|
|
// Nothing to do.
|
|
|
|
ASSERT(av_.IsEmpty());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitObjectLiteral(ObjectLiteral* expr) {
|
|
|
|
ASSERT(av_.IsEmpty());
|
|
|
|
BitVector result(av_.length());
|
|
|
|
for (int i = 0; i < expr->properties()->length(); i++) {
|
|
|
|
Visit(expr->properties()->at(i)->value());
|
|
|
|
result.Union(av_);
|
|
|
|
av_.Clear();
|
|
|
|
}
|
|
|
|
av_ = result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitArrayLiteral(ArrayLiteral* expr) {
|
|
|
|
ASSERT(av_.IsEmpty());
|
|
|
|
BitVector result(av_.length());
|
|
|
|
for (int i = 0; i < expr->values()->length(); i++) {
|
|
|
|
Visit(expr->values()->at(i));
|
|
|
|
result.Union(av_);
|
|
|
|
av_.Clear();
|
|
|
|
}
|
|
|
|
av_ = result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitCatchExtensionObject(
|
|
|
|
CatchExtensionObject* expr) {
|
|
|
|
ASSERT(av_.IsEmpty());
|
|
|
|
Visit(expr->key());
|
|
|
|
ProcessExpression(expr->value());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitAssignment(Assignment* expr) {
|
|
|
|
ASSERT(av_.IsEmpty());
|
|
|
|
|
|
|
|
if (expr->target()->AsProperty() != NULL) {
|
|
|
|
// Visit receiver and key of property store and rhs.
|
|
|
|
Visit(expr->target()->AsProperty()->obj());
|
|
|
|
ProcessExpression(expr->target()->AsProperty()->key());
|
|
|
|
ProcessExpression(expr->value());
|
|
|
|
|
|
|
|
// If we have a variable as a receiver in a property store, check if
|
|
|
|
// we can mark it as trivial.
|
|
|
|
MarkIfTrivial(expr->target()->AsProperty()->obj());
|
|
|
|
} else {
|
|
|
|
Visit(expr->target());
|
|
|
|
ProcessExpression(expr->value());
|
|
|
|
|
|
|
|
Variable* var = expr->target()->AsVariableProxy()->AsVariable();
|
|
|
|
if (var != NULL) RecordAssignedVar(var);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitThrow(Throw* expr) {
|
|
|
|
ASSERT(av_.IsEmpty());
|
|
|
|
Visit(expr->exception());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitProperty(Property* expr) {
|
|
|
|
ASSERT(av_.IsEmpty());
|
|
|
|
Visit(expr->obj());
|
|
|
|
ProcessExpression(expr->key());
|
|
|
|
|
|
|
|
// In case we have a variable as a receiver, check if we can mark
|
|
|
|
// it as trivial.
|
|
|
|
MarkIfTrivial(expr->obj());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitCall(Call* expr) {
|
|
|
|
ASSERT(av_.IsEmpty());
|
|
|
|
Visit(expr->expression());
|
|
|
|
BitVector result(av_);
|
|
|
|
for (int i = 0; i < expr->arguments()->length(); i++) {
|
|
|
|
av_.Clear();
|
|
|
|
Visit(expr->arguments()->at(i));
|
|
|
|
result.Union(av_);
|
|
|
|
}
|
|
|
|
av_ = result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitCallNew(CallNew* expr) {
|
|
|
|
ASSERT(av_.IsEmpty());
|
|
|
|
Visit(expr->expression());
|
|
|
|
BitVector result(av_);
|
|
|
|
for (int i = 0; i < expr->arguments()->length(); i++) {
|
|
|
|
av_.Clear();
|
|
|
|
Visit(expr->arguments()->at(i));
|
|
|
|
result.Union(av_);
|
|
|
|
}
|
|
|
|
av_ = result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitCallRuntime(CallRuntime* expr) {
|
|
|
|
ASSERT(av_.IsEmpty());
|
|
|
|
BitVector result(av_);
|
|
|
|
for (int i = 0; i < expr->arguments()->length(); i++) {
|
|
|
|
av_.Clear();
|
|
|
|
Visit(expr->arguments()->at(i));
|
|
|
|
result.Union(av_);
|
|
|
|
}
|
|
|
|
av_ = result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitUnaryOperation(UnaryOperation* expr) {
|
|
|
|
ASSERT(av_.IsEmpty());
|
|
|
|
Visit(expr->expression());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitCountOperation(CountOperation* expr) {
|
|
|
|
ASSERT(av_.IsEmpty());
|
|
|
|
|
|
|
|
Visit(expr->expression());
|
|
|
|
|
|
|
|
Variable* var = expr->expression()->AsVariableProxy()->AsVariable();
|
|
|
|
if (var != NULL) RecordAssignedVar(var);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitBinaryOperation(BinaryOperation* expr) {
|
|
|
|
ASSERT(av_.IsEmpty());
|
|
|
|
Visit(expr->left());
|
|
|
|
|
|
|
|
ProcessExpression(expr->right());
|
|
|
|
|
|
|
|
// In case we have a variable on the left side, check if we can mark
|
|
|
|
// it as trivial.
|
|
|
|
MarkIfTrivial(expr->left());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitCompareOperation(CompareOperation* expr) {
|
|
|
|
ASSERT(av_.IsEmpty());
|
|
|
|
Visit(expr->left());
|
|
|
|
|
|
|
|
ProcessExpression(expr->right());
|
|
|
|
|
|
|
|
// In case we have a variable on the left side, check if we can mark
|
|
|
|
// it as trivial.
|
|
|
|
MarkIfTrivial(expr->left());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitThisFunction(ThisFunction* expr) {
|
|
|
|
// Nothing to do.
|
|
|
|
ASSERT(av_.IsEmpty());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssignedVariablesAnalyzer::VisitDeclaration(Declaration* decl) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
|
|
|
|
// Print a textual representation of an instruction in a flow graph. Using
|
|
|
|
// the AstVisitor is overkill because there is no recursion here. It is
|
|
|
|
// only used for printing in debug mode.
|
|
|
|
class TextInstructionPrinter: public AstVisitor {
|
|
|
|
public:
|
|
|
|
TextInstructionPrinter() : number_(0) {}
|
|
|
|
|
|
|
|
int NextNumber() { return number_; }
|
|
|
|
void AssignNumber(AstNode* node) { node->set_num(number_++); }
|
|
|
|
|
|
|
|
private:
|
|
|
|
// AST node visit functions.
|
|
|
|
#define DECLARE_VISIT(type) virtual void Visit##type(type* node);
|
|
|
|
AST_NODE_LIST(DECLARE_VISIT)
|
|
|
|
#undef DECLARE_VISIT
|
|
|
|
|
|
|
|
int number_;
|
|
|
|
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(TextInstructionPrinter);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitDeclaration(Declaration* decl) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitBlock(Block* stmt) {
|
|
|
|
PrintF("Block");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitExpressionStatement(
|
|
|
|
ExpressionStatement* stmt) {
|
|
|
|
PrintF("ExpressionStatement");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitEmptyStatement(EmptyStatement* stmt) {
|
|
|
|
PrintF("EmptyStatement");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitIfStatement(IfStatement* stmt) {
|
|
|
|
PrintF("IfStatement");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitContinueStatement(ContinueStatement* stmt) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitBreakStatement(BreakStatement* stmt) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitReturnStatement(ReturnStatement* stmt) {
|
|
|
|
PrintF("return @%d", stmt->expression()->num());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitWithEnterStatement(WithEnterStatement* stmt) {
|
|
|
|
PrintF("WithEnterStatement");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitWithExitStatement(WithExitStatement* stmt) {
|
|
|
|
PrintF("WithExitStatement");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitSwitchStatement(SwitchStatement* stmt) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitDoWhileStatement(DoWhileStatement* stmt) {
|
|
|
|
PrintF("DoWhileStatement");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitWhileStatement(WhileStatement* stmt) {
|
|
|
|
PrintF("WhileStatement");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitForStatement(ForStatement* stmt) {
|
|
|
|
PrintF("ForStatement");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitForInStatement(ForInStatement* stmt) {
|
|
|
|
PrintF("ForInStatement");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitTryCatchStatement(TryCatchStatement* stmt) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitTryFinallyStatement(
|
|
|
|
TryFinallyStatement* stmt) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitDebuggerStatement(DebuggerStatement* stmt) {
|
|
|
|
PrintF("DebuggerStatement");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitFunctionLiteral(FunctionLiteral* expr) {
|
|
|
|
PrintF("FunctionLiteral");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitSharedFunctionInfoLiteral(
|
|
|
|
SharedFunctionInfoLiteral* expr) {
|
|
|
|
PrintF("SharedFunctionInfoLiteral");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitConditional(Conditional* expr) {
|
|
|
|
PrintF("Conditional");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitSlot(Slot* expr) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitVariableProxy(VariableProxy* expr) {
|
|
|
|
Variable* var = expr->AsVariable();
|
|
|
|
if (var != NULL) {
|
|
|
|
PrintF("%s", *var->name()->ToCString());
|
|
|
|
if (var->IsStackAllocated() && expr->reaching_definitions() != NULL) {
|
|
|
|
expr->reaching_definitions()->Print();
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
ASSERT(expr->AsProperty() != NULL);
|
|
|
|
VisitProperty(expr->AsProperty());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitLiteral(Literal* expr) {
|
|
|
|
expr->handle()->ShortPrint();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitRegExpLiteral(RegExpLiteral* expr) {
|
|
|
|
PrintF("RegExpLiteral");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitObjectLiteral(ObjectLiteral* expr) {
|
|
|
|
PrintF("ObjectLiteral");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitArrayLiteral(ArrayLiteral* expr) {
|
|
|
|
PrintF("ArrayLiteral");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitCatchExtensionObject(
|
|
|
|
CatchExtensionObject* expr) {
|
|
|
|
PrintF("CatchExtensionObject");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitAssignment(Assignment* expr) {
|
|
|
|
Variable* var = expr->target()->AsVariableProxy()->AsVariable();
|
|
|
|
Property* prop = expr->target()->AsProperty();
|
|
|
|
|
|
|
|
if (var == NULL && prop == NULL) {
|
|
|
|
// Throw reference error.
|
|
|
|
Visit(expr->target());
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Print the left-hand side.
|
|
|
|
if (var != NULL) {
|
|
|
|
PrintF("%s", *var->name()->ToCString());
|
|
|
|
} else if (prop != NULL) {
|
|
|
|
PrintF("@%d", prop->obj()->num());
|
|
|
|
if (prop->key()->IsPropertyName()) {
|
|
|
|
PrintF(".");
|
|
|
|
ASSERT(prop->key()->AsLiteral() != NULL);
|
|
|
|
prop->key()->AsLiteral()->handle()->Print();
|
|
|
|
} else {
|
|
|
|
PrintF("[@%d]", prop->key()->num());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Print the operation.
|
|
|
|
if (expr->is_compound()) {
|
|
|
|
PrintF(" = ");
|
|
|
|
// Print the left-hand side again when compound.
|
|
|
|
if (var != NULL) {
|
|
|
|
PrintF("@%d", expr->target()->num());
|
|
|
|
} else {
|
|
|
|
PrintF("@%d", prop->obj()->num());
|
|
|
|
if (prop->key()->IsPropertyName()) {
|
|
|
|
PrintF(".");
|
|
|
|
ASSERT(prop->key()->AsLiteral() != NULL);
|
|
|
|
prop->key()->AsLiteral()->handle()->Print();
|
|
|
|
} else {
|
|
|
|
PrintF("[@%d]", prop->key()->num());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Print the corresponding binary operator.
|
|
|
|
PrintF(" %s ", Token::String(expr->binary_op()));
|
|
|
|
} else {
|
|
|
|
PrintF(" %s ", Token::String(expr->op()));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Print the right-hand side.
|
|
|
|
PrintF("@%d", expr->value()->num());
|
|
|
|
|
|
|
|
if (expr->num() != AstNode::kNoNumber) {
|
|
|
|
PrintF(" ;; D%d", expr->num());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitThrow(Throw* expr) {
|
|
|
|
PrintF("throw @%d", expr->exception()->num());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitProperty(Property* expr) {
|
|
|
|
if (expr->key()->IsPropertyName()) {
|
|
|
|
PrintF("@%d.", expr->obj()->num());
|
|
|
|
ASSERT(expr->key()->AsLiteral() != NULL);
|
|
|
|
expr->key()->AsLiteral()->handle()->Print();
|
|
|
|
} else {
|
|
|
|
PrintF("@%d[@%d]", expr->obj()->num(), expr->key()->num());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitCall(Call* expr) {
|
|
|
|
PrintF("@%d(", expr->expression()->num());
|
|
|
|
ZoneList<Expression*>* arguments = expr->arguments();
|
|
|
|
for (int i = 0, len = arguments->length(); i < len; i++) {
|
|
|
|
if (i != 0) PrintF(", ");
|
|
|
|
PrintF("@%d", arguments->at(i)->num());
|
|
|
|
}
|
|
|
|
PrintF(")");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitCallNew(CallNew* expr) {
|
|
|
|
PrintF("new @%d(", expr->expression()->num());
|
|
|
|
ZoneList<Expression*>* arguments = expr->arguments();
|
|
|
|
for (int i = 0, len = arguments->length(); i < len; i++) {
|
|
|
|
if (i != 0) PrintF(", ");
|
|
|
|
PrintF("@%d", arguments->at(i)->num());
|
|
|
|
}
|
|
|
|
PrintF(")");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitCallRuntime(CallRuntime* expr) {
|
|
|
|
PrintF("%s(", *expr->name()->ToCString());
|
|
|
|
ZoneList<Expression*>* arguments = expr->arguments();
|
|
|
|
for (int i = 0, len = arguments->length(); i < len; i++) {
|
|
|
|
if (i != 0) PrintF(", ");
|
|
|
|
PrintF("@%d", arguments->at(i)->num());
|
|
|
|
}
|
|
|
|
PrintF(")");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitUnaryOperation(UnaryOperation* expr) {
|
|
|
|
PrintF("%s(@%d)", Token::String(expr->op()), expr->expression()->num());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitCountOperation(CountOperation* expr) {
|
|
|
|
if (expr->is_prefix()) {
|
|
|
|
PrintF("%s@%d", Token::String(expr->op()), expr->expression()->num());
|
|
|
|
} else {
|
|
|
|
PrintF("@%d%s", expr->expression()->num(), Token::String(expr->op()));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (expr->num() != AstNode::kNoNumber) {
|
|
|
|
PrintF(" ;; D%d", expr->num());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitBinaryOperation(BinaryOperation* expr) {
|
|
|
|
ASSERT(expr->op() != Token::COMMA);
|
|
|
|
ASSERT(expr->op() != Token::OR);
|
|
|
|
ASSERT(expr->op() != Token::AND);
|
|
|
|
PrintF("@%d %s @%d",
|
|
|
|
expr->left()->num(),
|
|
|
|
Token::String(expr->op()),
|
|
|
|
expr->right()->num());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitCompareOperation(CompareOperation* expr) {
|
|
|
|
PrintF("@%d %s @%d",
|
|
|
|
expr->left()->num(),
|
|
|
|
Token::String(expr->op()),
|
|
|
|
expr->right()->num());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TextInstructionPrinter::VisitThisFunction(ThisFunction* expr) {
|
|
|
|
PrintF("ThisFunction");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static int node_count = 0;
|
|
|
|
static int instruction_count = 0;
|
|
|
|
|
|
|
|
|
|
|
|
void Node::AssignNodeNumber() {
|
|
|
|
set_number(node_count++);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Node::PrintReachingDefinitions() {
|
|
|
|
if (rd_.rd_in() != NULL) {
|
|
|
|
ASSERT(rd_.kill() != NULL && rd_.gen() != NULL);
|
|
|
|
|
|
|
|
PrintF("RD_in = ");
|
|
|
|
rd_.rd_in()->Print();
|
|
|
|
PrintF("\n");
|
|
|
|
|
|
|
|
PrintF("RD_kill = ");
|
|
|
|
rd_.kill()->Print();
|
|
|
|
PrintF("\n");
|
|
|
|
|
|
|
|
PrintF("RD_gen = ");
|
|
|
|
rd_.gen()->Print();
|
|
|
|
PrintF("\n");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ExitNode::PrintText() {
|
|
|
|
PrintReachingDefinitions();
|
|
|
|
PrintF("L%d: Exit\n\n", number());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void BlockNode::PrintText() {
|
|
|
|
PrintReachingDefinitions();
|
|
|
|
// Print the instructions in the block.
|
|
|
|
PrintF("L%d: Block\n", number());
|
|
|
|
TextInstructionPrinter printer;
|
|
|
|
for (int i = 0, len = instructions_.length(); i < len; i++) {
|
|
|
|
AstNode* instr = instructions_[i];
|
|
|
|
// Print a star next to dead instructions.
|
|
|
|
if (instr->AsExpression() != NULL && instr->AsExpression()->is_live()) {
|
|
|
|
PrintF(" ");
|
|
|
|
} else {
|
|
|
|
PrintF("* ");
|
|
|
|
}
|
|
|
|
PrintF("%d ", printer.NextNumber());
|
|
|
|
printer.Visit(instr);
|
|
|
|
printer.AssignNumber(instr);
|
|
|
|
PrintF("\n");
|
|
|
|
}
|
|
|
|
PrintF("goto L%d\n\n", successor_->number());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void BranchNode::PrintText() {
|
|
|
|
PrintReachingDefinitions();
|
|
|
|
PrintF("L%d: Branch\n", number());
|
|
|
|
PrintF("goto (L%d, L%d)\n\n", successor0_->number(), successor1_->number());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void JoinNode::PrintText() {
|
|
|
|
PrintReachingDefinitions();
|
|
|
|
PrintF("L%d: Join(", number());
|
|
|
|
for (int i = 0, len = predecessors_.length(); i < len; i++) {
|
|
|
|
if (i != 0) PrintF(", ");
|
|
|
|
PrintF("L%d", predecessors_[i]->number());
|
|
|
|
}
|
|
|
|
PrintF(")\ngoto L%d\n\n", successor_->number());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FlowGraph::PrintText(FunctionLiteral* fun, ZoneList<Node*>* postorder) {
|
|
|
|
PrintF("\n========\n");
|
|
|
|
PrintF("name = %s\n", *fun->name()->ToCString());
|
|
|
|
|
|
|
|
// Number nodes and instructions in reverse postorder.
|
|
|
|
node_count = 0;
|
|
|
|
instruction_count = 0;
|
|
|
|
for (int i = postorder->length() - 1; i >= 0; i--) {
|
|
|
|
postorder->at(i)->AssignNodeNumber();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Print basic blocks in reverse postorder.
|
|
|
|
for (int i = postorder->length() - 1; i >= 0; i--) {
|
|
|
|
postorder->at(i)->PrintText();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#endif // defined(DEBUG)
|
|
|
|
|
|
|
|
|
|
|
|
int ReachingDefinitions::IndexFor(Variable* var, int variable_count) {
|
|
|
|
// Parameters are numbered left-to-right from the beginning of the bit
|
|
|
|
// set. Stack-allocated locals are allocated right-to-left from the end.
|
|
|
|
ASSERT(var != NULL && var->IsStackAllocated());
|
|
|
|
Slot* slot = var->slot();
|
|
|
|
if (slot->type() == Slot::PARAMETER) {
|
|
|
|
return slot->index();
|
|
|
|
} else {
|
|
|
|
return (variable_count - 1) - slot->index();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Node::InitializeReachingDefinitions(int definition_count,
|
|
|
|
List<BitVector*>* variables,
|
|
|
|
WorkList<Node>* worklist,
|
|
|
|
bool mark) {
|
|
|
|
ASSERT(!IsMarkedWith(mark));
|
|
|
|
rd_.Initialize(definition_count);
|
|
|
|
MarkWith(mark);
|
|
|
|
worklist->Insert(this);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void BlockNode::InitializeReachingDefinitions(int definition_count,
|
|
|
|
List<BitVector*>* variables,
|
|
|
|
WorkList<Node>* worklist,
|
|
|
|
bool mark) {
|
|
|
|
ASSERT(!IsMarkedWith(mark));
|
|
|
|
int instruction_count = instructions_.length();
|
|
|
|
int variable_count = variables->length();
|
|
|
|
|
|
|
|
rd_.Initialize(definition_count);
|
|
|
|
// The RD_in set for the entry node has a definition for each parameter
|
|
|
|
// and local.
|
|
|
|
if (predecessor_ == NULL) {
|
|
|
|
for (int i = 0; i < variable_count; i++) rd_.rd_in()->Add(i);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int i = 0; i < instruction_count; i++) {
|
|
|
|
Expression* expr = instructions_[i]->AsExpression();
|
|
|
|
if (expr == NULL) continue;
|
|
|
|
Variable* var = expr->AssignedVariable();
|
|
|
|
if (var == NULL || !var->IsStackAllocated()) continue;
|
|
|
|
|
|
|
|
// All definitions of this variable are killed.
|
|
|
|
BitVector* def_set =
|
|
|
|
variables->at(ReachingDefinitions::IndexFor(var, variable_count));
|
|
|
|
rd_.kill()->Union(*def_set);
|
|
|
|
|
|
|
|
// All previously generated definitions are not generated.
|
|
|
|
rd_.gen()->Subtract(*def_set);
|
|
|
|
|
|
|
|
// This one is generated.
|
|
|
|
rd_.gen()->Add(expr->num());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Add all blocks except the entry node to the worklist.
|
|
|
|
if (predecessor_ != NULL) {
|
|
|
|
MarkWith(mark);
|
|
|
|
worklist->Insert(this);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ExitNode::ComputeRDOut(BitVector* result) {
|
|
|
|
// Should not be the predecessor of any node.
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void BlockNode::ComputeRDOut(BitVector* result) {
|
|
|
|
// All definitions reaching this block ...
|
|
|
|
*result = *rd_.rd_in();
|
|
|
|
// ... except those killed by the block ...
|
|
|
|
result->Subtract(*rd_.kill());
|
|
|
|
// ... but including those generated by the block.
|
|
|
|
result->Union(*rd_.gen());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void BranchNode::ComputeRDOut(BitVector* result) {
|
|
|
|
// Branch nodes don't kill or generate definitions.
|
|
|
|
*result = *rd_.rd_in();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void JoinNode::ComputeRDOut(BitVector* result) {
|
|
|
|
// Join nodes don't kill or generate definitions.
|
|
|
|
*result = *rd_.rd_in();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ExitNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) {
|
|
|
|
// The exit node has no successors so we can just update in place. New
|
|
|
|
// RD_in is the union over all predecessors.
|
|
|
|
int definition_count = rd_.rd_in()->length();
|
|
|
|
rd_.rd_in()->Clear();
|
|
|
|
|
|
|
|
BitVector temp(definition_count);
|
|
|
|
for (int i = 0, len = predecessors_.length(); i < len; i++) {
|
|
|
|
// Because ComputeRDOut always overwrites temp and its value is
|
|
|
|
// always read out before calling ComputeRDOut again, we do not
|
|
|
|
// have to clear it on each iteration of the loop.
|
|
|
|
predecessors_[i]->ComputeRDOut(&temp);
|
|
|
|
rd_.rd_in()->Union(temp);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void BlockNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) {
|
|
|
|
// The entry block has no predecessor. Its RD_in does not change.
|
|
|
|
if (predecessor_ == NULL) return;
|
|
|
|
|
|
|
|
BitVector new_rd_in(rd_.rd_in()->length());
|
|
|
|
predecessor_->ComputeRDOut(&new_rd_in);
|
|
|
|
|
|
|
|
if (rd_.rd_in()->Equals(new_rd_in)) return;
|
|
|
|
|
|
|
|
// Update RD_in.
|
|
|
|
*rd_.rd_in() = new_rd_in;
|
|
|
|
// Add the successor to the worklist if not already present.
|
|
|
|
if (!successor_->IsMarkedWith(mark)) {
|
|
|
|
successor_->MarkWith(mark);
|
|
|
|
worklist->Insert(successor_);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void BranchNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) {
|
|
|
|
BitVector new_rd_in(rd_.rd_in()->length());
|
|
|
|
predecessor_->ComputeRDOut(&new_rd_in);
|
|
|
|
|
|
|
|
if (rd_.rd_in()->Equals(new_rd_in)) return;
|
|
|
|
|
|
|
|
// Update RD_in.
|
|
|
|
*rd_.rd_in() = new_rd_in;
|
|
|
|
// Add the successors to the worklist if not already present.
|
|
|
|
if (!successor0_->IsMarkedWith(mark)) {
|
|
|
|
successor0_->MarkWith(mark);
|
|
|
|
worklist->Insert(successor0_);
|
|
|
|
}
|
|
|
|
if (!successor1_->IsMarkedWith(mark)) {
|
|
|
|
successor1_->MarkWith(mark);
|
|
|
|
worklist->Insert(successor1_);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void JoinNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) {
|
|
|
|
int definition_count = rd_.rd_in()->length();
|
|
|
|
BitVector new_rd_in(definition_count);
|
|
|
|
|
|
|
|
// New RD_in is the union over all predecessors.
|
|
|
|
BitVector temp(definition_count);
|
|
|
|
for (int i = 0, len = predecessors_.length(); i < len; i++) {
|
|
|
|
predecessors_[i]->ComputeRDOut(&temp);
|
|
|
|
new_rd_in.Union(temp);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (rd_.rd_in()->Equals(new_rd_in)) return;
|
|
|
|
|
|
|
|
// Update RD_in.
|
|
|
|
*rd_.rd_in() = new_rd_in;
|
|
|
|
// Add the successor to the worklist if not already present.
|
|
|
|
if (!successor_->IsMarkedWith(mark)) {
|
|
|
|
successor_->MarkWith(mark);
|
|
|
|
worklist->Insert(successor_);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Node::PropagateReachingDefinitions(List<BitVector*>* variables) {
|
|
|
|
// Nothing to do.
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void BlockNode::PropagateReachingDefinitions(List<BitVector*>* variables) {
|
|
|
|
// Propagate RD_in from the start of the block to all the variable
|
|
|
|
// references.
|
|
|
|
int variable_count = variables->length();
|
|
|
|
BitVector rd = *rd_.rd_in();
|
|
|
|
for (int i = 0, len = instructions_.length(); i < len; i++) {
|
|
|
|
Expression* expr = instructions_[i]->AsExpression();
|
|
|
|
if (expr == NULL) continue;
|
|
|
|
|
|
|
|
// Look for a variable reference to record its reaching definitions.
|
|
|
|
VariableProxy* proxy = expr->AsVariableProxy();
|
|
|
|
if (proxy == NULL) {
|
|
|
|
// Not a VariableProxy? Maybe it's a count operation.
|
|
|
|
CountOperation* count_operation = expr->AsCountOperation();
|
|
|
|
if (count_operation != NULL) {
|
|
|
|
proxy = count_operation->expression()->AsVariableProxy();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (proxy == NULL) {
|
|
|
|
// OK, Maybe it's a compound assignment.
|
|
|
|
Assignment* assignment = expr->AsAssignment();
|
|
|
|
if (assignment != NULL && assignment->is_compound()) {
|
|
|
|
proxy = assignment->target()->AsVariableProxy();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (proxy != NULL &&
|
|
|
|
proxy->var()->IsStackAllocated() &&
|
|
|
|
!proxy->var()->is_this()) {
|
|
|
|
// All definitions for this variable.
|
|
|
|
BitVector* definitions =
|
|
|
|
variables->at(ReachingDefinitions::IndexFor(proxy->var(),
|
|
|
|
variable_count));
|
|
|
|
BitVector* reaching_definitions = new BitVector(*definitions);
|
|
|
|
// Intersected with all definitions (of any variable) reaching this
|
|
|
|
// instruction.
|
|
|
|
reaching_definitions->Intersect(rd);
|
|
|
|
proxy->set_reaching_definitions(reaching_definitions);
|
|
|
|
}
|
|
|
|
|
|
|
|
// It may instead (or also) be a definition. If so update the running
|
|
|
|
// value of reaching definitions for the block.
|
|
|
|
Variable* var = expr->AssignedVariable();
|
|
|
|
if (var == NULL || !var->IsStackAllocated()) continue;
|
|
|
|
|
|
|
|
// All definitions of this variable are killed.
|
|
|
|
BitVector* def_set =
|
|
|
|
variables->at(ReachingDefinitions::IndexFor(var, variable_count));
|
|
|
|
rd.Subtract(*def_set);
|
|
|
|
// This definition is generated.
|
|
|
|
rd.Add(expr->num());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ReachingDefinitions::Compute() {
|
|
|
|
// The definitions in the body plus an implicit definition for each
|
|
|
|
// variable at function entry.
|
|
|
|
int definition_count = body_definitions_->length() + variable_count_;
|
|
|
|
int node_count = postorder_->length();
|
|
|
|
|
|
|
|
// Step 1: For each stack-allocated variable, identify the set of all its
|
|
|
|
// definitions.
|
|
|
|
List<BitVector*> variables;
|
|
|
|
for (int i = 0; i < variable_count_; i++) {
|
|
|
|
// Add the initial definition for each variable.
|
|
|
|
BitVector* initial = new BitVector(definition_count);
|
|
|
|
initial->Add(i);
|
|
|
|
variables.Add(initial);
|
|
|
|
}
|
|
|
|
for (int i = 0, len = body_definitions_->length(); i < len; i++) {
|
|
|
|
// Account for each definition in the body as a definition of the
|
|
|
|
// defined variable.
|
|
|
|
Variable* var = body_definitions_->at(i)->AssignedVariable();
|
|
|
|
variables[IndexFor(var, variable_count_)]->Add(i + variable_count_);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Step 2: Compute KILL and GEN for each block node, initialize RD_in for
|
|
|
|
// all nodes, and mark and add all nodes to the worklist in reverse
|
|
|
|
// postorder. All nodes should currently have the same mark.
|
|
|
|
bool mark = postorder_->at(0)->IsMarkedWith(false); // Negation of current.
|
|
|
|
WorkList<Node> worklist(node_count);
|
|
|
|
for (int i = node_count - 1; i >= 0; i--) {
|
|
|
|
postorder_->at(i)->InitializeReachingDefinitions(definition_count,
|
|
|
|
&variables,
|
|
|
|
&worklist,
|
|
|
|
mark);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Step 3: Until the worklist is empty, remove an item compute and update
|
|
|
|
// its rd_in based on its predecessor's rd_out. If rd_in has changed, add
|
|
|
|
// all necessary successors to the worklist.
|
|
|
|
while (!worklist.is_empty()) {
|
|
|
|
Node* node = worklist.Remove();
|
|
|
|
node->MarkWith(!mark);
|
|
|
|
node->UpdateRDIn(&worklist, mark);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Step 4: Based on RD_in for block nodes, propagate reaching definitions
|
|
|
|
// to all variable uses in the block.
|
|
|
|
for (int i = 0; i < node_count; i++) {
|
|
|
|
postorder_->at(i)->PropagateReachingDefinitions(&variables);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool TypeAnalyzer::IsPrimitiveDef(int def_num) {
|
|
|
|
if (def_num < param_count_) return false;
|
|
|
|
if (def_num < variable_count_) return true;
|
|
|
|
return body_definitions_->at(def_num - variable_count_)->IsPrimitive();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TypeAnalyzer::Compute() {
|
|
|
|
bool changed;
|
|
|
|
int count = 0;
|
|
|
|
|
|
|
|
do {
|
|
|
|
changed = false;
|
|
|
|
|
|
|
|
if (FLAG_print_graph_text) {
|
|
|
|
PrintF("TypeAnalyzer::Compute - iteration %d\n", count++);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int i = postorder_->length() - 1; i >= 0; --i) {
|
|
|
|
Node* node = postorder_->at(i);
|
|
|
|
if (node->IsBlockNode()) {
|
|
|
|
BlockNode* block = BlockNode::cast(node);
|
|
|
|
for (int j = 0; j < block->instructions()->length(); j++) {
|
|
|
|
Expression* expr = block->instructions()->at(j)->AsExpression();
|
|
|
|
if (expr != NULL) {
|
|
|
|
// For variable uses: Compute new type from reaching definitions.
|
|
|
|
VariableProxy* proxy = expr->AsVariableProxy();
|
|
|
|
if (proxy != NULL && proxy->reaching_definitions() != NULL) {
|
|
|
|
BitVector* rd = proxy->reaching_definitions();
|
|
|
|
bool prim_type = true;
|
|
|
|
// TODO(fsc): A sparse set representation of reaching
|
|
|
|
// definitions would speed up iterating here.
|
|
|
|
for (int k = 0; k < rd->length(); k++) {
|
|
|
|
if (rd->Contains(k) && !IsPrimitiveDef(k)) {
|
|
|
|
prim_type = false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Reset changed flag if new type information was computed.
|
|
|
|
if (prim_type != proxy->IsPrimitive()) {
|
|
|
|
changed = true;
|
|
|
|
proxy->SetIsPrimitive(prim_type);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} while (changed);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Node::MarkCriticalInstructions(
|
|
|
|
List<AstNode*>* stack,
|
|
|
|
ZoneList<Expression*>* body_definitions,
|
|
|
|
int variable_count) {
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void BlockNode::MarkCriticalInstructions(
|
|
|
|
List<AstNode*>* stack,
|
|
|
|
ZoneList<Expression*>* body_definitions,
|
|
|
|
int variable_count) {
|
|
|
|
for (int i = instructions_.length() - 1; i >= 0; i--) {
|
|
|
|
// Only expressions can appear in the flow graph for now.
|
|
|
|
Expression* expr = instructions_[i]->AsExpression();
|
|
|
|
if (expr != NULL && !expr->is_live() &&
|
|
|
|
(expr->is_loop_condition() || expr->IsCritical())) {
|
|
|
|
expr->mark_as_live();
|
|
|
|
expr->ProcessNonLiveChildren(stack, body_definitions, variable_count);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void MarkLiveCode(ZoneList<Node*>* nodes,
|
|
|
|
ZoneList<Expression*>* body_definitions,
|
|
|
|
int variable_count) {
|
|
|
|
List<AstNode*> stack(20);
|
|
|
|
|
|
|
|
// Mark the critical AST nodes as live; mark their dependencies and
|
|
|
|
// add them to the marking stack.
|
|
|
|
for (int i = nodes->length() - 1; i >= 0; i--) {
|
|
|
|
nodes->at(i)->MarkCriticalInstructions(&stack, body_definitions,
|
|
|
|
variable_count);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Continue marking dependencies until no more.
|
|
|
|
while (!stack.is_empty()) {
|
|
|
|
// Only expressions can appear in the flow graph for now.
|
|
|
|
Expression* expr = stack.RemoveLast()->AsExpression();
|
|
|
|
if (expr != NULL) {
|
|
|
|
expr->ProcessNonLiveChildren(&stack, body_definitions, variable_count);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
} } // namespace v8::internal
|