mirror of https://github.com/lukechilds/node.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
362 lines
13 KiB
362 lines
13 KiB
10 years ago
|
// Copyright 2014 the V8 project authors. All rights reserved.
|
||
|
// Use of this source code is governed by a BSD-style license that can be
|
||
|
// found in the LICENSE file.
|
||
|
|
||
|
#ifndef V8_COMPILER_CONTROL_EQUIVALENCE_H_
|
||
|
#define V8_COMPILER_CONTROL_EQUIVALENCE_H_
|
||
|
|
||
|
#include "src/v8.h"
|
||
|
|
||
|
#include "src/compiler/graph.h"
|
||
|
#include "src/compiler/node.h"
|
||
|
#include "src/compiler/node-properties.h"
|
||
|
#include "src/zone-containers.h"
|
||
|
|
||
|
namespace v8 {
|
||
|
namespace internal {
|
||
|
namespace compiler {
|
||
|
|
||
|
// Determines control dependence equivalence classes for control nodes. Any two
|
||
|
// nodes having the same set of control dependences land in one class. These
|
||
|
// classes can in turn be used to:
|
||
|
// - Build a program structure tree (PST) for controls in the graph.
|
||
|
// - Determine single-entry single-exit (SESE) regions within the graph.
|
||
|
//
|
||
|
// Note that this implementation actually uses cycle equivalence to establish
|
||
|
// class numbers. Any two nodes are cycle equivalent if they occur in the same
|
||
|
// set of cycles. It can be shown that control dependence equivalence reduces
|
||
|
// to undirected cycle equivalence for strongly connected control flow graphs.
|
||
|
//
|
||
|
// The algorithm is based on the paper, "The program structure tree: computing
|
||
|
// control regions in linear time" by Johnson, Pearson & Pingali (PLDI94) which
|
||
|
// also contains proofs for the aforementioned equivalence. References to line
|
||
|
// numbers in the algorithm from figure 4 have been added [line:x].
|
||
|
class ControlEquivalence : public ZoneObject {
|
||
|
public:
|
||
|
ControlEquivalence(Zone* zone, Graph* graph)
|
||
|
: zone_(zone),
|
||
|
graph_(graph),
|
||
|
dfs_number_(0),
|
||
|
class_number_(1),
|
||
|
node_data_(graph->NodeCount(), EmptyData(), zone) {}
|
||
|
|
||
|
// Run the main algorithm starting from the {exit} control node. This causes
|
||
|
// the following iterations over control edges of the graph:
|
||
|
// 1) A breadth-first backwards traversal to determine the set of nodes that
|
||
|
// participate in the next step. Takes O(E) time and O(N) space.
|
||
|
// 2) An undirected depth-first backwards traversal that determines class
|
||
|
// numbers for all participating nodes. Takes O(E) time and O(N) space.
|
||
|
void Run(Node* exit) {
|
||
|
if (GetClass(exit) != kInvalidClass) return;
|
||
|
DetermineParticipation(exit);
|
||
|
RunUndirectedDFS(exit);
|
||
|
}
|
||
|
|
||
|
// Retrieves a previously computed class number.
|
||
|
size_t ClassOf(Node* node) {
|
||
|
DCHECK(GetClass(node) != kInvalidClass);
|
||
|
return GetClass(node);
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
static const size_t kInvalidClass = static_cast<size_t>(-1);
|
||
|
typedef enum { kInputDirection, kUseDirection } DFSDirection;
|
||
|
|
||
|
struct Bracket {
|
||
|
DFSDirection direction; // Direction in which this bracket was added.
|
||
|
size_t recent_class; // Cached class when bracket was topmost.
|
||
|
size_t recent_size; // Cached set-size when bracket was topmost.
|
||
|
Node* from; // Node that this bracket originates from.
|
||
|
Node* to; // Node that this bracket points to.
|
||
|
};
|
||
|
|
||
|
// The set of brackets for each node during the DFS walk.
|
||
|
typedef ZoneLinkedList<Bracket> BracketList;
|
||
|
|
||
|
struct DFSStackEntry {
|
||
|
DFSDirection direction; // Direction currently used in DFS walk.
|
||
|
Node::InputEdges::iterator input; // Iterator used for "input" direction.
|
||
|
Node::UseEdges::iterator use; // Iterator used for "use" direction.
|
||
|
Node* parent_node; // Parent node of entry during DFS walk.
|
||
|
Node* node; // Node that this stack entry belongs to.
|
||
|
};
|
||
|
|
||
|
// The stack is used during the undirected DFS walk.
|
||
|
typedef ZoneStack<DFSStackEntry> DFSStack;
|
||
|
|
||
|
struct NodeData {
|
||
|
size_t class_number; // Equivalence class number assigned to node.
|
||
|
size_t dfs_number; // Pre-order DFS number assigned to node.
|
||
|
bool visited; // Indicates node has already been visited.
|
||
|
bool on_stack; // Indicates node is on DFS stack during walk.
|
||
|
bool participates; // Indicates node participates in DFS walk.
|
||
|
BracketList blist; // List of brackets per node.
|
||
|
};
|
||
|
|
||
|
// The per-node data computed during the DFS walk.
|
||
|
typedef ZoneVector<NodeData> Data;
|
||
|
|
||
|
// Called at pre-visit during DFS walk.
|
||
|
void VisitPre(Node* node) {
|
||
|
Trace("CEQ: Pre-visit of #%d:%s\n", node->id(), node->op()->mnemonic());
|
||
|
|
||
|
// Dispense a new pre-order number.
|
||
|
SetNumber(node, NewDFSNumber());
|
||
|
Trace(" Assigned DFS number is %d\n", GetNumber(node));
|
||
|
}
|
||
|
|
||
|
// Called at mid-visit during DFS walk.
|
||
|
void VisitMid(Node* node, DFSDirection direction) {
|
||
|
Trace("CEQ: Mid-visit of #%d:%s\n", node->id(), node->op()->mnemonic());
|
||
|
BracketList& blist = GetBracketList(node);
|
||
|
|
||
|
// Remove brackets pointing to this node [line:19].
|
||
|
BracketListDelete(blist, node, direction);
|
||
|
|
||
|
// Potentially introduce artificial dependency from start to end.
|
||
|
if (blist.empty()) {
|
||
|
DCHECK_EQ(kInputDirection, direction);
|
||
|
VisitBackedge(node, graph_->end(), kInputDirection);
|
||
|
}
|
||
|
|
||
|
// Potentially start a new equivalence class [line:37].
|
||
|
BracketListTrace(blist);
|
||
|
Bracket* recent = &blist.back();
|
||
|
if (recent->recent_size != blist.size()) {
|
||
|
recent->recent_size = blist.size();
|
||
|
recent->recent_class = NewClassNumber();
|
||
|
}
|
||
|
|
||
|
// Assign equivalence class to node.
|
||
|
SetClass(node, recent->recent_class);
|
||
|
Trace(" Assigned class number is %d\n", GetClass(node));
|
||
|
}
|
||
|
|
||
|
// Called at post-visit during DFS walk.
|
||
|
void VisitPost(Node* node, Node* parent_node, DFSDirection direction) {
|
||
|
Trace("CEQ: Post-visit of #%d:%s\n", node->id(), node->op()->mnemonic());
|
||
|
BracketList& blist = GetBracketList(node);
|
||
|
|
||
|
// Remove brackets pointing to this node [line:19].
|
||
|
BracketListDelete(blist, node, direction);
|
||
|
|
||
|
// Propagate bracket list up the DFS tree [line:13].
|
||
|
if (parent_node != NULL) {
|
||
|
BracketList& parent_blist = GetBracketList(parent_node);
|
||
|
parent_blist.splice(parent_blist.end(), blist);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Called when hitting a back edge in the DFS walk.
|
||
|
void VisitBackedge(Node* from, Node* to, DFSDirection direction) {
|
||
|
Trace("CEQ: Backedge from #%d:%s to #%d:%s\n", from->id(),
|
||
|
from->op()->mnemonic(), to->id(), to->op()->mnemonic());
|
||
|
|
||
|
// Push backedge onto the bracket list [line:25].
|
||
|
Bracket bracket = {direction, kInvalidClass, 0, from, to};
|
||
|
GetBracketList(from).push_back(bracket);
|
||
|
}
|
||
|
|
||
|
// Performs and undirected DFS walk of the graph. Conceptually all nodes are
|
||
|
// expanded, splitting "input" and "use" out into separate nodes. During the
|
||
|
// traversal, edges towards the representative nodes are preferred.
|
||
|
//
|
||
|
// \ / - Pre-visit: When N1 is visited in direction D the preferred
|
||
|
// x N1 edge towards N is taken next, calling VisitPre(N).
|
||
|
// | - Mid-visit: After all edges out of N2 in direction D have
|
||
|
// | N been visited, we switch the direction and start considering
|
||
|
// | edges out of N1 now, and we call VisitMid(N).
|
||
|
// x N2 - Post-visit: After all edges out of N1 in direction opposite
|
||
|
// / \ to D have been visited, we pop N and call VisitPost(N).
|
||
|
//
|
||
|
// This will yield a true spanning tree (without cross or forward edges) and
|
||
|
// also discover proper back edges in both directions.
|
||
|
void RunUndirectedDFS(Node* exit) {
|
||
|
ZoneStack<DFSStackEntry> stack(zone_);
|
||
|
DFSPush(stack, exit, NULL, kInputDirection);
|
||
|
VisitPre(exit);
|
||
|
|
||
|
while (!stack.empty()) { // Undirected depth-first backwards traversal.
|
||
|
DFSStackEntry& entry = stack.top();
|
||
|
Node* node = entry.node;
|
||
|
|
||
|
if (entry.direction == kInputDirection) {
|
||
|
if (entry.input != node->input_edges().end()) {
|
||
|
Edge edge = *entry.input;
|
||
|
Node* input = edge.to();
|
||
|
++(entry.input);
|
||
|
if (NodeProperties::IsControlEdge(edge) &&
|
||
|
NodeProperties::IsControl(input)) {
|
||
|
// Visit next control input.
|
||
|
if (!GetData(input)->participates) continue;
|
||
|
if (GetData(input)->visited) continue;
|
||
|
if (GetData(input)->on_stack) {
|
||
|
// Found backedge if input is on stack.
|
||
|
if (input != entry.parent_node) {
|
||
|
VisitBackedge(node, input, kInputDirection);
|
||
|
}
|
||
|
} else {
|
||
|
// Push input onto stack.
|
||
|
DFSPush(stack, input, node, kInputDirection);
|
||
|
VisitPre(input);
|
||
|
}
|
||
|
}
|
||
|
continue;
|
||
|
}
|
||
|
if (entry.use != node->use_edges().end()) {
|
||
|
// Switch direction to uses.
|
||
|
entry.direction = kUseDirection;
|
||
|
VisitMid(node, kInputDirection);
|
||
|
continue;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (entry.direction == kUseDirection) {
|
||
|
if (entry.use != node->use_edges().end()) {
|
||
|
Edge edge = *entry.use;
|
||
|
Node* use = edge.from();
|
||
|
++(entry.use);
|
||
|
if (NodeProperties::IsControlEdge(edge) &&
|
||
|
NodeProperties::IsControl(use)) {
|
||
|
// Visit next control use.
|
||
|
if (!GetData(use)->participates) continue;
|
||
|
if (GetData(use)->visited) continue;
|
||
|
if (GetData(use)->on_stack) {
|
||
|
// Found backedge if use is on stack.
|
||
|
if (use != entry.parent_node) {
|
||
|
VisitBackedge(node, use, kUseDirection);
|
||
|
}
|
||
|
} else {
|
||
|
// Push use onto stack.
|
||
|
DFSPush(stack, use, node, kUseDirection);
|
||
|
VisitPre(use);
|
||
|
}
|
||
|
}
|
||
|
continue;
|
||
|
}
|
||
|
if (entry.input != node->input_edges().end()) {
|
||
|
// Switch direction to inputs.
|
||
|
entry.direction = kInputDirection;
|
||
|
VisitMid(node, kUseDirection);
|
||
|
continue;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Pop node from stack when done with all inputs and uses.
|
||
|
DCHECK(entry.input == node->input_edges().end());
|
||
|
DCHECK(entry.use == node->use_edges().end());
|
||
|
DFSPop(stack, node);
|
||
|
VisitPost(node, entry.parent_node, entry.direction);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void DetermineParticipationEnqueue(ZoneQueue<Node*>& queue, Node* node) {
|
||
|
if (!GetData(node)->participates) {
|
||
|
GetData(node)->participates = true;
|
||
|
queue.push(node);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void DetermineParticipation(Node* exit) {
|
||
|
ZoneQueue<Node*> queue(zone_);
|
||
|
DetermineParticipationEnqueue(queue, exit);
|
||
|
while (!queue.empty()) { // Breadth-first backwards traversal.
|
||
|
Node* node = queue.front();
|
||
|
queue.pop();
|
||
|
int max = NodeProperties::PastControlIndex(node);
|
||
|
for (int i = NodeProperties::FirstControlIndex(node); i < max; i++) {
|
||
|
DetermineParticipationEnqueue(queue, node->InputAt(i));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
NodeData* GetData(Node* node) { return &node_data_[node->id()]; }
|
||
|
int NewClassNumber() { return class_number_++; }
|
||
|
int NewDFSNumber() { return dfs_number_++; }
|
||
|
|
||
|
// Template used to initialize per-node data.
|
||
|
NodeData EmptyData() {
|
||
|
return {kInvalidClass, 0, false, false, false, BracketList(zone_)};
|
||
|
}
|
||
|
|
||
|
// Accessors for the DFS number stored within the per-node data.
|
||
|
size_t GetNumber(Node* node) { return GetData(node)->dfs_number; }
|
||
|
void SetNumber(Node* node, size_t number) {
|
||
|
GetData(node)->dfs_number = number;
|
||
|
}
|
||
|
|
||
|
// Accessors for the equivalence class stored within the per-node data.
|
||
|
size_t GetClass(Node* node) { return GetData(node)->class_number; }
|
||
|
void SetClass(Node* node, size_t number) {
|
||
|
GetData(node)->class_number = number;
|
||
|
}
|
||
|
|
||
|
// Accessors for the bracket list stored within the per-node data.
|
||
|
BracketList& GetBracketList(Node* node) { return GetData(node)->blist; }
|
||
|
void SetBracketList(Node* node, BracketList& list) {
|
||
|
GetData(node)->blist = list;
|
||
|
}
|
||
|
|
||
|
// Mutates the DFS stack by pushing an entry.
|
||
|
void DFSPush(DFSStack& stack, Node* node, Node* from, DFSDirection dir) {
|
||
|
DCHECK(GetData(node)->participates);
|
||
|
DCHECK(!GetData(node)->visited);
|
||
|
GetData(node)->on_stack = true;
|
||
|
Node::InputEdges::iterator input = node->input_edges().begin();
|
||
|
Node::UseEdges::iterator use = node->use_edges().begin();
|
||
|
stack.push({dir, input, use, from, node});
|
||
|
}
|
||
|
|
||
|
// Mutates the DFS stack by popping an entry.
|
||
|
void DFSPop(DFSStack& stack, Node* node) {
|
||
|
DCHECK_EQ(stack.top().node, node);
|
||
|
GetData(node)->on_stack = false;
|
||
|
GetData(node)->visited = true;
|
||
|
stack.pop();
|
||
|
}
|
||
|
|
||
|
// TODO(mstarzinger): Optimize this to avoid linear search.
|
||
|
void BracketListDelete(BracketList& blist, Node* to, DFSDirection direction) {
|
||
|
for (BracketList::iterator i = blist.begin(); i != blist.end(); /*nop*/) {
|
||
|
if (i->to == to && i->direction != direction) {
|
||
|
Trace(" BList erased: {%d->%d}\n", i->from->id(), i->to->id());
|
||
|
i = blist.erase(i);
|
||
|
} else {
|
||
|
++i;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void BracketListTrace(BracketList& blist) {
|
||
|
if (FLAG_trace_turbo_scheduler) {
|
||
|
Trace(" BList: ");
|
||
|
for (Bracket bracket : blist) {
|
||
|
Trace("{%d->%d} ", bracket.from->id(), bracket.to->id());
|
||
|
}
|
||
|
Trace("\n");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void Trace(const char* msg, ...) {
|
||
|
if (FLAG_trace_turbo_scheduler) {
|
||
|
va_list arguments;
|
||
|
va_start(arguments, msg);
|
||
|
base::OS::VPrint(msg, arguments);
|
||
|
va_end(arguments);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Zone* zone_;
|
||
|
Graph* graph_;
|
||
|
int dfs_number_; // Generates new DFS pre-order numbers on demand.
|
||
|
int class_number_; // Generates new equivalence class numbers on demand.
|
||
|
Data node_data_; // Per-node data stored as a side-table.
|
||
|
};
|
||
|
|
||
|
} // namespace compiler
|
||
|
} // namespace internal
|
||
|
} // namespace v8
|
||
|
|
||
|
#endif // V8_COMPILER_CONTROL_EQUIVALENCE_H_
|