|
|
|
'use strict';
|
|
|
|
const common = require('../common');
|
|
|
|
const assert = require('assert');
|
|
|
|
|
|
|
|
if (!common.hasCrypto) {
|
|
|
|
common.skip('missing crypto');
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
const crypto = require('crypto');
|
|
|
|
const DH_NOT_SUITABLE_GENERATOR = crypto.constants.DH_NOT_SUITABLE_GENERATOR;
|
|
|
|
|
|
|
|
// Test Diffie-Hellman with two parties sharing a secret,
|
|
|
|
// using various encodings as we go along
|
|
|
|
const dh1 = crypto.createDiffieHellman(common.hasFipsCrypto ? 1024 : 256);
|
|
|
|
const p1 = dh1.getPrime('buffer');
|
|
|
|
const dh2 = crypto.createDiffieHellman(p1, 'buffer');
|
|
|
|
let key1 = dh1.generateKeys();
|
|
|
|
let key2 = dh2.generateKeys('hex');
|
|
|
|
let secret1 = dh1.computeSecret(key2, 'hex', 'base64');
|
|
|
|
let secret2 = dh2.computeSecret(key1, 'latin1', 'buffer');
|
|
|
|
|
|
|
|
assert.strictEqual(secret2.toString('base64'), secret1);
|
|
|
|
assert.strictEqual(dh1.verifyError, 0);
|
|
|
|
assert.strictEqual(dh2.verifyError, 0);
|
|
|
|
|
|
|
|
const argumentsError =
|
|
|
|
/^TypeError: First argument should be number, string or Buffer$/;
|
|
|
|
|
|
|
|
assert.throws(() => {
|
|
|
|
crypto.createDiffieHellman([0x1, 0x2]);
|
|
|
|
}, argumentsError);
|
|
|
|
|
|
|
|
assert.throws(() => {
|
|
|
|
crypto.createDiffieHellman(() => { });
|
|
|
|
}, argumentsError);
|
|
|
|
|
|
|
|
assert.throws(() => {
|
|
|
|
crypto.createDiffieHellman(/abc/);
|
|
|
|
}, argumentsError);
|
|
|
|
|
|
|
|
assert.throws(() => {
|
|
|
|
crypto.createDiffieHellman({});
|
|
|
|
}, argumentsError);
|
|
|
|
|
|
|
|
// Create "another dh1" using generated keys from dh1,
|
|
|
|
// and compute secret again
|
|
|
|
const dh3 = crypto.createDiffieHellman(p1, 'buffer');
|
|
|
|
const privkey1 = dh1.getPrivateKey();
|
|
|
|
dh3.setPublicKey(key1);
|
|
|
|
dh3.setPrivateKey(privkey1);
|
|
|
|
|
|
|
|
assert.deepStrictEqual(dh1.getPrime(), dh3.getPrime());
|
|
|
|
assert.deepStrictEqual(dh1.getGenerator(), dh3.getGenerator());
|
|
|
|
assert.deepStrictEqual(dh1.getPublicKey(), dh3.getPublicKey());
|
|
|
|
assert.deepStrictEqual(dh1.getPrivateKey(), dh3.getPrivateKey());
|
|
|
|
assert.strictEqual(dh3.verifyError, 0);
|
|
|
|
|
|
|
|
const secret3 = dh3.computeSecret(key2, 'hex', 'base64');
|
|
|
|
|
|
|
|
assert.strictEqual(secret1, secret3);
|
|
|
|
|
|
|
|
const wrongBlockLength =
|
|
|
|
new RegExp('^Error: error:0606506D:digital envelope' +
|
|
|
|
' routines:EVP_DecryptFinal_ex:wrong final block length$');
|
|
|
|
|
|
|
|
// Run this one twice to make sure that the dh3 clears its error properly
|
|
|
|
{
|
|
|
|
const c = crypto.createDecipheriv('aes-128-ecb', crypto.randomBytes(16), '');
|
|
|
|
assert.throws(() => {
|
|
|
|
c.final('utf8');
|
|
|
|
}, wrongBlockLength);
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
const c = crypto.createDecipheriv('aes-128-ecb', crypto.randomBytes(16), '');
|
|
|
|
assert.throws(() => {
|
|
|
|
c.final('utf8');
|
|
|
|
}, wrongBlockLength);
|
|
|
|
}
|
|
|
|
|
|
|
|
assert.throws(() => {
|
|
|
|
dh3.computeSecret('');
|
|
|
|
}, /^Error: Supplied key is too small$/);
|
|
|
|
|
|
|
|
// Create a shared using a DH group.
|
|
|
|
const alice = crypto.createDiffieHellmanGroup('modp5');
|
|
|
|
const bob = crypto.createDiffieHellmanGroup('modp5');
|
|
|
|
alice.generateKeys();
|
|
|
|
bob.generateKeys();
|
|
|
|
const aSecret = alice.computeSecret(bob.getPublicKey()).toString('hex');
|
|
|
|
const bSecret = bob.computeSecret(alice.getPublicKey()).toString('hex');
|
|
|
|
assert.strictEqual(aSecret, bSecret);
|
|
|
|
assert.strictEqual(alice.verifyError, DH_NOT_SUITABLE_GENERATOR);
|
|
|
|
assert.strictEqual(bob.verifyError, DH_NOT_SUITABLE_GENERATOR);
|
|
|
|
|
|
|
|
/* Ensure specific generator (buffer) works as expected.
|
|
|
|
* The values below (modp2/modp2buf) are for a 1024 bits long prime from
|
|
|
|
* RFC 2412 E.2, see https://tools.ietf.org/html/rfc2412. */
|
|
|
|
const modp2 = crypto.createDiffieHellmanGroup('modp2');
|
|
|
|
const modp2buf = Buffer.from([
|
|
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc9, 0x0f,
|
|
|
|
0xda, 0xa2, 0x21, 0x68, 0xc2, 0x34, 0xc4, 0xc6, 0x62, 0x8b,
|
|
|
|
0x80, 0xdc, 0x1c, 0xd1, 0x29, 0x02, 0x4e, 0x08, 0x8a, 0x67,
|
|
|
|
0xcc, 0x74, 0x02, 0x0b, 0xbe, 0xa6, 0x3b, 0x13, 0x9b, 0x22,
|
|
|
|
0x51, 0x4a, 0x08, 0x79, 0x8e, 0x34, 0x04, 0xdd, 0xef, 0x95,
|
|
|
|
0x19, 0xb3, 0xcd, 0x3a, 0x43, 0x1b, 0x30, 0x2b, 0x0a, 0x6d,
|
|
|
|
0xf2, 0x5f, 0x14, 0x37, 0x4f, 0xe1, 0x35, 0x6d, 0x6d, 0x51,
|
|
|
|
0xc2, 0x45, 0xe4, 0x85, 0xb5, 0x76, 0x62, 0x5e, 0x7e, 0xc6,
|
|
|
|
0xf4, 0x4c, 0x42, 0xe9, 0xa6, 0x37, 0xed, 0x6b, 0x0b, 0xff,
|
|
|
|
0x5c, 0xb6, 0xf4, 0x06, 0xb7, 0xed, 0xee, 0x38, 0x6b, 0xfb,
|
|
|
|
0x5a, 0x89, 0x9f, 0xa5, 0xae, 0x9f, 0x24, 0x11, 0x7c, 0x4b,
|
|
|
|
0x1f, 0xe6, 0x49, 0x28, 0x66, 0x51, 0xec, 0xe6, 0x53, 0x81,
|
|
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
|
|
|
|
]);
|
|
|
|
const exmodp2 = crypto.createDiffieHellman(modp2buf, Buffer.from([2]));
|
|
|
|
modp2.generateKeys();
|
|
|
|
exmodp2.generateKeys();
|
|
|
|
let modp2Secret = modp2.computeSecret(exmodp2.getPublicKey()).toString('hex');
|
|
|
|
const exmodp2Secret = exmodp2.computeSecret(modp2.getPublicKey())
|
|
|
|
.toString('hex');
|
|
|
|
assert.strictEqual(modp2Secret, exmodp2Secret);
|
|
|
|
assert.strictEqual(modp2.verifyError, DH_NOT_SUITABLE_GENERATOR);
|
|
|
|
assert.strictEqual(exmodp2.verifyError, DH_NOT_SUITABLE_GENERATOR);
|
|
|
|
|
|
|
|
|
|
|
|
// Ensure specific generator (string with encoding) works as expected.
|
|
|
|
const exmodp2_2 = crypto.createDiffieHellman(modp2buf, '02', 'hex');
|
|
|
|
exmodp2_2.generateKeys();
|
|
|
|
modp2Secret = modp2.computeSecret(exmodp2_2.getPublicKey()).toString('hex');
|
|
|
|
const exmodp2_2Secret = exmodp2_2.computeSecret(modp2.getPublicKey())
|
|
|
|
.toString('hex');
|
|
|
|
assert.strictEqual(modp2Secret, exmodp2_2Secret);
|
|
|
|
assert.strictEqual(exmodp2_2.verifyError, DH_NOT_SUITABLE_GENERATOR);
|
|
|
|
|
|
|
|
|
|
|
|
// Ensure specific generator (string without encoding) works as expected.
|
|
|
|
const exmodp2_3 = crypto.createDiffieHellman(modp2buf, '\x02');
|
|
|
|
exmodp2_3.generateKeys();
|
|
|
|
modp2Secret = modp2.computeSecret(exmodp2_3.getPublicKey()).toString('hex');
|
|
|
|
const exmodp2_3Secret = exmodp2_3.computeSecret(modp2.getPublicKey())
|
|
|
|
.toString('hex');
|
|
|
|
assert.strictEqual(modp2Secret, exmodp2_3Secret);
|
|
|
|
assert.strictEqual(exmodp2_3.verifyError, DH_NOT_SUITABLE_GENERATOR);
|
|
|
|
|
|
|
|
|
|
|
|
// Ensure specific generator (numeric) works as expected.
|
|
|
|
const exmodp2_4 = crypto.createDiffieHellman(modp2buf, 2);
|
|
|
|
exmodp2_4.generateKeys();
|
|
|
|
modp2Secret = modp2.computeSecret(exmodp2_4.getPublicKey()).toString('hex');
|
|
|
|
const exmodp2_4Secret = exmodp2_4.computeSecret(modp2.getPublicKey())
|
|
|
|
.toString('hex');
|
|
|
|
assert.strictEqual(modp2Secret, exmodp2_4Secret);
|
|
|
|
assert.strictEqual(exmodp2_4.verifyError, DH_NOT_SUITABLE_GENERATOR);
|
|
|
|
|
|
|
|
|
|
|
|
const p = 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74' +
|
|
|
|
'020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F1437' +
|
|
|
|
'4FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' +
|
|
|
|
'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381FFFFFFFFFFFFFFFF';
|
|
|
|
const bad_dh = crypto.createDiffieHellman(p, 'hex');
|
|
|
|
assert.strictEqual(bad_dh.verifyError, DH_NOT_SUITABLE_GENERATOR);
|
|
|
|
|
|
|
|
|
|
|
|
// Test ECDH
|
|
|
|
const ecdh1 = crypto.createECDH('prime256v1');
|
|
|
|
const ecdh2 = crypto.createECDH('prime256v1');
|
|
|
|
key1 = ecdh1.generateKeys();
|
|
|
|
key2 = ecdh2.generateKeys('hex');
|
|
|
|
secret1 = ecdh1.computeSecret(key2, 'hex', 'base64');
|
|
|
|
secret2 = ecdh2.computeSecret(key1, 'latin1', 'buffer');
|
|
|
|
|
|
|
|
assert.strictEqual(secret1, secret2.toString('base64'));
|
|
|
|
|
|
|
|
// Oakley curves do not clean up ERR stack, it was causing unexpected failure
|
|
|
|
// when accessing other OpenSSL APIs afterwards.
|
|
|
|
crypto.createECDH('Oakley-EC2N-3');
|
|
|
|
crypto.createHash('sha256');
|
|
|
|
|
|
|
|
// Point formats
|
|
|
|
assert.strictEqual(ecdh1.getPublicKey('buffer', 'uncompressed')[0], 4);
|
|
|
|
let firstByte = ecdh1.getPublicKey('buffer', 'compressed')[0];
|
|
|
|
assert(firstByte === 2 || firstByte === 3);
|
|
|
|
firstByte = ecdh1.getPublicKey('buffer', 'hybrid')[0];
|
|
|
|
assert(firstByte === 6 || firstByte === 7);
|
|
|
|
|
|
|
|
// ECDH should check that point is on curve
|
|
|
|
const ecdh3 = crypto.createECDH('secp256k1');
|
|
|
|
const key3 = ecdh3.generateKeys();
|
|
|
|
|
|
|
|
assert.throws(() => {
|
|
|
|
ecdh2.computeSecret(key3, 'latin1', 'buffer');
|
|
|
|
}, /^Error: Failed to translate Buffer to a EC_POINT$/);
|
|
|
|
|
|
|
|
// ECDH should allow .setPrivateKey()/.setPublicKey()
|
|
|
|
const ecdh4 = crypto.createECDH('prime256v1');
|
|
|
|
|
|
|
|
ecdh4.setPrivateKey(ecdh1.getPrivateKey());
|
|
|
|
ecdh4.setPublicKey(ecdh1.getPublicKey());
|
|
|
|
|
|
|
|
assert.throws(() => {
|
|
|
|
ecdh4.setPublicKey(ecdh3.getPublicKey());
|
|
|
|
}, /^Error: Failed to convert Buffer to EC_POINT$/);
|
|
|
|
|
|
|
|
// Verify that we can use ECDH without having to use newly generated keys.
|
|
|
|
const ecdh5 = crypto.createECDH('secp256k1');
|
|
|
|
|
|
|
|
// Verify errors are thrown when retrieving keys from an uninitialized object.
|
|
|
|
assert.throws(() => {
|
|
|
|
ecdh5.getPublicKey();
|
|
|
|
}, /^Error: Failed to get ECDH public key$/);
|
|
|
|
|
|
|
|
assert.throws(() => {
|
|
|
|
ecdh5.getPrivateKey();
|
|
|
|
}, /^Error: Failed to get ECDH private key$/);
|
|
|
|
|
|
|
|
// A valid private key for the secp256k1 curve.
|
|
|
|
const cafebabeKey = 'cafebabe'.repeat(8);
|
|
|
|
// Associated compressed and uncompressed public keys (points).
|
|
|
|
const cafebabePubPtComp =
|
|
|
|
'03672a31bfc59d3f04548ec9b7daeeba2f61814e8ccc40448045007f5479f693a3';
|
|
|
|
const cafebabePubPtUnComp =
|
|
|
|
'04672a31bfc59d3f04548ec9b7daeeba2f61814e8ccc40448045007f5479f693a3' +
|
|
|
|
'2e02c7f93d13dc2732b760ca377a5897b9dd41a1c1b29dc0442fdce6d0a04d1d';
|
|
|
|
ecdh5.setPrivateKey(cafebabeKey, 'hex');
|
|
|
|
assert.strictEqual(ecdh5.getPrivateKey('hex'), cafebabeKey);
|
|
|
|
// Show that the public point (key) is generated while setting the private key.
|
|
|
|
assert.strictEqual(ecdh5.getPublicKey('hex'), cafebabePubPtUnComp);
|
|
|
|
|
|
|
|
// Compressed and uncompressed public points/keys for other party's private key
|
|
|
|
// 0xDEADBEEFDEADBEEFDEADBEEFDEADBEEFDEADBEEFDEADBEEFDEADBEEFDEADBEEF
|
|
|
|
const peerPubPtComp =
|
|
|
|
'02c6b754b20826eb925e052ee2c25285b162b51fdca732bcf67e39d647fb6830ae';
|
|
|
|
const peerPubPtUnComp =
|
|
|
|
'04c6b754b20826eb925e052ee2c25285b162b51fdca732bcf67e39d647fb6830ae' +
|
|
|
|
'b651944a574a362082a77e3f2b5d9223eb54d7f2f76846522bf75f3bedb8178e';
|
|
|
|
|
|
|
|
const sharedSecret =
|
|
|
|
'1da220b5329bbe8bfd19ceef5a5898593f411a6f12ea40f2a8eead9a5cf59970';
|
|
|
|
|
|
|
|
assert.strictEqual(ecdh5.computeSecret(peerPubPtComp, 'hex', 'hex'),
|
|
|
|
sharedSecret);
|
|
|
|
assert.strictEqual(ecdh5.computeSecret(peerPubPtUnComp, 'hex', 'hex'),
|
|
|
|
sharedSecret);
|
|
|
|
|
|
|
|
// Verify that we still have the same key pair as before the computation.
|
|
|
|
assert.strictEqual(ecdh5.getPrivateKey('hex'), cafebabeKey);
|
|
|
|
assert.strictEqual(ecdh5.getPublicKey('hex'), cafebabePubPtUnComp);
|
|
|
|
|
|
|
|
// Verify setting and getting compressed and non-compressed serializations.
|
|
|
|
ecdh5.setPublicKey(cafebabePubPtComp, 'hex');
|
|
|
|
assert.strictEqual(ecdh5.getPublicKey('hex'), cafebabePubPtUnComp);
|
|
|
|
assert.strictEqual(ecdh5.getPublicKey('hex', 'compressed'), cafebabePubPtComp);
|
|
|
|
ecdh5.setPublicKey(cafebabePubPtUnComp, 'hex');
|
|
|
|
assert.strictEqual(ecdh5.getPublicKey('hex'), cafebabePubPtUnComp);
|
|
|
|
assert.strictEqual(ecdh5.getPublicKey('hex', 'compressed'), cafebabePubPtComp);
|
|
|
|
|
|
|
|
// Show why allowing the public key to be set on this type does not make sense.
|
|
|
|
ecdh5.setPublicKey(peerPubPtComp, 'hex');
|
|
|
|
assert.strictEqual(ecdh5.getPublicKey('hex'), peerPubPtUnComp);
|
|
|
|
assert.throws(() => {
|
|
|
|
// Error because the public key does not match the private key anymore.
|
|
|
|
ecdh5.computeSecret(peerPubPtComp, 'hex', 'hex');
|
|
|
|
}, /^Error: Invalid key pair$/);
|
|
|
|
|
|
|
|
// Set to a valid key to show that later attempts to set an invalid key are
|
|
|
|
// rejected.
|
|
|
|
ecdh5.setPrivateKey(cafebabeKey, 'hex');
|
|
|
|
|
|
|
|
[ // Some invalid private keys for the secp256k1 curve.
|
|
|
|
'0000000000000000000000000000000000000000000000000000000000000000',
|
|
|
|
'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141',
|
|
|
|
'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF',
|
|
|
|
].forEach((element) => {
|
|
|
|
assert.throws(() => {
|
|
|
|
ecdh5.setPrivateKey(element, 'hex');
|
|
|
|
}, /^Error: Private key is not valid for specified curve.$/);
|
|
|
|
// Verify object state did not change.
|
|
|
|
assert.strictEqual(ecdh5.getPrivateKey('hex'), cafebabeKey);
|
|
|
|
});
|