|
|
|
#include "stream_wrap.h"
|
|
|
|
#include "env-inl.h"
|
|
|
|
#include "env.h"
|
|
|
|
#include "handle_wrap.h"
|
|
|
|
#include "node_buffer.h"
|
|
|
|
#include "node_counters.h"
|
|
|
|
#include "pipe_wrap.h"
|
|
|
|
#include "req-wrap.h"
|
|
|
|
#include "req-wrap-inl.h"
|
|
|
|
#include "tcp_wrap.h"
|
|
|
|
#include "udp_wrap.h"
|
|
|
|
#include "util.h"
|
|
|
|
#include "util-inl.h"
|
|
|
|
|
|
|
|
#include <stdlib.h> // abort()
|
|
|
|
#include <string.h> // memcpy()
|
|
|
|
#include <limits.h> // INT_MAX
|
|
|
|
|
|
|
|
|
|
|
|
namespace node {
|
|
|
|
|
|
|
|
using v8::Array;
|
|
|
|
using v8::Context;
|
|
|
|
using v8::EscapableHandleScope;
|
|
|
|
using v8::FunctionCallbackInfo;
|
|
|
|
using v8::FunctionTemplate;
|
|
|
|
using v8::Handle;
|
|
|
|
using v8::HandleScope;
|
|
|
|
using v8::Integer;
|
|
|
|
using v8::Local;
|
|
|
|
using v8::Number;
|
|
|
|
using v8::Object;
|
|
|
|
using v8::PropertyCallbackInfo;
|
|
|
|
using v8::String;
|
|
|
|
using v8::True;
|
|
|
|
using v8::Undefined;
|
|
|
|
using v8::Value;
|
|
|
|
|
|
|
|
|
|
|
|
void StreamWrap::Initialize(Handle<Object> target,
|
stream_base: introduce StreamBase
StreamBase is an improved way to write C++ streams. The class itself is
for separting `StreamWrap` (with the methods like `.writeAsciiString`,
`.writeBuffer`, `.writev`, etc) from the `HandleWrap` class, making
possible to write abstract C++ streams that are not bound to any uv
socket.
The following methods are important part of the abstraction (which
mimics libuv's stream API):
* Events:
* `OnAlloc(size_t size, uv_buf_t*)`
* `OnRead(ssize_t nread, const uv_buf_t*, uv_handle_type pending)`
* `OnAfterWrite(WriteWrap*)`
* Wrappers:
* `DoShutdown(ShutdownWrap*)`
* `DoTryWrite(uv_buf_t** bufs, size_t* count)`
* `DoWrite(WriteWrap*, uv_buf_t*, size_t count, uv_stream_t* handle)`
* `Error()`
* `ClearError()`
The implementation should provide all of these methods, thus providing
the access to the underlying resource (be it uv handle, TLS socket, or
anything else).
A C++ stream may consume the input of another stream by replacing the
event callbacks and proxying the writes. This kind of API is actually
used now for the TLSWrap implementation, making it possible to wrap TLS
stream into another TLS stream. Thus legacy API calls are no longer
required in `_tls_wrap.js`.
PR-URL: https://github.com/iojs/io.js/pull/840
Reviewed-By: Trevor Norris <trev.norris@gmail.com>
Reviewed-By: Chris Dickinson <christopher.s.dickinson@gmail.com>
10 years ago
|
|
|
Handle<Value> unused,
|
|
|
|
Handle<Context> context) {
|
|
|
|
Environment* env = Environment::GetCurrent(context);
|
|
|
|
|
|
|
|
Local<FunctionTemplate> sw =
|
|
|
|
FunctionTemplate::New(env->isolate(), ShutdownWrap::NewShutdownWrap);
|
|
|
|
sw->InstanceTemplate()->SetInternalFieldCount(1);
|
|
|
|
sw->SetClassName(FIXED_ONE_BYTE_STRING(env->isolate(), "ShutdownWrap"));
|
|
|
|
target->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "ShutdownWrap"),
|
|
|
|
sw->GetFunction());
|
|
|
|
|
|
|
|
Local<FunctionTemplate> ww =
|
|
|
|
FunctionTemplate::New(env->isolate(), WriteWrap::NewWriteWrap);
|
|
|
|
ww->InstanceTemplate()->SetInternalFieldCount(1);
|
|
|
|
ww->SetClassName(FIXED_ONE_BYTE_STRING(env->isolate(), "WriteWrap"));
|
|
|
|
target->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "WriteWrap"),
|
|
|
|
ww->GetFunction());
|
stream_base: introduce StreamBase
StreamBase is an improved way to write C++ streams. The class itself is
for separting `StreamWrap` (with the methods like `.writeAsciiString`,
`.writeBuffer`, `.writev`, etc) from the `HandleWrap` class, making
possible to write abstract C++ streams that are not bound to any uv
socket.
The following methods are important part of the abstraction (which
mimics libuv's stream API):
* Events:
* `OnAlloc(size_t size, uv_buf_t*)`
* `OnRead(ssize_t nread, const uv_buf_t*, uv_handle_type pending)`
* `OnAfterWrite(WriteWrap*)`
* Wrappers:
* `DoShutdown(ShutdownWrap*)`
* `DoTryWrite(uv_buf_t** bufs, size_t* count)`
* `DoWrite(WriteWrap*, uv_buf_t*, size_t count, uv_stream_t* handle)`
* `Error()`
* `ClearError()`
The implementation should provide all of these methods, thus providing
the access to the underlying resource (be it uv handle, TLS socket, or
anything else).
A C++ stream may consume the input of another stream by replacing the
event callbacks and proxying the writes. This kind of API is actually
used now for the TLSWrap implementation, making it possible to wrap TLS
stream into another TLS stream. Thus legacy API calls are no longer
required in `_tls_wrap.js`.
PR-URL: https://github.com/iojs/io.js/pull/840
Reviewed-By: Trevor Norris <trev.norris@gmail.com>
Reviewed-By: Chris Dickinson <christopher.s.dickinson@gmail.com>
10 years ago
|
|
|
env->set_write_wrap_constructor_function(ww->GetFunction());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
StreamWrap::StreamWrap(Environment* env,
|
|
|
|
Local<Object> object,
|
|
|
|
uv_stream_t* stream,
|
|
|
|
AsyncWrap::ProviderType provider,
|
|
|
|
AsyncWrap* parent)
|
|
|
|
: HandleWrap(env,
|
|
|
|
object,
|
|
|
|
reinterpret_cast<uv_handle_t*>(stream),
|
|
|
|
provider,
|
|
|
|
parent),
|
stream_base: introduce StreamBase
StreamBase is an improved way to write C++ streams. The class itself is
for separting `StreamWrap` (with the methods like `.writeAsciiString`,
`.writeBuffer`, `.writev`, etc) from the `HandleWrap` class, making
possible to write abstract C++ streams that are not bound to any uv
socket.
The following methods are important part of the abstraction (which
mimics libuv's stream API):
* Events:
* `OnAlloc(size_t size, uv_buf_t*)`
* `OnRead(ssize_t nread, const uv_buf_t*, uv_handle_type pending)`
* `OnAfterWrite(WriteWrap*)`
* Wrappers:
* `DoShutdown(ShutdownWrap*)`
* `DoTryWrite(uv_buf_t** bufs, size_t* count)`
* `DoWrite(WriteWrap*, uv_buf_t*, size_t count, uv_stream_t* handle)`
* `Error()`
* `ClearError()`
The implementation should provide all of these methods, thus providing
the access to the underlying resource (be it uv handle, TLS socket, or
anything else).
A C++ stream may consume the input of another stream by replacing the
event callbacks and proxying the writes. This kind of API is actually
used now for the TLSWrap implementation, making it possible to wrap TLS
stream into another TLS stream. Thus legacy API calls are no longer
required in `_tls_wrap.js`.
PR-URL: https://github.com/iojs/io.js/pull/840
Reviewed-By: Trevor Norris <trev.norris@gmail.com>
Reviewed-By: Chris Dickinson <christopher.s.dickinson@gmail.com>
10 years ago
|
|
|
StreamBase(env),
|
|
|
|
stream_(stream) {
|
|
|
|
set_after_write_cb(OnAfterWriteImpl, this);
|
|
|
|
set_alloc_cb(OnAllocImpl, this);
|
|
|
|
set_read_cb(OnReadImpl, this);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
stream_base: introduce StreamBase
StreamBase is an improved way to write C++ streams. The class itself is
for separting `StreamWrap` (with the methods like `.writeAsciiString`,
`.writeBuffer`, `.writev`, etc) from the `HandleWrap` class, making
possible to write abstract C++ streams that are not bound to any uv
socket.
The following methods are important part of the abstraction (which
mimics libuv's stream API):
* Events:
* `OnAlloc(size_t size, uv_buf_t*)`
* `OnRead(ssize_t nread, const uv_buf_t*, uv_handle_type pending)`
* `OnAfterWrite(WriteWrap*)`
* Wrappers:
* `DoShutdown(ShutdownWrap*)`
* `DoTryWrite(uv_buf_t** bufs, size_t* count)`
* `DoWrite(WriteWrap*, uv_buf_t*, size_t count, uv_stream_t* handle)`
* `Error()`
* `ClearError()`
The implementation should provide all of these methods, thus providing
the access to the underlying resource (be it uv handle, TLS socket, or
anything else).
A C++ stream may consume the input of another stream by replacing the
event callbacks and proxying the writes. This kind of API is actually
used now for the TLSWrap implementation, making it possible to wrap TLS
stream into another TLS stream. Thus legacy API calls are no longer
required in `_tls_wrap.js`.
PR-URL: https://github.com/iojs/io.js/pull/840
Reviewed-By: Trevor Norris <trev.norris@gmail.com>
Reviewed-By: Chris Dickinson <christopher.s.dickinson@gmail.com>
10 years ago
|
|
|
void StreamWrap::AddMethods(Environment* env,
|
|
|
|
v8::Handle<v8::FunctionTemplate> target) {
|
|
|
|
env->SetProtoMethod(target, "setBlocking", SetBlocking);
|
|
|
|
StreamBase::AddMethods<StreamWrap>(env, target);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int StreamWrap::GetFD() {
|
|
|
|
int fd = -1;
|
stream_base: introduce StreamBase
StreamBase is an improved way to write C++ streams. The class itself is
for separting `StreamWrap` (with the methods like `.writeAsciiString`,
`.writeBuffer`, `.writev`, etc) from the `HandleWrap` class, making
possible to write abstract C++ streams that are not bound to any uv
socket.
The following methods are important part of the abstraction (which
mimics libuv's stream API):
* Events:
* `OnAlloc(size_t size, uv_buf_t*)`
* `OnRead(ssize_t nread, const uv_buf_t*, uv_handle_type pending)`
* `OnAfterWrite(WriteWrap*)`
* Wrappers:
* `DoShutdown(ShutdownWrap*)`
* `DoTryWrite(uv_buf_t** bufs, size_t* count)`
* `DoWrite(WriteWrap*, uv_buf_t*, size_t count, uv_stream_t* handle)`
* `Error()`
* `ClearError()`
The implementation should provide all of these methods, thus providing
the access to the underlying resource (be it uv handle, TLS socket, or
anything else).
A C++ stream may consume the input of another stream by replacing the
event callbacks and proxying the writes. This kind of API is actually
used now for the TLSWrap implementation, making it possible to wrap TLS
stream into another TLS stream. Thus legacy API calls are no longer
required in `_tls_wrap.js`.
PR-URL: https://github.com/iojs/io.js/pull/840
Reviewed-By: Trevor Norris <trev.norris@gmail.com>
Reviewed-By: Chris Dickinson <christopher.s.dickinson@gmail.com>
10 years ago
|
|
|
#if !defined(_WIN32)
|
|
|
|
if (stream() != nullptr)
|
|
|
|
fd = stream()->io_watcher.fd;
|
|
|
|
#endif
|
stream_base: introduce StreamBase
StreamBase is an improved way to write C++ streams. The class itself is
for separting `StreamWrap` (with the methods like `.writeAsciiString`,
`.writeBuffer`, `.writev`, etc) from the `HandleWrap` class, making
possible to write abstract C++ streams that are not bound to any uv
socket.
The following methods are important part of the abstraction (which
mimics libuv's stream API):
* Events:
* `OnAlloc(size_t size, uv_buf_t*)`
* `OnRead(ssize_t nread, const uv_buf_t*, uv_handle_type pending)`
* `OnAfterWrite(WriteWrap*)`
* Wrappers:
* `DoShutdown(ShutdownWrap*)`
* `DoTryWrite(uv_buf_t** bufs, size_t* count)`
* `DoWrite(WriteWrap*, uv_buf_t*, size_t count, uv_stream_t* handle)`
* `Error()`
* `ClearError()`
The implementation should provide all of these methods, thus providing
the access to the underlying resource (be it uv handle, TLS socket, or
anything else).
A C++ stream may consume the input of another stream by replacing the
event callbacks and proxying the writes. This kind of API is actually
used now for the TLSWrap implementation, making it possible to wrap TLS
stream into another TLS stream. Thus legacy API calls are no longer
required in `_tls_wrap.js`.
PR-URL: https://github.com/iojs/io.js/pull/840
Reviewed-By: Trevor Norris <trev.norris@gmail.com>
Reviewed-By: Chris Dickinson <christopher.s.dickinson@gmail.com>
10 years ago
|
|
|
return fd;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool StreamWrap::IsAlive() {
|
stream_base: introduce StreamBase
StreamBase is an improved way to write C++ streams. The class itself is
for separting `StreamWrap` (with the methods like `.writeAsciiString`,
`.writeBuffer`, `.writev`, etc) from the `HandleWrap` class, making
possible to write abstract C++ streams that are not bound to any uv
socket.
The following methods are important part of the abstraction (which
mimics libuv's stream API):
* Events:
* `OnAlloc(size_t size, uv_buf_t*)`
* `OnRead(ssize_t nread, const uv_buf_t*, uv_handle_type pending)`
* `OnAfterWrite(WriteWrap*)`
* Wrappers:
* `DoShutdown(ShutdownWrap*)`
* `DoTryWrite(uv_buf_t** bufs, size_t* count)`
* `DoWrite(WriteWrap*, uv_buf_t*, size_t count, uv_stream_t* handle)`
* `Error()`
* `ClearError()`
The implementation should provide all of these methods, thus providing
the access to the underlying resource (be it uv handle, TLS socket, or
anything else).
A C++ stream may consume the input of another stream by replacing the
event callbacks and proxying the writes. This kind of API is actually
used now for the TLSWrap implementation, making it possible to wrap TLS
stream into another TLS stream. Thus legacy API calls are no longer
required in `_tls_wrap.js`.
PR-URL: https://github.com/iojs/io.js/pull/840
Reviewed-By: Trevor Norris <trev.norris@gmail.com>
Reviewed-By: Chris Dickinson <christopher.s.dickinson@gmail.com>
10 years ago
|
|
|
return HandleWrap::IsAlive(this);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool StreamWrap::IsClosing() {
|
stream_base: introduce StreamBase
StreamBase is an improved way to write C++ streams. The class itself is
for separting `StreamWrap` (with the methods like `.writeAsciiString`,
`.writeBuffer`, `.writev`, etc) from the `HandleWrap` class, making
possible to write abstract C++ streams that are not bound to any uv
socket.
The following methods are important part of the abstraction (which
mimics libuv's stream API):
* Events:
* `OnAlloc(size_t size, uv_buf_t*)`
* `OnRead(ssize_t nread, const uv_buf_t*, uv_handle_type pending)`
* `OnAfterWrite(WriteWrap*)`
* Wrappers:
* `DoShutdown(ShutdownWrap*)`
* `DoTryWrite(uv_buf_t** bufs, size_t* count)`
* `DoWrite(WriteWrap*, uv_buf_t*, size_t count, uv_stream_t* handle)`
* `Error()`
* `ClearError()`
The implementation should provide all of these methods, thus providing
the access to the underlying resource (be it uv handle, TLS socket, or
anything else).
A C++ stream may consume the input of another stream by replacing the
event callbacks and proxying the writes. This kind of API is actually
used now for the TLSWrap implementation, making it possible to wrap TLS
stream into another TLS stream. Thus legacy API calls are no longer
required in `_tls_wrap.js`.
PR-URL: https://github.com/iojs/io.js/pull/840
Reviewed-By: Trevor Norris <trev.norris@gmail.com>
Reviewed-By: Chris Dickinson <christopher.s.dickinson@gmail.com>
10 years ago
|
|
|
return uv_is_closing(reinterpret_cast<uv_handle_t*>(stream()));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void* StreamWrap::Cast() {
|
|
|
|
return reinterpret_cast<void*>(this);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
AsyncWrap* StreamWrap::GetAsyncWrap() {
|
|
|
|
return static_cast<AsyncWrap*>(this);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool StreamWrap::IsIPCPipe() {
|
stream_base: introduce StreamBase
StreamBase is an improved way to write C++ streams. The class itself is
for separting `StreamWrap` (with the methods like `.writeAsciiString`,
`.writeBuffer`, `.writev`, etc) from the `HandleWrap` class, making
possible to write abstract C++ streams that are not bound to any uv
socket.
The following methods are important part of the abstraction (which
mimics libuv's stream API):
* Events:
* `OnAlloc(size_t size, uv_buf_t*)`
* `OnRead(ssize_t nread, const uv_buf_t*, uv_handle_type pending)`
* `OnAfterWrite(WriteWrap*)`
* Wrappers:
* `DoShutdown(ShutdownWrap*)`
* `DoTryWrite(uv_buf_t** bufs, size_t* count)`
* `DoWrite(WriteWrap*, uv_buf_t*, size_t count, uv_stream_t* handle)`
* `Error()`
* `ClearError()`
The implementation should provide all of these methods, thus providing
the access to the underlying resource (be it uv handle, TLS socket, or
anything else).
A C++ stream may consume the input of another stream by replacing the
event callbacks and proxying the writes. This kind of API is actually
used now for the TLSWrap implementation, making it possible to wrap TLS
stream into another TLS stream. Thus legacy API calls are no longer
required in `_tls_wrap.js`.
PR-URL: https://github.com/iojs/io.js/pull/840
Reviewed-By: Trevor Norris <trev.norris@gmail.com>
Reviewed-By: Chris Dickinson <christopher.s.dickinson@gmail.com>
10 years ago
|
|
|
return is_named_pipe_ipc();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void StreamWrap::UpdateWriteQueueSize() {
|
|
|
|
HandleScope scope(env()->isolate());
|
|
|
|
Local<Integer> write_queue_size =
|
|
|
|
Integer::NewFromUnsigned(env()->isolate(), stream()->write_queue_size);
|
|
|
|
object()->Set(env()->write_queue_size_string(), write_queue_size);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
stream_base: introduce StreamBase
StreamBase is an improved way to write C++ streams. The class itself is
for separting `StreamWrap` (with the methods like `.writeAsciiString`,
`.writeBuffer`, `.writev`, etc) from the `HandleWrap` class, making
possible to write abstract C++ streams that are not bound to any uv
socket.
The following methods are important part of the abstraction (which
mimics libuv's stream API):
* Events:
* `OnAlloc(size_t size, uv_buf_t*)`
* `OnRead(ssize_t nread, const uv_buf_t*, uv_handle_type pending)`
* `OnAfterWrite(WriteWrap*)`
* Wrappers:
* `DoShutdown(ShutdownWrap*)`
* `DoTryWrite(uv_buf_t** bufs, size_t* count)`
* `DoWrite(WriteWrap*, uv_buf_t*, size_t count, uv_stream_t* handle)`
* `Error()`
* `ClearError()`
The implementation should provide all of these methods, thus providing
the access to the underlying resource (be it uv handle, TLS socket, or
anything else).
A C++ stream may consume the input of another stream by replacing the
event callbacks and proxying the writes. This kind of API is actually
used now for the TLSWrap implementation, making it possible to wrap TLS
stream into another TLS stream. Thus legacy API calls are no longer
required in `_tls_wrap.js`.
PR-URL: https://github.com/iojs/io.js/pull/840
Reviewed-By: Trevor Norris <trev.norris@gmail.com>
Reviewed-By: Chris Dickinson <christopher.s.dickinson@gmail.com>
10 years ago
|
|
|
int StreamWrap::ReadStart() {
|
|
|
|
return uv_read_start(stream(), OnAlloc, OnRead);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
stream_base: introduce StreamBase
StreamBase is an improved way to write C++ streams. The class itself is
for separting `StreamWrap` (with the methods like `.writeAsciiString`,
`.writeBuffer`, `.writev`, etc) from the `HandleWrap` class, making
possible to write abstract C++ streams that are not bound to any uv
socket.
The following methods are important part of the abstraction (which
mimics libuv's stream API):
* Events:
* `OnAlloc(size_t size, uv_buf_t*)`
* `OnRead(ssize_t nread, const uv_buf_t*, uv_handle_type pending)`
* `OnAfterWrite(WriteWrap*)`
* Wrappers:
* `DoShutdown(ShutdownWrap*)`
* `DoTryWrite(uv_buf_t** bufs, size_t* count)`
* `DoWrite(WriteWrap*, uv_buf_t*, size_t count, uv_stream_t* handle)`
* `Error()`
* `ClearError()`
The implementation should provide all of these methods, thus providing
the access to the underlying resource (be it uv handle, TLS socket, or
anything else).
A C++ stream may consume the input of another stream by replacing the
event callbacks and proxying the writes. This kind of API is actually
used now for the TLSWrap implementation, making it possible to wrap TLS
stream into another TLS stream. Thus legacy API calls are no longer
required in `_tls_wrap.js`.
PR-URL: https://github.com/iojs/io.js/pull/840
Reviewed-By: Trevor Norris <trev.norris@gmail.com>
Reviewed-By: Chris Dickinson <christopher.s.dickinson@gmail.com>
10 years ago
|
|
|
int StreamWrap::ReadStop() {
|
|
|
|
return uv_read_stop(stream());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void StreamWrap::OnAlloc(uv_handle_t* handle,
|
|
|
|
size_t suggested_size,
|
|
|
|
uv_buf_t* buf) {
|
|
|
|
StreamWrap* wrap = static_cast<StreamWrap*>(handle->data);
|
|
|
|
CHECK_EQ(wrap->stream(), reinterpret_cast<uv_stream_t*>(handle));
|
stream_base: introduce StreamBase
StreamBase is an improved way to write C++ streams. The class itself is
for separting `StreamWrap` (with the methods like `.writeAsciiString`,
`.writeBuffer`, `.writev`, etc) from the `HandleWrap` class, making
possible to write abstract C++ streams that are not bound to any uv
socket.
The following methods are important part of the abstraction (which
mimics libuv's stream API):
* Events:
* `OnAlloc(size_t size, uv_buf_t*)`
* `OnRead(ssize_t nread, const uv_buf_t*, uv_handle_type pending)`
* `OnAfterWrite(WriteWrap*)`
* Wrappers:
* `DoShutdown(ShutdownWrap*)`
* `DoTryWrite(uv_buf_t** bufs, size_t* count)`
* `DoWrite(WriteWrap*, uv_buf_t*, size_t count, uv_stream_t* handle)`
* `Error()`
* `ClearError()`
The implementation should provide all of these methods, thus providing
the access to the underlying resource (be it uv handle, TLS socket, or
anything else).
A C++ stream may consume the input of another stream by replacing the
event callbacks and proxying the writes. This kind of API is actually
used now for the TLSWrap implementation, making it possible to wrap TLS
stream into another TLS stream. Thus legacy API calls are no longer
required in `_tls_wrap.js`.
PR-URL: https://github.com/iojs/io.js/pull/840
Reviewed-By: Trevor Norris <trev.norris@gmail.com>
Reviewed-By: Chris Dickinson <christopher.s.dickinson@gmail.com>
10 years ago
|
|
|
|
|
|
|
return static_cast<StreamBase*>(wrap)->OnAlloc(suggested_size, buf);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void StreamWrap::OnAllocImpl(size_t size, uv_buf_t* buf, void* ctx) {
|
|
|
|
buf->base = static_cast<char*>(malloc(size));
|
|
|
|
buf->len = size;
|
|
|
|
|
|
|
|
if (buf->base == nullptr && size > 0) {
|
|
|
|
FatalError(
|
|
|
|
"node::StreamWrap::DoAlloc(size_t, uv_buf_t*, void*)",
|
|
|
|
"Out Of Memory");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class WrapType, class UVType>
|
stream_base: introduce StreamBase
StreamBase is an improved way to write C++ streams. The class itself is
for separting `StreamWrap` (with the methods like `.writeAsciiString`,
`.writeBuffer`, `.writev`, etc) from the `HandleWrap` class, making
possible to write abstract C++ streams that are not bound to any uv
socket.
The following methods are important part of the abstraction (which
mimics libuv's stream API):
* Events:
* `OnAlloc(size_t size, uv_buf_t*)`
* `OnRead(ssize_t nread, const uv_buf_t*, uv_handle_type pending)`
* `OnAfterWrite(WriteWrap*)`
* Wrappers:
* `DoShutdown(ShutdownWrap*)`
* `DoTryWrite(uv_buf_t** bufs, size_t* count)`
* `DoWrite(WriteWrap*, uv_buf_t*, size_t count, uv_stream_t* handle)`
* `Error()`
* `ClearError()`
The implementation should provide all of these methods, thus providing
the access to the underlying resource (be it uv handle, TLS socket, or
anything else).
A C++ stream may consume the input of another stream by replacing the
event callbacks and proxying the writes. This kind of API is actually
used now for the TLSWrap implementation, making it possible to wrap TLS
stream into another TLS stream. Thus legacy API calls are no longer
required in `_tls_wrap.js`.
PR-URL: https://github.com/iojs/io.js/pull/840
Reviewed-By: Trevor Norris <trev.norris@gmail.com>
Reviewed-By: Chris Dickinson <christopher.s.dickinson@gmail.com>
10 years ago
|
|
|
static Local<Object> AcceptHandle(Environment* env, StreamWrap* parent) {
|
|
|
|
EscapableHandleScope scope(env->isolate());
|
|
|
|
Local<Object> wrap_obj;
|
|
|
|
UVType* handle;
|
|
|
|
|
|
|
|
wrap_obj = WrapType::Instantiate(env, parent);
|
|
|
|
if (wrap_obj.IsEmpty())
|
|
|
|
return Local<Object>();
|
|
|
|
|
|
|
|
WrapType* wrap = Unwrap<WrapType>(wrap_obj);
|
|
|
|
handle = wrap->UVHandle();
|
|
|
|
|
stream_base: introduce StreamBase
StreamBase is an improved way to write C++ streams. The class itself is
for separting `StreamWrap` (with the methods like `.writeAsciiString`,
`.writeBuffer`, `.writev`, etc) from the `HandleWrap` class, making
possible to write abstract C++ streams that are not bound to any uv
socket.
The following methods are important part of the abstraction (which
mimics libuv's stream API):
* Events:
* `OnAlloc(size_t size, uv_buf_t*)`
* `OnRead(ssize_t nread, const uv_buf_t*, uv_handle_type pending)`
* `OnAfterWrite(WriteWrap*)`
* Wrappers:
* `DoShutdown(ShutdownWrap*)`
* `DoTryWrite(uv_buf_t** bufs, size_t* count)`
* `DoWrite(WriteWrap*, uv_buf_t*, size_t count, uv_stream_t* handle)`
* `Error()`
* `ClearError()`
The implementation should provide all of these methods, thus providing
the access to the underlying resource (be it uv handle, TLS socket, or
anything else).
A C++ stream may consume the input of another stream by replacing the
event callbacks and proxying the writes. This kind of API is actually
used now for the TLSWrap implementation, making it possible to wrap TLS
stream into another TLS stream. Thus legacy API calls are no longer
required in `_tls_wrap.js`.
PR-URL: https://github.com/iojs/io.js/pull/840
Reviewed-By: Trevor Norris <trev.norris@gmail.com>
Reviewed-By: Chris Dickinson <christopher.s.dickinson@gmail.com>
10 years ago
|
|
|
if (uv_accept(parent->stream(), reinterpret_cast<uv_stream_t*>(handle)))
|
|
|
|
abort();
|
|
|
|
|
|
|
|
return scope.Escape(wrap_obj);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
stream_base: introduce StreamBase
StreamBase is an improved way to write C++ streams. The class itself is
for separting `StreamWrap` (with the methods like `.writeAsciiString`,
`.writeBuffer`, `.writev`, etc) from the `HandleWrap` class, making
possible to write abstract C++ streams that are not bound to any uv
socket.
The following methods are important part of the abstraction (which
mimics libuv's stream API):
* Events:
* `OnAlloc(size_t size, uv_buf_t*)`
* `OnRead(ssize_t nread, const uv_buf_t*, uv_handle_type pending)`
* `OnAfterWrite(WriteWrap*)`
* Wrappers:
* `DoShutdown(ShutdownWrap*)`
* `DoTryWrite(uv_buf_t** bufs, size_t* count)`
* `DoWrite(WriteWrap*, uv_buf_t*, size_t count, uv_stream_t* handle)`
* `Error()`
* `ClearError()`
The implementation should provide all of these methods, thus providing
the access to the underlying resource (be it uv handle, TLS socket, or
anything else).
A C++ stream may consume the input of another stream by replacing the
event callbacks and proxying the writes. This kind of API is actually
used now for the TLSWrap implementation, making it possible to wrap TLS
stream into another TLS stream. Thus legacy API calls are no longer
required in `_tls_wrap.js`.
PR-URL: https://github.com/iojs/io.js/pull/840
Reviewed-By: Trevor Norris <trev.norris@gmail.com>
Reviewed-By: Chris Dickinson <christopher.s.dickinson@gmail.com>
10 years ago
|
|
|
void StreamWrap::OnReadImpl(ssize_t nread,
|
|
|
|
const uv_buf_t* buf,
|
|
|
|
uv_handle_type pending,
|
|
|
|
void* ctx) {
|
|
|
|
StreamWrap* wrap = static_cast<StreamWrap*>(ctx);
|
|
|
|
Environment* env = wrap->env();
|
|
|
|
HandleScope handle_scope(env->isolate());
|
|
|
|
Context::Scope context_scope(env->context());
|
|
|
|
|
|
|
|
Local<Object> pending_obj;
|
|
|
|
|
|
|
|
if (nread < 0) {
|
|
|
|
if (buf->base != nullptr)
|
|
|
|
free(buf->base);
|
|
|
|
wrap->EmitData(nread, Local<Object>(), pending_obj);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (nread == 0) {
|
|
|
|
if (buf->base != nullptr)
|
|
|
|
free(buf->base);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
char* base = static_cast<char*>(realloc(buf->base, nread));
|
|
|
|
CHECK_LE(static_cast<size_t>(nread), buf->len);
|
|
|
|
|
|
|
|
if (pending == UV_TCP) {
|
|
|
|
pending_obj = AcceptHandle<TCPWrap, uv_tcp_t>(env, wrap);
|
|
|
|
} else if (pending == UV_NAMED_PIPE) {
|
|
|
|
pending_obj = AcceptHandle<PipeWrap, uv_pipe_t>(env, wrap);
|
|
|
|
} else if (pending == UV_UDP) {
|
|
|
|
pending_obj = AcceptHandle<UDPWrap, uv_udp_t>(env, wrap);
|
|
|
|
} else {
|
|
|
|
CHECK_EQ(pending, UV_UNKNOWN_HANDLE);
|
|
|
|
}
|
|
|
|
|
|
|
|
wrap->EmitData(nread, Buffer::Use(env, base, nread), pending_obj);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void StreamWrap::OnReadCommon(uv_stream_t* handle,
|
|
|
|
ssize_t nread,
|
|
|
|
const uv_buf_t* buf,
|
|
|
|
uv_handle_type pending) {
|
|
|
|
StreamWrap* wrap = static_cast<StreamWrap*>(handle->data);
|
|
|
|
|
|
|
|
// We should not be getting this callback if someone as already called
|
|
|
|
// uv_close() on the handle.
|
|
|
|
CHECK_EQ(wrap->persistent().IsEmpty(), false);
|
|
|
|
|
|
|
|
if (nread > 0) {
|
|
|
|
if (wrap->is_tcp()) {
|
|
|
|
NODE_COUNT_NET_BYTES_RECV(nread);
|
|
|
|
} else if (wrap->is_named_pipe()) {
|
|
|
|
NODE_COUNT_PIPE_BYTES_RECV(nread);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
stream_base: introduce StreamBase
StreamBase is an improved way to write C++ streams. The class itself is
for separting `StreamWrap` (with the methods like `.writeAsciiString`,
`.writeBuffer`, `.writev`, etc) from the `HandleWrap` class, making
possible to write abstract C++ streams that are not bound to any uv
socket.
The following methods are important part of the abstraction (which
mimics libuv's stream API):
* Events:
* `OnAlloc(size_t size, uv_buf_t*)`
* `OnRead(ssize_t nread, const uv_buf_t*, uv_handle_type pending)`
* `OnAfterWrite(WriteWrap*)`
* Wrappers:
* `DoShutdown(ShutdownWrap*)`
* `DoTryWrite(uv_buf_t** bufs, size_t* count)`
* `DoWrite(WriteWrap*, uv_buf_t*, size_t count, uv_stream_t* handle)`
* `Error()`
* `ClearError()`
The implementation should provide all of these methods, thus providing
the access to the underlying resource (be it uv handle, TLS socket, or
anything else).
A C++ stream may consume the input of another stream by replacing the
event callbacks and proxying the writes. This kind of API is actually
used now for the TLSWrap implementation, making it possible to wrap TLS
stream into another TLS stream. Thus legacy API calls are no longer
required in `_tls_wrap.js`.
PR-URL: https://github.com/iojs/io.js/pull/840
Reviewed-By: Trevor Norris <trev.norris@gmail.com>
Reviewed-By: Chris Dickinson <christopher.s.dickinson@gmail.com>
10 years ago
|
|
|
static_cast<StreamBase*>(wrap)->OnRead(nread, buf, pending);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void StreamWrap::OnRead(uv_stream_t* handle,
|
|
|
|
ssize_t nread,
|
|
|
|
const uv_buf_t* buf) {
|
|
|
|
StreamWrap* wrap = static_cast<StreamWrap*>(handle->data);
|
|
|
|
uv_handle_type type = UV_UNKNOWN_HANDLE;
|
|
|
|
|
|
|
|
if (wrap->is_named_pipe_ipc() &&
|
|
|
|
uv_pipe_pending_count(reinterpret_cast<uv_pipe_t*>(handle)) > 0) {
|
|
|
|
type = uv_pipe_pending_type(reinterpret_cast<uv_pipe_t*>(handle));
|
|
|
|
}
|
|
|
|
|
|
|
|
OnReadCommon(handle, nread, buf, type);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void StreamWrap::SetBlocking(const FunctionCallbackInfo<Value>& args) {
|
|
|
|
StreamWrap* wrap = Unwrap<StreamWrap>(args.Holder());
|
|
|
|
|
stream_base: introduce StreamBase
StreamBase is an improved way to write C++ streams. The class itself is
for separting `StreamWrap` (with the methods like `.writeAsciiString`,
`.writeBuffer`, `.writev`, etc) from the `HandleWrap` class, making
possible to write abstract C++ streams that are not bound to any uv
socket.
The following methods are important part of the abstraction (which
mimics libuv's stream API):
* Events:
* `OnAlloc(size_t size, uv_buf_t*)`
* `OnRead(ssize_t nread, const uv_buf_t*, uv_handle_type pending)`
* `OnAfterWrite(WriteWrap*)`
* Wrappers:
* `DoShutdown(ShutdownWrap*)`
* `DoTryWrite(uv_buf_t** bufs, size_t* count)`
* `DoWrite(WriteWrap*, uv_buf_t*, size_t count, uv_stream_t* handle)`
* `Error()`
* `ClearError()`
The implementation should provide all of these methods, thus providing
the access to the underlying resource (be it uv handle, TLS socket, or
anything else).
A C++ stream may consume the input of another stream by replacing the
event callbacks and proxying the writes. This kind of API is actually
used now for the TLSWrap implementation, making it possible to wrap TLS
stream into another TLS stream. Thus legacy API calls are no longer
required in `_tls_wrap.js`.
PR-URL: https://github.com/iojs/io.js/pull/840
Reviewed-By: Trevor Norris <trev.norris@gmail.com>
Reviewed-By: Chris Dickinson <christopher.s.dickinson@gmail.com>
10 years ago
|
|
|
CHECK_GT(args.Length(), 0);
|
|
|
|
if (!wrap->IsAlive())
|
|
|
|
return args.GetReturnValue().Set(UV_EINVAL);
|
|
|
|
|
stream_base: introduce StreamBase
StreamBase is an improved way to write C++ streams. The class itself is
for separting `StreamWrap` (with the methods like `.writeAsciiString`,
`.writeBuffer`, `.writev`, etc) from the `HandleWrap` class, making
possible to write abstract C++ streams that are not bound to any uv
socket.
The following methods are important part of the abstraction (which
mimics libuv's stream API):
* Events:
* `OnAlloc(size_t size, uv_buf_t*)`
* `OnRead(ssize_t nread, const uv_buf_t*, uv_handle_type pending)`
* `OnAfterWrite(WriteWrap*)`
* Wrappers:
* `DoShutdown(ShutdownWrap*)`
* `DoTryWrite(uv_buf_t** bufs, size_t* count)`
* `DoWrite(WriteWrap*, uv_buf_t*, size_t count, uv_stream_t* handle)`
* `Error()`
* `ClearError()`
The implementation should provide all of these methods, thus providing
the access to the underlying resource (be it uv handle, TLS socket, or
anything else).
A C++ stream may consume the input of another stream by replacing the
event callbacks and proxying the writes. This kind of API is actually
used now for the TLSWrap implementation, making it possible to wrap TLS
stream into another TLS stream. Thus legacy API calls are no longer
required in `_tls_wrap.js`.
PR-URL: https://github.com/iojs/io.js/pull/840
Reviewed-By: Trevor Norris <trev.norris@gmail.com>
Reviewed-By: Chris Dickinson <christopher.s.dickinson@gmail.com>
10 years ago
|
|
|
bool enable = args[0]->IsTrue();
|
|
|
|
args.GetReturnValue().Set(uv_stream_set_blocking(wrap->stream(), enable));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
stream_base: introduce StreamBase
StreamBase is an improved way to write C++ streams. The class itself is
for separting `StreamWrap` (with the methods like `.writeAsciiString`,
`.writeBuffer`, `.writev`, etc) from the `HandleWrap` class, making
possible to write abstract C++ streams that are not bound to any uv
socket.
The following methods are important part of the abstraction (which
mimics libuv's stream API):
* Events:
* `OnAlloc(size_t size, uv_buf_t*)`
* `OnRead(ssize_t nread, const uv_buf_t*, uv_handle_type pending)`
* `OnAfterWrite(WriteWrap*)`
* Wrappers:
* `DoShutdown(ShutdownWrap*)`
* `DoTryWrite(uv_buf_t** bufs, size_t* count)`
* `DoWrite(WriteWrap*, uv_buf_t*, size_t count, uv_stream_t* handle)`
* `Error()`
* `ClearError()`
The implementation should provide all of these methods, thus providing
the access to the underlying resource (be it uv handle, TLS socket, or
anything else).
A C++ stream may consume the input of another stream by replacing the
event callbacks and proxying the writes. This kind of API is actually
used now for the TLSWrap implementation, making it possible to wrap TLS
stream into another TLS stream. Thus legacy API calls are no longer
required in `_tls_wrap.js`.
PR-URL: https://github.com/iojs/io.js/pull/840
Reviewed-By: Trevor Norris <trev.norris@gmail.com>
Reviewed-By: Chris Dickinson <christopher.s.dickinson@gmail.com>
10 years ago
|
|
|
int StreamWrap::DoShutdown(ShutdownWrap* req_wrap) {
|
|
|
|
return uv_shutdown(&req_wrap->req_, stream(), AfterShutdown);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
stream_base: introduce StreamBase
StreamBase is an improved way to write C++ streams. The class itself is
for separting `StreamWrap` (with the methods like `.writeAsciiString`,
`.writeBuffer`, `.writev`, etc) from the `HandleWrap` class, making
possible to write abstract C++ streams that are not bound to any uv
socket.
The following methods are important part of the abstraction (which
mimics libuv's stream API):
* Events:
* `OnAlloc(size_t size, uv_buf_t*)`
* `OnRead(ssize_t nread, const uv_buf_t*, uv_handle_type pending)`
* `OnAfterWrite(WriteWrap*)`
* Wrappers:
* `DoShutdown(ShutdownWrap*)`
* `DoTryWrite(uv_buf_t** bufs, size_t* count)`
* `DoWrite(WriteWrap*, uv_buf_t*, size_t count, uv_stream_t* handle)`
* `Error()`
* `ClearError()`
The implementation should provide all of these methods, thus providing
the access to the underlying resource (be it uv handle, TLS socket, or
anything else).
A C++ stream may consume the input of another stream by replacing the
event callbacks and proxying the writes. This kind of API is actually
used now for the TLSWrap implementation, making it possible to wrap TLS
stream into another TLS stream. Thus legacy API calls are no longer
required in `_tls_wrap.js`.
PR-URL: https://github.com/iojs/io.js/pull/840
Reviewed-By: Trevor Norris <trev.norris@gmail.com>
Reviewed-By: Chris Dickinson <christopher.s.dickinson@gmail.com>
10 years ago
|
|
|
void StreamWrap::AfterShutdown(uv_shutdown_t* req, int status) {
|
|
|
|
ShutdownWrap* req_wrap = ContainerOf(&ShutdownWrap::req_, req);
|
|
|
|
req_wrap->Done(status);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// NOTE: Call to this function could change both `buf`'s and `count`'s
|
|
|
|
// values, shifting their base and decrementing their length. This is
|
|
|
|
// required in order to skip the data that was successfully written via
|
|
|
|
// uv_try_write().
|
stream_base: introduce StreamBase
StreamBase is an improved way to write C++ streams. The class itself is
for separting `StreamWrap` (with the methods like `.writeAsciiString`,
`.writeBuffer`, `.writev`, etc) from the `HandleWrap` class, making
possible to write abstract C++ streams that are not bound to any uv
socket.
The following methods are important part of the abstraction (which
mimics libuv's stream API):
* Events:
* `OnAlloc(size_t size, uv_buf_t*)`
* `OnRead(ssize_t nread, const uv_buf_t*, uv_handle_type pending)`
* `OnAfterWrite(WriteWrap*)`
* Wrappers:
* `DoShutdown(ShutdownWrap*)`
* `DoTryWrite(uv_buf_t** bufs, size_t* count)`
* `DoWrite(WriteWrap*, uv_buf_t*, size_t count, uv_stream_t* handle)`
* `Error()`
* `ClearError()`
The implementation should provide all of these methods, thus providing
the access to the underlying resource (be it uv handle, TLS socket, or
anything else).
A C++ stream may consume the input of another stream by replacing the
event callbacks and proxying the writes. This kind of API is actually
used now for the TLSWrap implementation, making it possible to wrap TLS
stream into another TLS stream. Thus legacy API calls are no longer
required in `_tls_wrap.js`.
PR-URL: https://github.com/iojs/io.js/pull/840
Reviewed-By: Trevor Norris <trev.norris@gmail.com>
Reviewed-By: Chris Dickinson <christopher.s.dickinson@gmail.com>
10 years ago
|
|
|
int StreamWrap::DoTryWrite(uv_buf_t** bufs, size_t* count) {
|
|
|
|
int err;
|
|
|
|
size_t written;
|
|
|
|
uv_buf_t* vbufs = *bufs;
|
|
|
|
size_t vcount = *count;
|
|
|
|
|
stream_base: introduce StreamBase
StreamBase is an improved way to write C++ streams. The class itself is
for separting `StreamWrap` (with the methods like `.writeAsciiString`,
`.writeBuffer`, `.writev`, etc) from the `HandleWrap` class, making
possible to write abstract C++ streams that are not bound to any uv
socket.
The following methods are important part of the abstraction (which
mimics libuv's stream API):
* Events:
* `OnAlloc(size_t size, uv_buf_t*)`
* `OnRead(ssize_t nread, const uv_buf_t*, uv_handle_type pending)`
* `OnAfterWrite(WriteWrap*)`
* Wrappers:
* `DoShutdown(ShutdownWrap*)`
* `DoTryWrite(uv_buf_t** bufs, size_t* count)`
* `DoWrite(WriteWrap*, uv_buf_t*, size_t count, uv_stream_t* handle)`
* `Error()`
* `ClearError()`
The implementation should provide all of these methods, thus providing
the access to the underlying resource (be it uv handle, TLS socket, or
anything else).
A C++ stream may consume the input of another stream by replacing the
event callbacks and proxying the writes. This kind of API is actually
used now for the TLSWrap implementation, making it possible to wrap TLS
stream into another TLS stream. Thus legacy API calls are no longer
required in `_tls_wrap.js`.
PR-URL: https://github.com/iojs/io.js/pull/840
Reviewed-By: Trevor Norris <trev.norris@gmail.com>
Reviewed-By: Chris Dickinson <christopher.s.dickinson@gmail.com>
10 years ago
|
|
|
err = uv_try_write(stream(), vbufs, vcount);
|
|
|
|
if (err == UV_ENOSYS || err == UV_EAGAIN)
|
|
|
|
return 0;
|
|
|
|
if (err < 0)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
// Slice off the buffers: skip all written buffers and slice the one that
|
|
|
|
// was partially written.
|
|
|
|
written = err;
|
|
|
|
for (; written != 0 && vcount > 0; vbufs++, vcount--) {
|
|
|
|
// Slice
|
|
|
|
if (vbufs[0].len > written) {
|
|
|
|
vbufs[0].base += written;
|
|
|
|
vbufs[0].len -= written;
|
|
|
|
written = 0;
|
|
|
|
break;
|
|
|
|
|
|
|
|
// Discard
|
|
|
|
} else {
|
|
|
|
written -= vbufs[0].len;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
*bufs = vbufs;
|
|
|
|
*count = vcount;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
stream_base: introduce StreamBase
StreamBase is an improved way to write C++ streams. The class itself is
for separting `StreamWrap` (with the methods like `.writeAsciiString`,
`.writeBuffer`, `.writev`, etc) from the `HandleWrap` class, making
possible to write abstract C++ streams that are not bound to any uv
socket.
The following methods are important part of the abstraction (which
mimics libuv's stream API):
* Events:
* `OnAlloc(size_t size, uv_buf_t*)`
* `OnRead(ssize_t nread, const uv_buf_t*, uv_handle_type pending)`
* `OnAfterWrite(WriteWrap*)`
* Wrappers:
* `DoShutdown(ShutdownWrap*)`
* `DoTryWrite(uv_buf_t** bufs, size_t* count)`
* `DoWrite(WriteWrap*, uv_buf_t*, size_t count, uv_stream_t* handle)`
* `Error()`
* `ClearError()`
The implementation should provide all of these methods, thus providing
the access to the underlying resource (be it uv handle, TLS socket, or
anything else).
A C++ stream may consume the input of another stream by replacing the
event callbacks and proxying the writes. This kind of API is actually
used now for the TLSWrap implementation, making it possible to wrap TLS
stream into another TLS stream. Thus legacy API calls are no longer
required in `_tls_wrap.js`.
PR-URL: https://github.com/iojs/io.js/pull/840
Reviewed-By: Trevor Norris <trev.norris@gmail.com>
Reviewed-By: Chris Dickinson <christopher.s.dickinson@gmail.com>
10 years ago
|
|
|
int StreamWrap::DoWrite(WriteWrap* w,
|
|
|
|
uv_buf_t* bufs,
|
|
|
|
size_t count,
|
|
|
|
uv_stream_t* send_handle) {
|
|
|
|
int r;
|
|
|
|
if (send_handle == nullptr) {
|
stream_base: introduce StreamBase
StreamBase is an improved way to write C++ streams. The class itself is
for separting `StreamWrap` (with the methods like `.writeAsciiString`,
`.writeBuffer`, `.writev`, etc) from the `HandleWrap` class, making
possible to write abstract C++ streams that are not bound to any uv
socket.
The following methods are important part of the abstraction (which
mimics libuv's stream API):
* Events:
* `OnAlloc(size_t size, uv_buf_t*)`
* `OnRead(ssize_t nread, const uv_buf_t*, uv_handle_type pending)`
* `OnAfterWrite(WriteWrap*)`
* Wrappers:
* `DoShutdown(ShutdownWrap*)`
* `DoTryWrite(uv_buf_t** bufs, size_t* count)`
* `DoWrite(WriteWrap*, uv_buf_t*, size_t count, uv_stream_t* handle)`
* `Error()`
* `ClearError()`
The implementation should provide all of these methods, thus providing
the access to the underlying resource (be it uv handle, TLS socket, or
anything else).
A C++ stream may consume the input of another stream by replacing the
event callbacks and proxying the writes. This kind of API is actually
used now for the TLSWrap implementation, making it possible to wrap TLS
stream into another TLS stream. Thus legacy API calls are no longer
required in `_tls_wrap.js`.
PR-URL: https://github.com/iojs/io.js/pull/840
Reviewed-By: Trevor Norris <trev.norris@gmail.com>
Reviewed-By: Chris Dickinson <christopher.s.dickinson@gmail.com>
10 years ago
|
|
|
r = uv_write(&w->req_, stream(), bufs, count, AfterWrite);
|
|
|
|
} else {
|
stream_base: introduce StreamBase
StreamBase is an improved way to write C++ streams. The class itself is
for separting `StreamWrap` (with the methods like `.writeAsciiString`,
`.writeBuffer`, `.writev`, etc) from the `HandleWrap` class, making
possible to write abstract C++ streams that are not bound to any uv
socket.
The following methods are important part of the abstraction (which
mimics libuv's stream API):
* Events:
* `OnAlloc(size_t size, uv_buf_t*)`
* `OnRead(ssize_t nread, const uv_buf_t*, uv_handle_type pending)`
* `OnAfterWrite(WriteWrap*)`
* Wrappers:
* `DoShutdown(ShutdownWrap*)`
* `DoTryWrite(uv_buf_t** bufs, size_t* count)`
* `DoWrite(WriteWrap*, uv_buf_t*, size_t count, uv_stream_t* handle)`
* `Error()`
* `ClearError()`
The implementation should provide all of these methods, thus providing
the access to the underlying resource (be it uv handle, TLS socket, or
anything else).
A C++ stream may consume the input of another stream by replacing the
event callbacks and proxying the writes. This kind of API is actually
used now for the TLSWrap implementation, making it possible to wrap TLS
stream into another TLS stream. Thus legacy API calls are no longer
required in `_tls_wrap.js`.
PR-URL: https://github.com/iojs/io.js/pull/840
Reviewed-By: Trevor Norris <trev.norris@gmail.com>
Reviewed-By: Chris Dickinson <christopher.s.dickinson@gmail.com>
10 years ago
|
|
|
r = uv_write2(&w->req_, stream(), bufs, count, send_handle, AfterWrite);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!r) {
|
|
|
|
size_t bytes = 0;
|
|
|
|
for (size_t i = 0; i < count; i++)
|
|
|
|
bytes += bufs[i].len;
|
stream_base: introduce StreamBase
StreamBase is an improved way to write C++ streams. The class itself is
for separting `StreamWrap` (with the methods like `.writeAsciiString`,
`.writeBuffer`, `.writev`, etc) from the `HandleWrap` class, making
possible to write abstract C++ streams that are not bound to any uv
socket.
The following methods are important part of the abstraction (which
mimics libuv's stream API):
* Events:
* `OnAlloc(size_t size, uv_buf_t*)`
* `OnRead(ssize_t nread, const uv_buf_t*, uv_handle_type pending)`
* `OnAfterWrite(WriteWrap*)`
* Wrappers:
* `DoShutdown(ShutdownWrap*)`
* `DoTryWrite(uv_buf_t** bufs, size_t* count)`
* `DoWrite(WriteWrap*, uv_buf_t*, size_t count, uv_stream_t* handle)`
* `Error()`
* `ClearError()`
The implementation should provide all of these methods, thus providing
the access to the underlying resource (be it uv handle, TLS socket, or
anything else).
A C++ stream may consume the input of another stream by replacing the
event callbacks and proxying the writes. This kind of API is actually
used now for the TLSWrap implementation, making it possible to wrap TLS
stream into another TLS stream. Thus legacy API calls are no longer
required in `_tls_wrap.js`.
PR-URL: https://github.com/iojs/io.js/pull/840
Reviewed-By: Trevor Norris <trev.norris@gmail.com>
Reviewed-By: Chris Dickinson <christopher.s.dickinson@gmail.com>
10 years ago
|
|
|
if (stream()->type == UV_TCP) {
|
|
|
|
NODE_COUNT_NET_BYTES_SENT(bytes);
|
stream_base: introduce StreamBase
StreamBase is an improved way to write C++ streams. The class itself is
for separting `StreamWrap` (with the methods like `.writeAsciiString`,
`.writeBuffer`, `.writev`, etc) from the `HandleWrap` class, making
possible to write abstract C++ streams that are not bound to any uv
socket.
The following methods are important part of the abstraction (which
mimics libuv's stream API):
* Events:
* `OnAlloc(size_t size, uv_buf_t*)`
* `OnRead(ssize_t nread, const uv_buf_t*, uv_handle_type pending)`
* `OnAfterWrite(WriteWrap*)`
* Wrappers:
* `DoShutdown(ShutdownWrap*)`
* `DoTryWrite(uv_buf_t** bufs, size_t* count)`
* `DoWrite(WriteWrap*, uv_buf_t*, size_t count, uv_stream_t* handle)`
* `Error()`
* `ClearError()`
The implementation should provide all of these methods, thus providing
the access to the underlying resource (be it uv handle, TLS socket, or
anything else).
A C++ stream may consume the input of another stream by replacing the
event callbacks and proxying the writes. This kind of API is actually
used now for the TLSWrap implementation, making it possible to wrap TLS
stream into another TLS stream. Thus legacy API calls are no longer
required in `_tls_wrap.js`.
PR-URL: https://github.com/iojs/io.js/pull/840
Reviewed-By: Trevor Norris <trev.norris@gmail.com>
Reviewed-By: Chris Dickinson <christopher.s.dickinson@gmail.com>
10 years ago
|
|
|
} else if (stream()->type == UV_NAMED_PIPE) {
|
|
|
|
NODE_COUNT_PIPE_BYTES_SENT(bytes);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
stream_base: introduce StreamBase
StreamBase is an improved way to write C++ streams. The class itself is
for separting `StreamWrap` (with the methods like `.writeAsciiString`,
`.writeBuffer`, `.writev`, etc) from the `HandleWrap` class, making
possible to write abstract C++ streams that are not bound to any uv
socket.
The following methods are important part of the abstraction (which
mimics libuv's stream API):
* Events:
* `OnAlloc(size_t size, uv_buf_t*)`
* `OnRead(ssize_t nread, const uv_buf_t*, uv_handle_type pending)`
* `OnAfterWrite(WriteWrap*)`
* Wrappers:
* `DoShutdown(ShutdownWrap*)`
* `DoTryWrite(uv_buf_t** bufs, size_t* count)`
* `DoWrite(WriteWrap*, uv_buf_t*, size_t count, uv_stream_t* handle)`
* `Error()`
* `ClearError()`
The implementation should provide all of these methods, thus providing
the access to the underlying resource (be it uv handle, TLS socket, or
anything else).
A C++ stream may consume the input of another stream by replacing the
event callbacks and proxying the writes. This kind of API is actually
used now for the TLSWrap implementation, making it possible to wrap TLS
stream into another TLS stream. Thus legacy API calls are no longer
required in `_tls_wrap.js`.
PR-URL: https://github.com/iojs/io.js/pull/840
Reviewed-By: Trevor Norris <trev.norris@gmail.com>
Reviewed-By: Chris Dickinson <christopher.s.dickinson@gmail.com>
10 years ago
|
|
|
UpdateWriteQueueSize();
|
|
|
|
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
stream_base: introduce StreamBase
StreamBase is an improved way to write C++ streams. The class itself is
for separting `StreamWrap` (with the methods like `.writeAsciiString`,
`.writeBuffer`, `.writev`, etc) from the `HandleWrap` class, making
possible to write abstract C++ streams that are not bound to any uv
socket.
The following methods are important part of the abstraction (which
mimics libuv's stream API):
* Events:
* `OnAlloc(size_t size, uv_buf_t*)`
* `OnRead(ssize_t nread, const uv_buf_t*, uv_handle_type pending)`
* `OnAfterWrite(WriteWrap*)`
* Wrappers:
* `DoShutdown(ShutdownWrap*)`
* `DoTryWrite(uv_buf_t** bufs, size_t* count)`
* `DoWrite(WriteWrap*, uv_buf_t*, size_t count, uv_stream_t* handle)`
* `Error()`
* `ClearError()`
The implementation should provide all of these methods, thus providing
the access to the underlying resource (be it uv handle, TLS socket, or
anything else).
A C++ stream may consume the input of another stream by replacing the
event callbacks and proxying the writes. This kind of API is actually
used now for the TLSWrap implementation, making it possible to wrap TLS
stream into another TLS stream. Thus legacy API calls are no longer
required in `_tls_wrap.js`.
PR-URL: https://github.com/iojs/io.js/pull/840
Reviewed-By: Trevor Norris <trev.norris@gmail.com>
Reviewed-By: Chris Dickinson <christopher.s.dickinson@gmail.com>
10 years ago
|
|
|
void StreamWrap::AfterWrite(uv_write_t* req, int status) {
|
|
|
|
WriteWrap* req_wrap = ContainerOf(&WriteWrap::req_, req);
|
|
|
|
req_wrap->Done(status);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
stream_base: introduce StreamBase
StreamBase is an improved way to write C++ streams. The class itself is
for separting `StreamWrap` (with the methods like `.writeAsciiString`,
`.writeBuffer`, `.writev`, etc) from the `HandleWrap` class, making
possible to write abstract C++ streams that are not bound to any uv
socket.
The following methods are important part of the abstraction (which
mimics libuv's stream API):
* Events:
* `OnAlloc(size_t size, uv_buf_t*)`
* `OnRead(ssize_t nread, const uv_buf_t*, uv_handle_type pending)`
* `OnAfterWrite(WriteWrap*)`
* Wrappers:
* `DoShutdown(ShutdownWrap*)`
* `DoTryWrite(uv_buf_t** bufs, size_t* count)`
* `DoWrite(WriteWrap*, uv_buf_t*, size_t count, uv_stream_t* handle)`
* `Error()`
* `ClearError()`
The implementation should provide all of these methods, thus providing
the access to the underlying resource (be it uv handle, TLS socket, or
anything else).
A C++ stream may consume the input of another stream by replacing the
event callbacks and proxying the writes. This kind of API is actually
used now for the TLSWrap implementation, making it possible to wrap TLS
stream into another TLS stream. Thus legacy API calls are no longer
required in `_tls_wrap.js`.
PR-URL: https://github.com/iojs/io.js/pull/840
Reviewed-By: Trevor Norris <trev.norris@gmail.com>
Reviewed-By: Chris Dickinson <christopher.s.dickinson@gmail.com>
10 years ago
|
|
|
void StreamWrap::OnAfterWriteImpl(WriteWrap* w, void* ctx) {
|
|
|
|
StreamWrap* wrap = static_cast<StreamWrap*>(ctx);
|
|
|
|
wrap->UpdateWriteQueueSize();
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace node
|
|
|
|
|
|
|
|
NODE_MODULE_CONTEXT_AWARE_BUILTIN(stream_wrap, node::StreamWrap::Initialize)
|