|
|
|
// Copyright 2006-2008 the V8 project authors. All rights reserved.
|
|
|
|
// Redistribution and use in source and binary forms, with or without
|
|
|
|
// modification, are permitted provided that the following conditions are
|
|
|
|
// met:
|
|
|
|
//
|
|
|
|
// * Redistributions of source code must retain the above copyright
|
|
|
|
// notice, this list of conditions and the following disclaimer.
|
|
|
|
// * Redistributions in binary form must reproduce the above
|
|
|
|
// copyright notice, this list of conditions and the following
|
|
|
|
// disclaimer in the documentation and/or other materials provided
|
|
|
|
// with the distribution.
|
|
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
|
|
// contributors may be used to endorse or promote products derived
|
|
|
|
// from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
|
|
// This module contains the platform-specific code. This make the rest of the
|
|
|
|
// code less dependent on operating system, compilers and runtime libraries.
|
|
|
|
// This module does specifically not deal with differences between different
|
|
|
|
// processor architecture.
|
|
|
|
// The platform classes have the same definition for all platforms. The
|
|
|
|
// implementation for a particular platform is put in platform_<os>.cc.
|
|
|
|
// The build system then uses the implementation for the target platform.
|
|
|
|
//
|
|
|
|
// This design has been chosen because it is simple and fast. Alternatively,
|
|
|
|
// the platform dependent classes could have been implemented using abstract
|
|
|
|
// superclasses with virtual methods and having specializations for each
|
|
|
|
// platform. This design was rejected because it was more complicated and
|
|
|
|
// slower. It would require factory methods for selecting the right
|
|
|
|
// implementation and the overhead of virtual methods for performance
|
|
|
|
// sensitive like mutex locking/unlocking.
|
|
|
|
|
|
|
|
#ifndef V8_PLATFORM_H_
|
|
|
|
#define V8_PLATFORM_H_
|
|
|
|
|
|
|
|
#define V8_INFINITY INFINITY
|
|
|
|
|
|
|
|
// Windows specific stuff.
|
|
|
|
#ifdef WIN32
|
|
|
|
|
|
|
|
// Microsoft Visual C++ specific stuff.
|
|
|
|
#ifdef _MSC_VER
|
|
|
|
|
|
|
|
enum {
|
|
|
|
FP_NAN,
|
|
|
|
FP_INFINITE,
|
|
|
|
FP_ZERO,
|
|
|
|
FP_SUBNORMAL,
|
|
|
|
FP_NORMAL
|
|
|
|
};
|
|
|
|
|
|
|
|
#undef V8_INFINITY
|
|
|
|
#define V8_INFINITY HUGE_VAL
|
|
|
|
|
|
|
|
namespace v8 {
|
|
|
|
namespace internal {
|
|
|
|
int isfinite(double x);
|
|
|
|
} }
|
|
|
|
int isnan(double x);
|
|
|
|
int isinf(double x);
|
|
|
|
int isless(double x, double y);
|
|
|
|
int isgreater(double x, double y);
|
|
|
|
int fpclassify(double x);
|
|
|
|
int signbit(double x);
|
|
|
|
|
|
|
|
int strncasecmp(const char* s1, const char* s2, int n);
|
|
|
|
|
|
|
|
#endif // _MSC_VER
|
|
|
|
|
|
|
|
// Random is missing on both Visual Studio and MinGW.
|
|
|
|
int random();
|
|
|
|
|
|
|
|
#endif // WIN32
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef __sun
|
|
|
|
# ifndef signbit
|
|
|
|
int signbit(double x);
|
|
|
|
# endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
// GCC specific stuff
|
|
|
|
#ifdef __GNUC__
|
|
|
|
|
|
|
|
// Needed for va_list on at least MinGW and Android.
|
|
|
|
#include <stdarg.h>
|
|
|
|
|
|
|
|
#define __GNUC_VERSION__ (__GNUC__ * 10000 + __GNUC_MINOR__ * 100)
|
|
|
|
|
|
|
|
// Unfortunately, the INFINITY macro cannot be used with the '-pedantic'
|
|
|
|
// warning flag and certain versions of GCC due to a bug:
|
|
|
|
// http://gcc.gnu.org/bugzilla/show_bug.cgi?id=11931
|
|
|
|
// For now, we use the more involved template-based version from <limits>, but
|
|
|
|
// only when compiling with GCC versions affected by the bug (2.96.x - 4.0.x)
|
|
|
|
// __GNUC_PREREQ is not defined in GCC for Mac OS X, so we define our own macro
|
|
|
|
#if __GNUC_VERSION__ >= 29600 && __GNUC_VERSION__ < 40100
|
|
|
|
#include <limits>
|
|
|
|
#undef V8_INFINITY
|
|
|
|
#define V8_INFINITY std::numeric_limits<double>::infinity()
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif // __GNUC__
|
|
|
|
|
|
|
|
namespace v8 {
|
|
|
|
namespace internal {
|
|
|
|
|
|
|
|
// Use AtomicWord for a machine-sized pointer. It is assumed that
|
|
|
|
// reads and writes of naturally aligned values of this type are atomic.
|
|
|
|
typedef intptr_t AtomicWord;
|
|
|
|
|
|
|
|
class Semaphore;
|
|
|
|
|
|
|
|
double ceiling(double x);
|
|
|
|
double modulo(double x, double y);
|
|
|
|
|
|
|
|
// Forward declarations.
|
|
|
|
class Socket;
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
// OS
|
|
|
|
//
|
|
|
|
// This class has static methods for the different platform specific
|
|
|
|
// functions. Add methods here to cope with differences between the
|
|
|
|
// supported platforms.
|
|
|
|
|
|
|
|
class OS {
|
|
|
|
public:
|
|
|
|
// Initializes the platform OS support. Called once at VM startup.
|
|
|
|
static void Setup();
|
|
|
|
|
|
|
|
// Returns the accumulated user time for thread. This routine
|
|
|
|
// can be used for profiling. The implementation should
|
|
|
|
// strive for high-precision timer resolution, preferable
|
|
|
|
// micro-second resolution.
|
|
|
|
static int GetUserTime(uint32_t* secs, uint32_t* usecs);
|
|
|
|
|
|
|
|
// Get a tick counter normalized to one tick per microsecond.
|
|
|
|
// Used for calculating time intervals.
|
|
|
|
static int64_t Ticks();
|
|
|
|
|
|
|
|
// Returns current time as the number of milliseconds since
|
|
|
|
// 00:00:00 UTC, January 1, 1970.
|
|
|
|
static double TimeCurrentMillis();
|
|
|
|
|
|
|
|
// Returns a string identifying the current time zone. The
|
|
|
|
// timestamp is used for determining if DST is in effect.
|
|
|
|
static const char* LocalTimezone(double time);
|
|
|
|
|
|
|
|
// Returns the local time offset in milliseconds east of UTC without
|
|
|
|
// taking daylight savings time into account.
|
|
|
|
static double LocalTimeOffset();
|
|
|
|
|
|
|
|
// Returns the daylight savings offset for the given time.
|
|
|
|
static double DaylightSavingsOffset(double time);
|
|
|
|
|
|
|
|
static FILE* FOpen(const char* path, const char* mode);
|
|
|
|
|
|
|
|
// Log file open mode is platform-dependent due to line ends issues.
|
|
|
|
static const char* LogFileOpenMode;
|
|
|
|
|
|
|
|
// Print output to console. This is mostly used for debugging output.
|
|
|
|
// On platforms that has standard terminal output, the output
|
|
|
|
// should go to stdout.
|
|
|
|
static void Print(const char* format, ...);
|
|
|
|
static void VPrint(const char* format, va_list args);
|
|
|
|
|
|
|
|
// Print error output to console. This is mostly used for error message
|
|
|
|
// output. On platforms that has standard terminal output, the output
|
|
|
|
// should go to stderr.
|
|
|
|
static void PrintError(const char* format, ...);
|
|
|
|
static void VPrintError(const char* format, va_list args);
|
|
|
|
|
|
|
|
// Allocate/Free memory used by JS heap. Pages are readable/writable, but
|
|
|
|
// they are not guaranteed to be executable unless 'executable' is true.
|
|
|
|
// Returns the address of allocated memory, or NULL if failed.
|
|
|
|
static void* Allocate(const size_t requested,
|
|
|
|
size_t* allocated,
|
|
|
|
bool is_executable);
|
|
|
|
static void Free(void* address, const size_t size);
|
|
|
|
// Get the Alignment guaranteed by Allocate().
|
|
|
|
static size_t AllocateAlignment();
|
|
|
|
|
|
|
|
#ifdef ENABLE_HEAP_PROTECTION
|
|
|
|
// Protect/unprotect a block of memory by marking it read-only/writable.
|
|
|
|
static void Protect(void* address, size_t size);
|
|
|
|
static void Unprotect(void* address, size_t size, bool is_executable);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Returns an indication of whether a pointer is in a space that
|
|
|
|
// has been allocated by Allocate(). This method may conservatively
|
|
|
|
// always return false, but giving more accurate information may
|
|
|
|
// improve the robustness of the stack dump code in the presence of
|
|
|
|
// heap corruption.
|
|
|
|
static bool IsOutsideAllocatedSpace(void* pointer);
|
|
|
|
|
|
|
|
// Sleep for a number of milliseconds.
|
|
|
|
static void Sleep(const int milliseconds);
|
|
|
|
|
|
|
|
// Abort the current process.
|
|
|
|
static void Abort();
|
|
|
|
|
|
|
|
// Debug break.
|
|
|
|
static void DebugBreak();
|
|
|
|
|
|
|
|
// Walk the stack.
|
|
|
|
static const int kStackWalkError = -1;
|
|
|
|
static const int kStackWalkMaxNameLen = 256;
|
|
|
|
static const int kStackWalkMaxTextLen = 256;
|
|
|
|
struct StackFrame {
|
|
|
|
void* address;
|
|
|
|
char text[kStackWalkMaxTextLen];
|
|
|
|
};
|
|
|
|
|
|
|
|
static int StackWalk(Vector<StackFrame> frames);
|
|
|
|
|
|
|
|
// Factory method for creating platform dependent Mutex.
|
|
|
|
// Please use delete to reclaim the storage for the returned Mutex.
|
|
|
|
static Mutex* CreateMutex();
|
|
|
|
|
|
|
|
// Factory method for creating platform dependent Semaphore.
|
|
|
|
// Please use delete to reclaim the storage for the returned Semaphore.
|
|
|
|
static Semaphore* CreateSemaphore(int count);
|
|
|
|
|
|
|
|
// Factory method for creating platform dependent Socket.
|
|
|
|
// Please use delete to reclaim the storage for the returned Socket.
|
|
|
|
static Socket* CreateSocket();
|
|
|
|
|
|
|
|
class MemoryMappedFile {
|
|
|
|
public:
|
|
|
|
static MemoryMappedFile* create(const char* name, int size, void* initial);
|
|
|
|
virtual ~MemoryMappedFile() { }
|
|
|
|
virtual void* memory() = 0;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Safe formatting print. Ensures that str is always null-terminated.
|
|
|
|
// Returns the number of chars written, or -1 if output was truncated.
|
|
|
|
static int SNPrintF(Vector<char> str, const char* format, ...);
|
|
|
|
static int VSNPrintF(Vector<char> str,
|
|
|
|
const char* format,
|
|
|
|
va_list args);
|
|
|
|
|
|
|
|
static char* StrChr(char* str, int c);
|
|
|
|
static void StrNCpy(Vector<char> dest, const char* src, size_t n);
|
|
|
|
|
|
|
|
// Support for profiler. Can do nothing, in which case ticks
|
|
|
|
// occuring in shared libraries will not be properly accounted
|
|
|
|
// for.
|
|
|
|
static void LogSharedLibraryAddresses();
|
|
|
|
|
|
|
|
// The return value indicates the CPU features we are sure of because of the
|
|
|
|
// OS. For example MacOSX doesn't run on any x86 CPUs that don't have SSE2
|
|
|
|
// instructions.
|
|
|
|
// This is a little messy because the interpretation is subject to the cross
|
|
|
|
// of the CPU and the OS. The bits in the answer correspond to the bit
|
|
|
|
// positions indicated by the members of the CpuFeature enum from globals.h
|
|
|
|
static uint64_t CpuFeaturesImpliedByPlatform();
|
|
|
|
|
|
|
|
// Returns the double constant NAN
|
|
|
|
static double nan_value();
|
|
|
|
|
|
|
|
// Support runtime detection of VFP3 on ARM CPUs.
|
|
|
|
static bool ArmCpuHasFeature(CpuFeature feature);
|
|
|
|
|
|
|
|
// Returns the activation frame alignment constraint or zero if
|
|
|
|
// the platform doesn't care. Guaranteed to be a power of two.
|
|
|
|
static int ActivationFrameAlignment();
|
|
|
|
|
|
|
|
private:
|
|
|
|
static const int msPerSecond = 1000;
|
|
|
|
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(OS);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
class VirtualMemory {
|
|
|
|
public:
|
|
|
|
// Reserves virtual memory with size.
|
|
|
|
explicit VirtualMemory(size_t size);
|
|
|
|
~VirtualMemory();
|
|
|
|
|
|
|
|
// Returns whether the memory has been reserved.
|
|
|
|
bool IsReserved();
|
|
|
|
|
|
|
|
// Returns the start address of the reserved memory.
|
|
|
|
void* address() {
|
|
|
|
ASSERT(IsReserved());
|
|
|
|
return address_;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Returns the size of the reserved memory.
|
|
|
|
size_t size() { return size_; }
|
|
|
|
|
|
|
|
// Commits real memory. Returns whether the operation succeeded.
|
|
|
|
bool Commit(void* address, size_t size, bool is_executable);
|
|
|
|
|
|
|
|
// Uncommit real memory. Returns whether the operation succeeded.
|
|
|
|
bool Uncommit(void* address, size_t size);
|
|
|
|
|
|
|
|
private:
|
|
|
|
void* address_; // Start address of the virtual memory.
|
|
|
|
size_t size_; // Size of the virtual memory.
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
// ThreadHandle
|
|
|
|
//
|
|
|
|
// A ThreadHandle represents a thread identifier for a thread. The ThreadHandle
|
|
|
|
// does not own the underlying os handle. Thread handles can be used for
|
|
|
|
// refering to threads and testing equality.
|
|
|
|
|
|
|
|
class ThreadHandle {
|
|
|
|
public:
|
|
|
|
enum Kind { SELF, INVALID };
|
|
|
|
explicit ThreadHandle(Kind kind);
|
|
|
|
|
|
|
|
// Destructor.
|
|
|
|
~ThreadHandle();
|
|
|
|
|
|
|
|
// Test for thread running.
|
|
|
|
bool IsSelf() const;
|
|
|
|
|
|
|
|
// Test for valid thread handle.
|
|
|
|
bool IsValid() const;
|
|
|
|
|
|
|
|
// Get platform-specific data.
|
|
|
|
class PlatformData;
|
|
|
|
PlatformData* thread_handle_data() { return data_; }
|
|
|
|
|
|
|
|
// Initialize the handle to kind
|
|
|
|
void Initialize(Kind kind);
|
|
|
|
|
|
|
|
private:
|
|
|
|
PlatformData* data_; // Captures platform dependent data.
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
// Thread
|
|
|
|
//
|
|
|
|
// Thread objects are used for creating and running threads. When the start()
|
|
|
|
// method is called the new thread starts running the run() method in the new
|
|
|
|
// thread. The Thread object should not be deallocated before the thread has
|
|
|
|
// terminated.
|
|
|
|
|
|
|
|
class Thread: public ThreadHandle {
|
|
|
|
public:
|
|
|
|
// Opaque data type for thread-local storage keys.
|
|
|
|
enum LocalStorageKey {};
|
|
|
|
|
|
|
|
// Create new thread.
|
|
|
|
Thread();
|
|
|
|
virtual ~Thread();
|
|
|
|
|
|
|
|
// Start new thread by calling the Run() method in the new thread.
|
|
|
|
void Start();
|
|
|
|
|
|
|
|
// Wait until thread terminates.
|
|
|
|
void Join();
|
|
|
|
|
|
|
|
// Abstract method for run handler.
|
|
|
|
virtual void Run() = 0;
|
|
|
|
|
|
|
|
// Thread-local storage.
|
|
|
|
static LocalStorageKey CreateThreadLocalKey();
|
|
|
|
static void DeleteThreadLocalKey(LocalStorageKey key);
|
|
|
|
static void* GetThreadLocal(LocalStorageKey key);
|
|
|
|
static int GetThreadLocalInt(LocalStorageKey key) {
|
|
|
|
return static_cast<int>(reinterpret_cast<intptr_t>(GetThreadLocal(key)));
|
|
|
|
}
|
|
|
|
static void SetThreadLocal(LocalStorageKey key, void* value);
|
|
|
|
static void SetThreadLocalInt(LocalStorageKey key, int value) {
|
|
|
|
SetThreadLocal(key, reinterpret_cast<void*>(static_cast<intptr_t>(value)));
|
|
|
|
}
|
|
|
|
static bool HasThreadLocal(LocalStorageKey key) {
|
|
|
|
return GetThreadLocal(key) != NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
// A hint to the scheduler to let another thread run.
|
|
|
|
static void YieldCPU();
|
|
|
|
|
|
|
|
private:
|
|
|
|
class PlatformData;
|
|
|
|
PlatformData* data_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(Thread);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
// Mutex
|
|
|
|
//
|
|
|
|
// Mutexes are used for serializing access to non-reentrant sections of code.
|
|
|
|
// The implementations of mutex should allow for nested/recursive locking.
|
|
|
|
|
|
|
|
class Mutex {
|
|
|
|
public:
|
|
|
|
virtual ~Mutex() {}
|
|
|
|
|
|
|
|
// Locks the given mutex. If the mutex is currently unlocked, it becomes
|
|
|
|
// locked and owned by the calling thread, and immediately. If the mutex
|
|
|
|
// is already locked by another thread, suspends the calling thread until
|
|
|
|
// the mutex is unlocked.
|
|
|
|
virtual int Lock() = 0;
|
|
|
|
|
|
|
|
// Unlocks the given mutex. The mutex is assumed to be locked and owned by
|
|
|
|
// the calling thread on entrance.
|
|
|
|
virtual int Unlock() = 0;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
// ScopedLock
|
|
|
|
//
|
|
|
|
// Stack-allocated ScopedLocks provide block-scoped locking and unlocking
|
|
|
|
// of a mutex.
|
|
|
|
class ScopedLock {
|
|
|
|
public:
|
|
|
|
explicit ScopedLock(Mutex* mutex): mutex_(mutex) {
|
|
|
|
mutex_->Lock();
|
|
|
|
}
|
|
|
|
~ScopedLock() {
|
|
|
|
mutex_->Unlock();
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
Mutex* mutex_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(ScopedLock);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
// Semaphore
|
|
|
|
//
|
|
|
|
// A semaphore object is a synchronization object that maintains a count. The
|
|
|
|
// count is decremented each time a thread completes a wait for the semaphore
|
|
|
|
// object and incremented each time a thread signals the semaphore. When the
|
|
|
|
// count reaches zero, threads waiting for the semaphore blocks until the
|
|
|
|
// count becomes non-zero.
|
|
|
|
|
|
|
|
class Semaphore {
|
|
|
|
public:
|
|
|
|
virtual ~Semaphore() {}
|
|
|
|
|
|
|
|
// Suspends the calling thread until the semaphore counter is non zero
|
|
|
|
// and then decrements the semaphore counter.
|
|
|
|
virtual void Wait() = 0;
|
|
|
|
|
|
|
|
// Suspends the calling thread until the counter is non zero or the timeout
|
|
|
|
// time has passsed. If timeout happens the return value is false and the
|
|
|
|
// counter is unchanged. Otherwise the semaphore counter is decremented and
|
|
|
|
// true is returned. The timeout value is specified in microseconds.
|
|
|
|
virtual bool Wait(int timeout) = 0;
|
|
|
|
|
|
|
|
// Increments the semaphore counter.
|
|
|
|
virtual void Signal() = 0;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
// Socket
|
|
|
|
//
|
|
|
|
|
|
|
|
class Socket {
|
|
|
|
public:
|
|
|
|
virtual ~Socket() {}
|
|
|
|
|
|
|
|
// Server initialization.
|
|
|
|
virtual bool Bind(const int port) = 0;
|
|
|
|
virtual bool Listen(int backlog) const = 0;
|
|
|
|
virtual Socket* Accept() const = 0;
|
|
|
|
|
|
|
|
// Client initialization.
|
|
|
|
virtual bool Connect(const char* host, const char* port) = 0;
|
|
|
|
|
|
|
|
// Shutdown socket for both read and write. This causes blocking Send and
|
|
|
|
// Receive calls to exit. After Shutdown the Socket object cannot be used for
|
|
|
|
// any communication.
|
|
|
|
virtual bool Shutdown() = 0;
|
|
|
|
|
|
|
|
// Data Transimission
|
|
|
|
virtual int Send(const char* data, int len) const = 0;
|
|
|
|
virtual int Receive(char* data, int len) const = 0;
|
|
|
|
|
|
|
|
// Set the value of the SO_REUSEADDR socket option.
|
|
|
|
virtual bool SetReuseAddress(bool reuse_address) = 0;
|
|
|
|
|
|
|
|
virtual bool IsValid() const = 0;
|
|
|
|
|
|
|
|
static bool Setup();
|
|
|
|
static int LastError();
|
|
|
|
static uint16_t HToN(uint16_t value);
|
|
|
|
static uint16_t NToH(uint16_t value);
|
|
|
|
static uint32_t HToN(uint32_t value);
|
|
|
|
static uint32_t NToH(uint32_t value);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
// Sampler
|
|
|
|
//
|
|
|
|
// A sampler periodically samples the state of the VM and optionally
|
|
|
|
// (if used for profiling) the program counter and stack pointer for
|
|
|
|
// the thread that created it.
|
|
|
|
|
|
|
|
// TickSample captures the information collected for each sample.
|
|
|
|
class TickSample {
|
|
|
|
public:
|
|
|
|
TickSample()
|
|
|
|
: state(OTHER),
|
|
|
|
pc(NULL),
|
|
|
|
sp(NULL),
|
|
|
|
fp(NULL),
|
|
|
|
function(NULL),
|
|
|
|
frames_count(0) {}
|
|
|
|
StateTag state; // The state of the VM.
|
|
|
|
Address pc; // Instruction pointer.
|
|
|
|
Address sp; // Stack pointer.
|
|
|
|
Address fp; // Frame pointer.
|
|
|
|
Address function; // The last called JS function.
|
|
|
|
static const int kMaxFramesCount = 64;
|
|
|
|
Address stack[kMaxFramesCount]; // Call stack.
|
|
|
|
int frames_count; // Number of captured frames.
|
|
|
|
};
|
|
|
|
|
|
|
|
#ifdef ENABLE_LOGGING_AND_PROFILING
|
|
|
|
class Sampler {
|
|
|
|
public:
|
|
|
|
// Initialize sampler.
|
|
|
|
explicit Sampler(int interval, bool profiling);
|
|
|
|
virtual ~Sampler();
|
|
|
|
|
|
|
|
// Performs stack sampling.
|
|
|
|
virtual void SampleStack(TickSample* sample) = 0;
|
|
|
|
|
|
|
|
// This method is called for each sampling period with the current
|
|
|
|
// program counter.
|
|
|
|
virtual void Tick(TickSample* sample) = 0;
|
|
|
|
|
|
|
|
// Start and stop sampler.
|
|
|
|
void Start();
|
|
|
|
void Stop();
|
|
|
|
|
|
|
|
// Is the sampler used for profiling.
|
|
|
|
inline bool IsProfiling() { return profiling_; }
|
|
|
|
|
|
|
|
// Whether the sampler is running (that is, consumes resources).
|
|
|
|
inline bool IsActive() { return active_; }
|
|
|
|
|
|
|
|
class PlatformData;
|
|
|
|
|
|
|
|
private:
|
|
|
|
const int interval_;
|
|
|
|
const bool profiling_;
|
|
|
|
bool active_;
|
|
|
|
PlatformData* data_; // Platform specific data.
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Sampler);
|
|
|
|
};
|
|
|
|
|
|
|
|
#endif // ENABLE_LOGGING_AND_PROFILING
|
|
|
|
|
|
|
|
} } // namespace v8::internal
|
|
|
|
|
|
|
|
#endif // V8_PLATFORM_H_
|