You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2559 lines
63 KiB

#include <node_crypto.h>
#include <v8.h>
#include <node.h>
#include <node_buffer.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
#if OPENSSL_VERSION_NUMBER >= 0x10000000L
# define OPENSSL_CONST const
#else
# define OPENSSL_CONST
#endif
namespace node {
using namespace v8;
static Persistent<String> errno_symbol;
static Persistent<String> syscall_symbol;
static Persistent<String> subject_symbol;
static Persistent<String> issuer_symbol;
static Persistent<String> valid_from_symbol;
static Persistent<String> valid_to_symbol;
static Persistent<String> name_symbol;
static Persistent<String> version_symbol;
static inline const char *errno_string(int errorno) {
#define ERRNO_CASE(e) case e: return #e;
switch (errorno) {
#ifdef EACCES
ERRNO_CASE(EACCES);
#endif
#ifdef EADDRINUSE
ERRNO_CASE(EADDRINUSE);
#endif
#ifdef EADDRNOTAVAIL
ERRNO_CASE(EADDRNOTAVAIL);
#endif
#ifdef EAFNOSUPPORT
ERRNO_CASE(EAFNOSUPPORT);
#endif
#ifdef EAGAIN
ERRNO_CASE(EAGAIN);
#else
# ifdef EWOULDBLOCK
ERRNO_CASE(EWOULDBLOCK);
# endif
#endif
#ifdef EALREADY
ERRNO_CASE(EALREADY);
#endif
#ifdef EBADF
ERRNO_CASE(EBADF);
#endif
#ifdef EBADMSG
ERRNO_CASE(EBADMSG);
#endif
#ifdef EBUSY
ERRNO_CASE(EBUSY);
#endif
#ifdef ECANCELED
ERRNO_CASE(ECANCELED);
#endif
#ifdef ECHILD
ERRNO_CASE(ECHILD);
#endif
#ifdef ECONNABORTED
ERRNO_CASE(ECONNABORTED);
#endif
#ifdef ECONNREFUSED
ERRNO_CASE(ECONNREFUSED);
#endif
#ifdef ECONNRESET
ERRNO_CASE(ECONNRESET);
#endif
#ifdef EDEADLK
ERRNO_CASE(EDEADLK);
#endif
#ifdef EDESTADDRREQ
ERRNO_CASE(EDESTADDRREQ);
#endif
#ifdef EDOM
ERRNO_CASE(EDOM);
#endif
#ifdef EDQUOT
ERRNO_CASE(EDQUOT);
#endif
#ifdef EEXIST
ERRNO_CASE(EEXIST);
#endif
#ifdef EFAULT
ERRNO_CASE(EFAULT);
#endif
#ifdef EFBIG
ERRNO_CASE(EFBIG);
#endif
#ifdef EHOSTUNREACH
ERRNO_CASE(EHOSTUNREACH);
#endif
#ifdef EIDRM
ERRNO_CASE(EIDRM);
#endif
#ifdef EILSEQ
ERRNO_CASE(EILSEQ);
#endif
#ifdef EINPROGRESS
ERRNO_CASE(EINPROGRESS);
#endif
#ifdef EINTR
ERRNO_CASE(EINTR);
#endif
#ifdef EINVAL
ERRNO_CASE(EINVAL);
#endif
#ifdef EIO
ERRNO_CASE(EIO);
#endif
#ifdef EISCONN
ERRNO_CASE(EISCONN);
#endif
#ifdef EISDIR
ERRNO_CASE(EISDIR);
#endif
#ifdef ELOOP
ERRNO_CASE(ELOOP);
#endif
#ifdef EMFILE
ERRNO_CASE(EMFILE);
#endif
#ifdef EMLINK
ERRNO_CASE(EMLINK);
#endif
#ifdef EMSGSIZE
ERRNO_CASE(EMSGSIZE);
#endif
#ifdef EMULTIHOP
ERRNO_CASE(EMULTIHOP);
#endif
#ifdef ENAMETOOLONG
ERRNO_CASE(ENAMETOOLONG);
#endif
#ifdef ENETDOWN
ERRNO_CASE(ENETDOWN);
#endif
#ifdef ENETRESET
ERRNO_CASE(ENETRESET);
#endif
#ifdef ENETUNREACH
ERRNO_CASE(ENETUNREACH);
#endif
#ifdef ENFILE
ERRNO_CASE(ENFILE);
#endif
#ifdef ENOBUFS
ERRNO_CASE(ENOBUFS);
#endif
#ifdef ENODATA
ERRNO_CASE(ENODATA);
#endif
#ifdef ENODEV
ERRNO_CASE(ENODEV);
#endif
#ifdef ENOENT
ERRNO_CASE(ENOENT);
#endif
#ifdef ENOEXEC
ERRNO_CASE(ENOEXEC);
#endif
#ifdef ENOLCK
ERRNO_CASE(ENOLCK);
#endif
#ifdef ENOLINK
ERRNO_CASE(ENOLINK);
#endif
#ifdef ENOMEM
ERRNO_CASE(ENOMEM);
#endif
#ifdef ENOMSG
ERRNO_CASE(ENOMSG);
#endif
#ifdef ENOPROTOOPT
ERRNO_CASE(ENOPROTOOPT);
#endif
#ifdef ENOSPC
ERRNO_CASE(ENOSPC);
#endif
#ifdef ENOSR
ERRNO_CASE(ENOSR);
#endif
#ifdef ENOSTR
ERRNO_CASE(ENOSTR);
#endif
#ifdef ENOSYS
ERRNO_CASE(ENOSYS);
#endif
#ifdef ENOTCONN
ERRNO_CASE(ENOTCONN);
#endif
#ifdef ENOTDIR
ERRNO_CASE(ENOTDIR);
#endif
#ifdef ENOTEMPTY
ERRNO_CASE(ENOTEMPTY);
#endif
#ifdef ENOTSOCK
ERRNO_CASE(ENOTSOCK);
#endif
#ifdef ENOTSUP
ERRNO_CASE(ENOTSUP);
#else
# ifdef EOPNOTSUPP
ERRNO_CASE(EOPNOTSUPP);
# endif
#endif
#ifdef ENOTTY
ERRNO_CASE(ENOTTY);
#endif
#ifdef ENXIO
ERRNO_CASE(ENXIO);
#endif
#ifdef EOVERFLOW
ERRNO_CASE(EOVERFLOW);
#endif
#ifdef EPERM
ERRNO_CASE(EPERM);
#endif
#ifdef EPIPE
ERRNO_CASE(EPIPE);
#endif
#ifdef EPROTO
ERRNO_CASE(EPROTO);
#endif
#ifdef EPROTONOSUPPORT
ERRNO_CASE(EPROTONOSUPPORT);
#endif
#ifdef EPROTOTYPE
ERRNO_CASE(EPROTOTYPE);
#endif
#ifdef ERANGE
ERRNO_CASE(ERANGE);
#endif
#ifdef EROFS
ERRNO_CASE(EROFS);
#endif
#ifdef ESPIPE
ERRNO_CASE(ESPIPE);
#endif
#ifdef ESRCH
ERRNO_CASE(ESRCH);
#endif
#ifdef ESTALE
ERRNO_CASE(ESTALE);
#endif
#ifdef ETIME
ERRNO_CASE(ETIME);
#endif
#ifdef ETIMEDOUT
ERRNO_CASE(ETIMEDOUT);
#endif
#ifdef ETXTBSY
ERRNO_CASE(ETXTBSY);
#endif
#ifdef EXDEV
ERRNO_CASE(EXDEV);
#endif
default: return "";
}
}
static int verify_callback(int ok, X509_STORE_CTX *ctx) {
return(1); // Ignore errors by now. VerifyPeer will catch them by using SSL_get_verify_result.
}
void SecureContext::Initialize(Handle<Object> target) {
HandleScope scope;
Local<FunctionTemplate> t = FunctionTemplate::New(SecureContext::New);
t->InstanceTemplate()->SetInternalFieldCount(1);
t->SetClassName(String::NewSymbol("SecureContext"));
NODE_SET_PROTOTYPE_METHOD(t, "init", SecureContext::Init);
NODE_SET_PROTOTYPE_METHOD(t, "setKey", SecureContext::SetKey);
NODE_SET_PROTOTYPE_METHOD(t, "setCert", SecureContext::SetCert);
NODE_SET_PROTOTYPE_METHOD(t, "addCACert", SecureContext::AddCACert);
NODE_SET_PROTOTYPE_METHOD(t, "setCiphers", SecureContext::SetCiphers);
NODE_SET_PROTOTYPE_METHOD(t, "close", SecureContext::Close);
target->Set(String::NewSymbol("SecureContext"), t->GetFunction());
}
Handle<Value> SecureContext::New(const Arguments& args) {
HandleScope scope;
SecureContext *p = new SecureContext();
p->Wrap(args.Holder());
return args.This();
}
Handle<Value> SecureContext::Init(const Arguments& args) {
HandleScope scope;
SecureContext *sc = ObjectWrap::Unwrap<SecureContext>(args.Holder());
OPENSSL_CONST SSL_METHOD *method = SSLv23_method();
if (args.Length() == 1) {
if (!args[0]->IsString())
return ThrowException(Exception::TypeError(
String::New("Bad parameter")));
String::Utf8Value sslmethod(args[0]->ToString());
if (strcmp(*sslmethod, "SSLv2_method") == 0)
method = SSLv2_method();
if (strcmp(*sslmethod, "SSLv2_server_method") == 0)
method = SSLv2_server_method();
if (strcmp(*sslmethod, "SSLv2_client_method") == 0)
method = SSLv2_client_method();
if (strcmp(*sslmethod, "SSLv3_method") == 0)
method = SSLv3_method();
if (strcmp(*sslmethod, "SSLv3_server_method") == 0)
method = SSLv3_server_method();
if (strcmp(*sslmethod, "SSLv3_client_method") == 0)
method = SSLv3_client_method();
if (strcmp(*sslmethod, "SSLv23_method") == 0)
method = SSLv23_method();
if (strcmp(*sslmethod, "SSLv23_server_method") == 0)
method = SSLv23_server_method();
if (strcmp(*sslmethod, "SSLv23_client_method") == 0)
method = SSLv23_client_method();
if (strcmp(*sslmethod, "TLSv1_method") == 0)
method = TLSv1_method();
if (strcmp(*sslmethod, "TLSv1_server_method") == 0)
method = TLSv1_server_method();
if (strcmp(*sslmethod, "TLSv1_client_method") == 0)
method = TLSv1_client_method();
}
sc->pCtx = SSL_CTX_new(method);
// Enable session caching?
SSL_CTX_set_session_cache_mode(sc->pCtx, SSL_SESS_CACHE_SERVER);
// SSL_CTX_set_session_cache_mode(sc->pCtx,SSL_SESS_CACHE_OFF);
sc->caStore = X509_STORE_new();
SSL_CTX_set_cert_store(sc->pCtx, sc->caStore);
return True();
}
Handle<Value> SecureContext::SetKey(const Arguments& args) {
HandleScope scope;
SecureContext *sc = ObjectWrap::Unwrap<SecureContext>(args.Holder());
if (args.Length() != 1 ||
!args[0]->IsString()) {
return ThrowException(Exception::TypeError(
String::New("Bad parameter")));
}
String::Utf8Value keyPem(args[0]->ToString());
BIO *bp = NULL;
EVP_PKEY* pkey;
bp = BIO_new(BIO_s_mem());
if (!BIO_write(bp, *keyPem, strlen(*keyPem)))
return False();
pkey = PEM_read_bio_PrivateKey(bp, NULL, NULL, NULL);
if (pkey == NULL)
return False();
SSL_CTX_use_PrivateKey(sc->pCtx, pkey);
BIO_free(bp);
return True();
}
Handle<Value> SecureContext::SetCert(const Arguments& args) {
HandleScope scope;
SecureContext *sc = ObjectWrap::Unwrap<SecureContext>(args.Holder());
if (args.Length() != 1 ||
!args[0]->IsString()) {
return ThrowException(Exception::TypeError(
String::New("Bad parameter")));
}
String::Utf8Value certPem(args[0]->ToString());
BIO *bp = NULL;
X509 * x509;
bp = BIO_new(BIO_s_mem());
if (!BIO_write(bp, *certPem, strlen(*certPem)))
return False();
x509 = PEM_read_bio_X509(bp, NULL, NULL, NULL);
if (x509 == NULL)
return False();
SSL_CTX_use_certificate(sc->pCtx, x509);
BIO_free(bp);
X509_free(x509);
return True();
}
Handle<Value> SecureContext::AddCACert(const Arguments& args) {
HandleScope scope;
SecureContext *sc = ObjectWrap::Unwrap<SecureContext>(args.Holder());
if (args.Length() != 1 ||
!args[0]->IsString()) {
return ThrowException(Exception::TypeError(
String::New("Bad parameter")));
}
String::Utf8Value certPem(args[0]->ToString());
BIO *bp = NULL;
X509 *x509;
bp = BIO_new(BIO_s_mem());
if (!BIO_write(bp, *certPem, strlen(*certPem)))
return False();
x509 = PEM_read_bio_X509(bp, NULL, NULL, NULL);
if (x509 == NULL)
return False();
X509_STORE_add_cert(sc->caStore, x509);
BIO_free(bp);
X509_free(x509);
return True();
}
Handle<Value> SecureContext::SetCiphers(const Arguments& args) {
HandleScope scope;
SecureContext *sc = ObjectWrap::Unwrap<SecureContext>(args.Holder());
if (args.Length() != 1 ||
!args[0]->IsString()) {
return ThrowException(Exception::TypeError(
String::New("Bad parameter")));
}
String::Utf8Value ciphers(args[0]->ToString());
SSL_CTX_set_cipher_list(sc->pCtx, *ciphers);
return True();
}
Handle<Value> SecureContext::Close(const Arguments& args) {
HandleScope scope;
SecureContext *sc = ObjectWrap::Unwrap<SecureContext>(args.Holder());
if (sc->pCtx != NULL) {
SSL_CTX_free(sc->pCtx);
return True();
}
return False();
}
void SecureStream::Initialize(Handle<Object> target) {
HandleScope scope;
Local<FunctionTemplate> t = FunctionTemplate::New(SecureStream::New);
t->InstanceTemplate()->SetInternalFieldCount(1);
t->SetClassName(String::NewSymbol("SecureStream"));
NODE_SET_PROTOTYPE_METHOD(t, "readInject",
SecureStream::ReadInject);
NODE_SET_PROTOTYPE_METHOD(t, "readExtract",
SecureStream::ReadExtract);
NODE_SET_PROTOTYPE_METHOD(t, "writeInject",
SecureStream::WriteInject);
NODE_SET_PROTOTYPE_METHOD(t, "writeExtract",
SecureStream::WriteExtract);
NODE_SET_PROTOTYPE_METHOD(t, "readPending",
SecureStream::ReadPending);
NODE_SET_PROTOTYPE_METHOD(t, "writeCanExtract",
SecureStream::WriteCanExtract);
NODE_SET_PROTOTYPE_METHOD(t, "getPeerCertificate",
SecureStream::GetPeerCertificate);
NODE_SET_PROTOTYPE_METHOD(t, "isInitFinished",
SecureStream::IsInitFinished);
NODE_SET_PROTOTYPE_METHOD(t, "verifyPeer",
SecureStream::VerifyPeer);
NODE_SET_PROTOTYPE_METHOD(t, "getCurrentCipher",
SecureStream::GetCurrentCipher);
NODE_SET_PROTOTYPE_METHOD(t, "shutdown",
SecureStream::Shutdown);
NODE_SET_PROTOTYPE_METHOD(t, "close",
SecureStream::Close);
target->Set(String::NewSymbol("SecureStream"), t->GetFunction());
}
Handle<Value> SecureStream::New(const Arguments& args) {
HandleScope scope;
SecureStream *p = new SecureStream();
p->Wrap(args.Holder());
if (args.Length() != 2 ||
!args[0]->IsObject() ||
!args[1]->IsNumber()) {
return ThrowException(Exception::Error(String::New("Bad arguments.")));
}
SecureContext *sc = ObjectWrap::Unwrap<SecureContext>(args[0]->ToObject());
int isServer = args[1]->Int32Value();
p->pSSL = SSL_new(sc->pCtx);
p->pbioRead = BIO_new(BIO_s_mem());
p->pbioWrite = BIO_new(BIO_s_mem());
SSL_set_bio(p->pSSL, p->pbioRead, p->pbioWrite);
SSL_set_verify(p->pSSL, SSL_VERIFY_PEER, verify_callback);
p->server = isServer>0;
if (p->server) {
SSL_set_accept_state(p->pSSL);
} else {
SSL_set_connect_state(p->pSSL);
}
return args.This();
}
Handle<Value> SecureStream::ReadInject(const Arguments& args) {
HandleScope scope;
SecureStream *ss = ObjectWrap::Unwrap<SecureStream>(args.Holder());
if (args.Length() < 3) {
return ThrowException(Exception::TypeError(
String::New("Takes 3 parameters")));
}
if (!Buffer::HasInstance(args[0])) {
return ThrowException(Exception::TypeError(
String::New("Second argument should be a buffer")));
}
Buffer * buffer = ObjectWrap::Unwrap<Buffer>(args[0]->ToObject());
size_t off = args[1]->Int32Value();
if (off >= buffer->length()) {
return ThrowException(Exception::Error(
String::New("Offset is out of bounds")));
}
size_t len = args[2]->Int32Value();
if (off + len > buffer->length()) {
return ThrowException(Exception::Error(
String::New("Length is extends beyond buffer")));
}
int bytes_written = BIO_write(ss->pbioRead, (char*)buffer->data() + off, len);
if (bytes_written < 0) {
if (errno == EAGAIN || errno == EINTR) return Null();
return ThrowException(ErrnoException(errno, "read"));
}
return scope.Close(Integer::New(bytes_written));
}
Handle<Value> SecureStream::ReadExtract(const Arguments& args) {
HandleScope scope;
SecureStream *ss = ObjectWrap::Unwrap<SecureStream>(args.Holder());
if (args.Length() < 3) {
return ThrowException(Exception::TypeError(
String::New("Takes 3 parameters")));
}
if (!Buffer::HasInstance(args[0])) {
return ThrowException(Exception::TypeError(
String::New("Second argument should be a buffer")));
}
Buffer * buffer = ObjectWrap::Unwrap<Buffer>(args[0]->ToObject());
size_t off = args[1]->Int32Value();
if (off >= buffer->length()) {
return ThrowException(Exception::Error(
String::New("Offset is out of bounds")));
}
size_t len = args[2]->Int32Value();
if (off + len > buffer->length()) {
return ThrowException(Exception::Error(
String::New("Length is extends beyond buffer")));
}
int bytes_read;
if (!SSL_is_init_finished(ss->pSSL)) {
if (ss->server) {
bytes_read = SSL_accept(ss->pSSL);
} else {
bytes_read = SSL_connect(ss->pSSL);
}
if (bytes_read < 0) {
int err;
if ((err = SSL_get_error(ss->pSSL, bytes_read)) == SSL_ERROR_WANT_READ) {
return scope.Close(Integer::New(0));
}
}
return scope.Close(Integer::New(0));
}
bytes_read = SSL_read(ss->pSSL, (char*)buffer->data() + off, len);
if (bytes_read < 0) {
int err = SSL_get_error(ss->pSSL, bytes_read);
if (err == SSL_ERROR_WANT_READ) {
return scope.Close(Integer::New(0));
}
// SSL read error
return scope.Close(Integer::New(-2));
}
if (bytes_read < 0) {
if (errno == EAGAIN || errno == EINTR) return Null();
return ThrowException(ErrnoException(errno, "read"));
}
return scope.Close(Integer::New(bytes_read));
}
Handle<Value> SecureStream::ReadPending(const Arguments& args) {
HandleScope scope;
SecureStream *ss = ObjectWrap::Unwrap<SecureStream>(args.Holder());
int bytes_pending = BIO_pending(ss->pbioRead);
return scope.Close(Integer::New(bytes_pending));
}
Handle<Value> SecureStream::WriteCanExtract(const Arguments& args) {
HandleScope scope;
SecureStream *ss = ObjectWrap::Unwrap<SecureStream>(args.Holder());
int bytes_pending = BIO_pending(ss->pbioWrite);
return scope.Close(Integer::New(bytes_pending));
}
Handle<Value> SecureStream::WriteExtract(const Arguments& args) {
HandleScope scope;
SecureStream *ss = ObjectWrap::Unwrap<SecureStream>(args.Holder());
if (args.Length() < 3) {
return ThrowException(Exception::TypeError(
String::New("Takes 3 parameters")));
}
if (!Buffer::HasInstance(args[0])) {
return ThrowException(Exception::TypeError(
String::New("Second argument should be a buffer")));
}
Buffer * buffer = ObjectWrap::Unwrap<Buffer>(args[0]->ToObject());
size_t off = args[1]->Int32Value();
if (off >= buffer->length()) {
return ThrowException(Exception::Error(
String::New("Offset is out of bounds")));
}
size_t len = args[2]->Int32Value();
if (off + len > buffer->length()) {
return ThrowException(Exception::Error(
String::New("Length is extends beyond buffer")));
}
int bytes_read = BIO_read(ss->pbioWrite, (char*)buffer->data() + off, len);
return scope.Close(Integer::New(bytes_read));
}
Handle<Value> SecureStream::WriteInject(const Arguments& args) {
HandleScope scope;
SecureStream *ss = ObjectWrap::Unwrap<SecureStream>(args.Holder());
if (args.Length() < 3) {
return ThrowException(Exception::TypeError(
String::New("Takes 3 parameters")));
}
if (!Buffer::HasInstance(args[0])) {
return ThrowException(Exception::TypeError(
String::New("Second argument should be a buffer")));
}
Buffer * buffer = ObjectWrap::Unwrap<Buffer>(args[0]->ToObject());
size_t off = args[1]->Int32Value();
if (off >= buffer->length()) {
return ThrowException(Exception::Error(
String::New("Offset is out of bounds")));
}
size_t len = args[2]->Int32Value();
if (off + len > buffer->length()) {
return ThrowException(Exception::Error(
String::New("Length is extends beyond buffer")));
}
if (!SSL_is_init_finished(ss->pSSL)) {
int s;
if (ss->server) {
s = SSL_accept(ss->pSSL);
} else {
s = SSL_connect(ss->pSSL);
}
return scope.Close(Integer::New(0));
}
int bytes_written = SSL_write(ss->pSSL, (char*)buffer->data() + off, len);
return scope.Close(Integer::New(bytes_written));
}
Handle<Value> SecureStream::GetPeerCertificate(const Arguments& args) {
HandleScope scope;
SecureStream *ss = ObjectWrap::Unwrap<SecureStream>(args.Holder());
if (ss->pSSL == NULL) return Undefined();
Local<Object> info = Object::New();
X509* peer_cert = SSL_get_peer_certificate(ss->pSSL);
if (peer_cert != NULL) {
char* subject = X509_NAME_oneline(X509_get_subject_name(peer_cert), 0, 0);
if (subject != NULL) {
info->Set(subject_symbol, String::New(subject));
OPENSSL_free(subject);
}
char* issuer = X509_NAME_oneline(X509_get_issuer_name(peer_cert), 0, 0);
if (subject != NULL) {
info->Set(issuer_symbol, String::New(issuer));
OPENSSL_free(issuer);
}
char buf[256];
BIO* bio = BIO_new(BIO_s_mem());
ASN1_TIME_print(bio, X509_get_notBefore(peer_cert));
memset(buf, 0, sizeof(buf));
BIO_read(bio, buf, sizeof(buf) - 1);
info->Set(valid_from_symbol, String::New(buf));
ASN1_TIME_print(bio, X509_get_notAfter(peer_cert));
memset(buf, 0, sizeof(buf));
BIO_read(bio, buf, sizeof(buf) - 1);
BIO_free(bio);
info->Set(valid_to_symbol, String::New(buf));
X509_free(peer_cert);
}
return scope.Close(info);
}
Handle<Value> SecureStream::Shutdown(const Arguments& args) {
HandleScope scope;
SecureStream *ss = ObjectWrap::Unwrap<SecureStream>(args.Holder());
if (ss->pSSL == NULL) return False();
if (SSL_shutdown(ss->pSSL) == 1) {
return True();
}
return False();
}
Handle<Value> SecureStream::IsInitFinished(const Arguments& args) {
HandleScope scope;
SecureStream *ss = ObjectWrap::Unwrap<SecureStream>(args.Holder());
if (ss->pSSL == NULL) return False();
if (SSL_is_init_finished(ss->pSSL)) {
return True();
}
return False();
}
Handle<Value> SecureStream::VerifyPeer(const Arguments& args) {
HandleScope scope;
SecureStream *ss = ObjectWrap::Unwrap<SecureStream>(args.Holder());
SecureContext *sc = ObjectWrap::Unwrap<SecureContext>(args[0]->ToObject());
if (ss->pSSL == NULL) return False();
long x509_verify_error = SSL_get_verify_result(ss->pSSL);
// Can also check for:
// X509_V_ERR_CERT_HAS_EXPIRED
// X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT
// X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN
// X509_V_ERR_INVALID_CA
// X509_V_ERR_PATH_LENGTH_EXCEEDED
// X509_V_ERR_INVALID_PURPOSE
// X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT
// printf("%s\n", X509_verify_cert_error_string(x509_verify_error));
if (!x509_verify_error) return True();
return False();
}
Handle<Value> SecureStream::GetCurrentCipher(const Arguments& args) {
HandleScope scope;
SecureStream *ss = ObjectWrap::Unwrap<SecureStream>(args.Holder());
OPENSSL_CONST SSL_CIPHER *c;
if ( ss->pSSL == NULL ) return Undefined();
c = SSL_get_current_cipher(ss->pSSL);
if ( c == NULL ) return Undefined();
Local<Object> info = Object::New();
const char *cipher_name = SSL_CIPHER_get_name(c);
info->Set(name_symbol, String::New(cipher_name));
const char *cipher_version = SSL_CIPHER_get_version(c);
info->Set(version_symbol, String::New(cipher_version));
return scope.Close(info);
}
Handle<Value> SecureStream::Close(const Arguments& args) {
HandleScope scope;
SecureStream *ss = ObjectWrap::Unwrap<SecureStream>(args.Holder());
if (ss->pSSL != NULL) {
SSL_free(ss->pSSL);
ss->pSSL = NULL;
}
return True();
}
void hex_encode(unsigned char *md_value, int md_len, char** md_hexdigest,
int* md_hex_len) {
*md_hex_len = (2*(md_len));
*md_hexdigest = (char *) malloc(*md_hex_len + 1);
for (int i = 0; i < md_len; i++) {
sprintf((char *)(*md_hexdigest + (i*2)), "%02x", md_value[i]);
}
}
#define hex2i(c) ((c) <= '9' ? ((c) - '0') : (c) <= 'Z' ? ((c) - 'A' + 10) \
: ((c) - 'a' + 10))
void hex_decode(unsigned char *input, int length, char** buf64,
int* buf64_len) {
*buf64_len = (length/2);
*buf64 = (char*) malloc(length/2 + 1);
char *b = *buf64;
for(int i = 0; i < length-1; i+=2) {
b[i/2] = (hex2i(input[i])<<4) | (hex2i(input[i+1]));
}
}
void base64(unsigned char *input, int length, char** buf64, int* buf64_len)
{
BIO *bmem, *b64;
BUF_MEM *bptr;
b64 = BIO_new(BIO_f_base64());
bmem = BIO_new(BIO_s_mem());
b64 = BIO_push(b64, bmem);
BIO_set_flags(b64, BIO_FLAGS_BASE64_NO_NL);
BIO_write(b64, input, length);
BIO_flush(b64);
BIO_get_mem_ptr(b64, &bptr);
*buf64_len = bptr->length;
*buf64 = (char *)malloc(*buf64_len+1);
memcpy(*buf64, bptr->data, bptr->length);
char* b = *buf64;
b[bptr->length] = 0;
BIO_free_all(b64);
}
void *unbase64(unsigned char *input, int length, char** buffer, int* buffer_len)
{
BIO *b64, *bmem;
*buffer = (char *)malloc(length);
memset(*buffer, 0, length);
b64 = BIO_new(BIO_f_base64());
BIO_set_flags(b64, BIO_FLAGS_BASE64_NO_NL);
bmem = BIO_new_mem_buf(input, length);
bmem = BIO_push(b64, bmem);
*buffer_len = BIO_read(bmem, *buffer, length);
BIO_free_all(bmem);
}
// LengthWithoutIncompleteUtf8 from V8 d8-posix.cc
// see http://v8.googlecode.com/svn/trunk/src/d8-posix.cc
static int LengthWithoutIncompleteUtf8(char* buffer, int len) {
int answer = len;
// 1-byte encoding.
static const int kUtf8SingleByteMask = 0x80;
static const int kUtf8SingleByteValue = 0x00;
// 2-byte encoding.
static const int kUtf8TwoByteMask = 0xe0;
static const int kUtf8TwoByteValue = 0xc0;
// 3-byte encoding.
static const int kUtf8ThreeByteMask = 0xf0;
static const int kUtf8ThreeByteValue = 0xe0;
// 4-byte encoding.
static const int kUtf8FourByteMask = 0xf8;
static const int kUtf8FourByteValue = 0xf0;
// Subsequent bytes of a multi-byte encoding.
static const int kMultiByteMask = 0xc0;
static const int kMultiByteValue = 0x80;
int multi_byte_bytes_seen = 0;
while (answer > 0) {
int c = buffer[answer - 1];
// Ends in valid single-byte sequence?
if ((c & kUtf8SingleByteMask) == kUtf8SingleByteValue) return answer;
// Ends in one or more subsequent bytes of a multi-byte value?
if ((c & kMultiByteMask) == kMultiByteValue) {
multi_byte_bytes_seen++;
answer--;
} else {
if ((c & kUtf8TwoByteMask) == kUtf8TwoByteValue) {
if (multi_byte_bytes_seen >= 1) {
return answer + 2;
}
return answer - 1;
} else if ((c & kUtf8ThreeByteMask) == kUtf8ThreeByteValue) {
if (multi_byte_bytes_seen >= 2) {
return answer + 3;
}
return answer - 1;
} else if ((c & kUtf8FourByteMask) == kUtf8FourByteValue) {
if (multi_byte_bytes_seen >= 3) {
return answer + 4;
}
return answer - 1;
} else {
return answer; // Malformed UTF-8.
}
}
}
return 0;
}
// local decrypt final without strict padding check
// to work with php mcrypt
// see http://www.mail-archive.com/openssl-dev@openssl.org/msg19927.html
int local_EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl)
{
int i,b;
int n;
*outl=0;
b=ctx->cipher->block_size;
if (ctx->flags & EVP_CIPH_NO_PADDING)
{
if(ctx->buf_len)
{
EVPerr(EVP_F_EVP_DECRYPTFINAL,EVP_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH);
return 0;
}
*outl = 0;
return 1;
}
if (b > 1)
{
if (ctx->buf_len || !ctx->final_used)
{
EVPerr(EVP_F_EVP_DECRYPTFINAL,EVP_R_WRONG_FINAL_BLOCK_LENGTH);
return(0);
}
OPENSSL_assert(b <= sizeof ctx->final);
n=ctx->final[b-1];
if (n > b)
{
EVPerr(EVP_F_EVP_DECRYPTFINAL,EVP_R_BAD_DECRYPT);
return(0);
}
for (i=0; i<n; i++)
{
if (ctx->final[--b] != n)
{
EVPerr(EVP_F_EVP_DECRYPTFINAL,EVP_R_BAD_DECRYPT);
return(0);
}
}
n=ctx->cipher->block_size-n;
for (i=0; i<n; i++)
out[i]=ctx->final[i];
*outl=n;
}
else
*outl=0;
return(1);
}
class Cipher : public ObjectWrap {
public:
static void
Initialize (v8::Handle<v8::Object> target)
{
HandleScope scope;
Local<FunctionTemplate> t = FunctionTemplate::New(New);
t->InstanceTemplate()->SetInternalFieldCount(1);
NODE_SET_PROTOTYPE_METHOD(t, "init", CipherInit);
NODE_SET_PROTOTYPE_METHOD(t, "initiv", CipherInitIv);
NODE_SET_PROTOTYPE_METHOD(t, "update", CipherUpdate);
NODE_SET_PROTOTYPE_METHOD(t, "final", CipherFinal);
target->Set(String::NewSymbol("Cipher"), t->GetFunction());
}
bool CipherInit(char* cipherType, char* key_buf, int key_buf_len)
{
cipher = EVP_get_cipherbyname(cipherType);
if(!cipher) {
fprintf(stderr, "node-crypto : Unknown cipher %s\n", cipherType);
return false;
}
unsigned char key[EVP_MAX_KEY_LENGTH],iv[EVP_MAX_IV_LENGTH];
int key_len = EVP_BytesToKey(cipher, EVP_md5(), NULL, (unsigned char*) key_buf, key_buf_len, 1, key, iv);
EVP_CIPHER_CTX_init(&ctx);
EVP_CipherInit(&ctx,cipher,(unsigned char *)key,(unsigned char *)iv, true);
if (!EVP_CIPHER_CTX_set_key_length(&ctx,key_len)) {
fprintf(stderr, "node-crypto : Invalid key length %d\n", key_len);
EVP_CIPHER_CTX_cleanup(&ctx);
return false;
}
initialised = true;
return true;
}
bool CipherInitIv(char* cipherType, char* key, int key_len, char *iv, int iv_len)
{
cipher = EVP_get_cipherbyname(cipherType);
if(!cipher) {
fprintf(stderr, "node-crypto : Unknown cipher %s\n", cipherType);
return false;
}
if (EVP_CIPHER_iv_length(cipher)!=iv_len) {
fprintf(stderr, "node-crypto : Invalid IV length %d\n", iv_len);
return false;
}
EVP_CIPHER_CTX_init(&ctx);
EVP_CipherInit(&ctx,cipher,(unsigned char *)key,(unsigned char *)iv, true);
if (!EVP_CIPHER_CTX_set_key_length(&ctx,key_len)) {
fprintf(stderr, "node-crypto : Invalid key length %d\n", key_len);
EVP_CIPHER_CTX_cleanup(&ctx);
return false;
}
initialised = true;
return true;
}
int CipherUpdate(char* data, int len, unsigned char** out, int* out_len) {
if (!initialised)
return 0;
*out_len=len+EVP_CIPHER_CTX_block_size(&ctx);
*out=(unsigned char*)malloc(*out_len);
EVP_CipherUpdate(&ctx, *out, out_len, (unsigned char*)data, len);
return 1;
}
int CipherFinal(unsigned char** out, int *out_len) {
if (!initialised)
return 0;
*out = (unsigned char*) malloc(EVP_CIPHER_CTX_block_size(&ctx));
EVP_CipherFinal(&ctx,*out,out_len);
EVP_CIPHER_CTX_cleanup(&ctx);
initialised = false;
return 1;
}
protected:
static Handle<Value>
New (const Arguments& args)
{
HandleScope scope;
Cipher *cipher = new Cipher();
cipher->Wrap(args.This());
return args.This();
}
static Handle<Value>
CipherInit(const Arguments& args) {
Cipher *cipher = ObjectWrap::Unwrap<Cipher>(args.This());
HandleScope scope;
cipher->incomplete_base64=NULL;
if (args.Length() <= 1 || !args[0]->IsString() || !args[1]->IsString()) {
return ThrowException(String::New("Must give cipher-type, key"));
}
ssize_t key_buf_len = DecodeBytes(args[1], BINARY);
if (key_buf_len < 0) {
Local<Value> exception = Exception::TypeError(String::New("Bad argument"));
return ThrowException(exception);
}
char* key_buf = new char[key_buf_len];
ssize_t key_written = DecodeWrite(key_buf, key_buf_len, args[1], BINARY);
assert(key_written == key_buf_len);
String::Utf8Value cipherType(args[0]->ToString());
bool r = cipher->CipherInit(*cipherType, key_buf, key_buf_len);
return args.This();
}
static Handle<Value>
CipherInitIv(const Arguments& args) {
Cipher *cipher = ObjectWrap::Unwrap<Cipher>(args.This());
HandleScope scope;
cipher->incomplete_base64=NULL;
if (args.Length() <= 2 || !args[0]->IsString() || !args[1]->IsString() || !args[2]->IsString()) {
return ThrowException(String::New("Must give cipher-type, key, and iv as argument"));
}
ssize_t key_len = DecodeBytes(args[1], BINARY);
if (key_len < 0) {
Local<Value> exception = Exception::TypeError(String::New("Bad argument"));
return ThrowException(exception);
}
ssize_t iv_len = DecodeBytes(args[2], BINARY);
if (iv_len < 0) {
Local<Value> exception = Exception::TypeError(String::New("Bad argument"));
return ThrowException(exception);
}
char* key_buf = new char[key_len];
ssize_t key_written = DecodeWrite(key_buf, key_len, args[1], BINARY);
assert(key_written == key_len);
char* iv_buf = new char[iv_len];
ssize_t iv_written = DecodeWrite(iv_buf, iv_len, args[2], BINARY);
assert(iv_written == iv_len);
String::Utf8Value cipherType(args[0]->ToString());
bool r = cipher->CipherInitIv(*cipherType, key_buf,key_len,iv_buf,iv_len);
return args.This();
}
static Handle<Value>
CipherUpdate(const Arguments& args) {
Cipher *cipher = ObjectWrap::Unwrap<Cipher>(args.This());
HandleScope scope;
enum encoding enc = ParseEncoding(args[1]);
ssize_t len = DecodeBytes(args[0], enc);
if (len < 0) {
Local<Value> exception = Exception::TypeError(String::New("Bad argument"));
return ThrowException(exception);
}
char* buf = new char[len];
ssize_t written = DecodeWrite(buf, len, args[0], enc);
assert(written == len);
unsigned char *out=0;
int out_len=0;
int r = cipher->CipherUpdate(buf, len,&out,&out_len);
Local<Value> outString;
if (out_len==0) outString=String::New("");
else {
if (args.Length() <= 2 || !args[2]->IsString()) {
// Binary
outString = Encode(out, out_len, BINARY);
} else {
char* out_hexdigest;
int out_hex_len;
String::Utf8Value encoding(args[2]->ToString());
if (strcasecmp(*encoding, "hex") == 0) {
// Hex encoding
hex_encode(out, out_len, &out_hexdigest, &out_hex_len);
outString = Encode(out_hexdigest, out_hex_len, BINARY);
free(out_hexdigest);
} else if (strcasecmp(*encoding, "base64") == 0) {
// Base64 encoding
// Check to see if we need to add in previous base64 overhang
if (cipher->incomplete_base64!=NULL){
unsigned char* complete_base64 = (unsigned char *)malloc(out_len+cipher->incomplete_base64_len+1);
memcpy(complete_base64, cipher->incomplete_base64, cipher->incomplete_base64_len);
memcpy(&complete_base64[cipher->incomplete_base64_len], out, out_len);
free(out);
free(cipher->incomplete_base64);
cipher->incomplete_base64=NULL;
out=complete_base64;
out_len += cipher->incomplete_base64_len;
}
// Check to see if we need to trim base64 stream
if (out_len%3!=0){
cipher->incomplete_base64_len = out_len%3;
cipher->incomplete_base64 = (char *)malloc(cipher->incomplete_base64_len+1);
memcpy(cipher->incomplete_base64, &out[out_len-cipher->incomplete_base64_len], cipher->incomplete_base64_len);
out_len -= cipher->incomplete_base64_len;
out[out_len]=0;
}
base64(out, out_len, &out_hexdigest, &out_hex_len);
outString = Encode(out_hexdigest, out_hex_len, BINARY);
free(out_hexdigest);
} else if (strcasecmp(*encoding, "binary") == 0) {
outString = Encode(out, out_len, BINARY);
} else {
fprintf(stderr, "node-crypto : Cipher .update encoding "
"can be binary, hex or base64\n");
}
}
}
if (out) free(out);
return scope.Close(outString);
}
static Handle<Value>
CipherFinal(const Arguments& args) {
Cipher *cipher = ObjectWrap::Unwrap<Cipher>(args.This());
HandleScope scope;
unsigned char* out_value;
int out_len;
char* out_hexdigest;
int out_hex_len;
Local<Value> outString ;
int r = cipher->CipherFinal(&out_value, &out_len);
if (out_len == 0 || r == 0) {
return scope.Close(String::New(""));
}
if (args.Length() == 0 || !args[0]->IsString()) {
// Binary
outString = Encode(out_value, out_len, BINARY);
} else {
String::Utf8Value encoding(args[0]->ToString());
if (strcasecmp(*encoding, "hex") == 0) {
// Hex encoding
hex_encode(out_value, out_len, &out_hexdigest, &out_hex_len);
outString = Encode(out_hexdigest, out_hex_len, BINARY);
free(out_hexdigest);
} else if (strcasecmp(*encoding, "base64") == 0) {
base64(out_value, out_len, &out_hexdigest, &out_hex_len);
outString = Encode(out_hexdigest, out_hex_len, BINARY);
free(out_hexdigest);
} else if (strcasecmp(*encoding, "binary") == 0) {
outString = Encode(out_value, out_len, BINARY);
} else {
fprintf(stderr, "node-crypto : Cipher .final encoding "
"can be binary, hex or base64\n");
}
}
free(out_value);
return scope.Close(outString);
}
Cipher () : ObjectWrap ()
{
initialised = false;
}
~Cipher ()
{
}
private:
EVP_CIPHER_CTX ctx;
const EVP_CIPHER *cipher;
bool initialised;
char* incomplete_base64;
int incomplete_base64_len;
};
class Decipher : public ObjectWrap {
public:
static void
Initialize (v8::Handle<v8::Object> target)
{
HandleScope scope;
Local<FunctionTemplate> t = FunctionTemplate::New(New);
t->InstanceTemplate()->SetInternalFieldCount(1);
NODE_SET_PROTOTYPE_METHOD(t, "init", DecipherInit);
NODE_SET_PROTOTYPE_METHOD(t, "initiv", DecipherInitIv);
NODE_SET_PROTOTYPE_METHOD(t, "update", DecipherUpdate);
NODE_SET_PROTOTYPE_METHOD(t, "final", DecipherFinal);
NODE_SET_PROTOTYPE_METHOD(t, "finaltol", DecipherFinalTolerate);
target->Set(String::NewSymbol("Decipher"), t->GetFunction());
}
bool DecipherInit(char* cipherType, char* key_buf, int key_buf_len)
{
cipher = EVP_get_cipherbyname(cipherType);
if(!cipher) {
fprintf(stderr, "node-crypto : Unknown cipher %s\n", cipherType);
return false;
}
unsigned char key[EVP_MAX_KEY_LENGTH],iv[EVP_MAX_IV_LENGTH];
int key_len = EVP_BytesToKey(cipher, EVP_md5(), NULL, (unsigned char*) key_buf, key_buf_len, 1, key, iv);
EVP_CIPHER_CTX_init(&ctx);
EVP_CipherInit(&ctx,cipher,(unsigned char *)key,(unsigned char *)iv, false);
if (!EVP_CIPHER_CTX_set_key_length(&ctx,key_len)) {
fprintf(stderr, "node-crypto : Invalid key length %d\n", key_len);
EVP_CIPHER_CTX_cleanup(&ctx);
return false;
}
initialised = true;
return true;
}
bool DecipherInitIv(char* cipherType, char* key, int key_len, char *iv, int iv_len)
{
cipher = EVP_get_cipherbyname(cipherType);
if(!cipher) {
fprintf(stderr, "node-crypto : Unknown cipher %s\n", cipherType);
return false;
}
if (EVP_CIPHER_iv_length(cipher)!=iv_len) {
fprintf(stderr, "node-crypto : Invalid IV length %d\n", iv_len);
return false;
}
EVP_CIPHER_CTX_init(&ctx);
EVP_CipherInit(&ctx,cipher,(unsigned char *)key,(unsigned char *)iv, false);
if (!EVP_CIPHER_CTX_set_key_length(&ctx,key_len)) {
fprintf(stderr, "node-crypto : Invalid key length %d\n", key_len);
EVP_CIPHER_CTX_cleanup(&ctx);
return false;
}
initialised = true;
return true;
}
int DecipherUpdate(char* data, int len, unsigned char** out, int* out_len) {
if (!initialised)
return 0;
*out_len=len+EVP_CIPHER_CTX_block_size(&ctx);
*out=(unsigned char*)malloc(*out_len);
EVP_CipherUpdate(&ctx, *out, out_len, (unsigned char*)data, len);
return 1;
}
int DecipherFinal(unsigned char** out, int *out_len, bool tolerate_padding) {
if (!initialised)
return 0;
*out = (unsigned char*) malloc(EVP_CIPHER_CTX_block_size(&ctx));
if (tolerate_padding) {
local_EVP_DecryptFinal_ex(&ctx,*out,out_len);
} else {
EVP_CipherFinal(&ctx,*out,out_len);
}
EVP_CIPHER_CTX_cleanup(&ctx);
initialised = false;
return 1;
}
protected:
static Handle<Value>
New (const Arguments& args)
{
HandleScope scope;
Decipher *cipher = new Decipher();
cipher->Wrap(args.This());
return args.This();
}
static Handle<Value>
DecipherInit(const Arguments& args) {
Decipher *cipher = ObjectWrap::Unwrap<Decipher>(args.This());
HandleScope scope;
cipher->incomplete_utf8=NULL;
cipher->incomplete_hex_flag=false;
if (args.Length() <= 1 || !args[0]->IsString() || !args[1]->IsString()) {
return ThrowException(String::New("Must give cipher-type, key as argument"));
}
ssize_t key_len = DecodeBytes(args[1], BINARY);
if (key_len < 0) {
Local<Value> exception = Exception::TypeError(String::New("Bad argument"));
return ThrowException(exception);
}
char* key_buf = new char[key_len];
ssize_t key_written = DecodeWrite(key_buf, key_len, args[1], BINARY);
assert(key_written == key_len);
String::Utf8Value cipherType(args[0]->ToString());
bool r = cipher->DecipherInit(*cipherType, key_buf,key_len);
return args.This();
}
static Handle<Value>
DecipherInitIv(const Arguments& args) {
Decipher *cipher = ObjectWrap::Unwrap<Decipher>(args.This());
HandleScope scope;
cipher->incomplete_utf8=NULL;
cipher->incomplete_hex_flag=false;
if (args.Length() <= 2 || !args[0]->IsString() || !args[1]->IsString() || !args[2]->IsString()) {
return ThrowException(String::New("Must give cipher-type, key, and iv as argument"));
}
ssize_t key_len = DecodeBytes(args[1], BINARY);
if (key_len < 0) {
Local<Value> exception = Exception::TypeError(String::New("Bad argument"));
return ThrowException(exception);
}
ssize_t iv_len = DecodeBytes(args[2], BINARY);
if (iv_len < 0) {
Local<Value> exception = Exception::TypeError(String::New("Bad argument"));
return ThrowException(exception);
}
char* key_buf = new char[key_len];
ssize_t key_written = DecodeWrite(key_buf, key_len, args[1], BINARY);
assert(key_written == key_len);
char* iv_buf = new char[iv_len];
ssize_t iv_written = DecodeWrite(iv_buf, iv_len, args[2], BINARY);
assert(iv_written == iv_len);
String::Utf8Value cipherType(args[0]->ToString());
bool r = cipher->DecipherInitIv(*cipherType, key_buf,key_len,iv_buf,iv_len);
return args.This();
}
static Handle<Value>
DecipherUpdate(const Arguments& args) {
Decipher *cipher = ObjectWrap::Unwrap<Decipher>(args.This());
HandleScope scope;
ssize_t len = DecodeBytes(args[0], BINARY);
char* buf = new char[len];
ssize_t written = DecodeWrite(buf, len, args[0], BINARY);
char* ciphertext;
int ciphertext_len;
if (args.Length() <= 1 || !args[1]->IsString()) {
// Binary - do nothing
} else {
String::Utf8Value encoding(args[1]->ToString());
if (strcasecmp(*encoding, "hex") == 0) {
// Hex encoding
// Do we have a previous hex carry over?
if (cipher->incomplete_hex_flag) {
char* complete_hex = (char*)malloc(len+2);
memcpy(complete_hex, &cipher->incomplete_hex, 1);
memcpy(complete_hex+1, buf, len);
free(buf);
buf = complete_hex;
len += 1;
}
// Do we have an incomplete hex stream?
if ((len>0) && (len % 2 !=0)) {
len--;
cipher->incomplete_hex=buf[len];
cipher->incomplete_hex_flag=true;
buf[len]=0;
}
hex_decode((unsigned char*)buf, len, (char **)&ciphertext, &ciphertext_len);
free(buf);
buf = ciphertext;
len = ciphertext_len;
} else if (strcasecmp(*encoding, "base64") == 0) {
unbase64((unsigned char*)buf, len, (char **)&ciphertext, &ciphertext_len);
free(buf);
buf = ciphertext;
len = ciphertext_len;
} else if (strcasecmp(*encoding, "binary") == 0) {
// Binary - do nothing
} else {
fprintf(stderr, "node-crypto : Decipher .update encoding "
"can be binary, hex or base64\n");
}
}
unsigned char *out=0;
int out_len=0;
int r = cipher->DecipherUpdate(buf, len,&out,&out_len);
Local<Value> outString;
if (out_len==0) {
outString=String::New("");
} else if (args.Length() <= 2 || !args[2]->IsString()) {
outString = Encode(out, out_len, BINARY);
} else {
enum encoding enc = ParseEncoding(args[2]);
if (enc == UTF8) {
// See if we have any overhang from last utf8 partial ending
if (cipher->incomplete_utf8!=NULL) {
char* complete_out = (char *)malloc(cipher->incomplete_utf8_len + out_len);
memcpy(complete_out, cipher->incomplete_utf8, cipher->incomplete_utf8_len);
memcpy((char *)complete_out+cipher->incomplete_utf8_len, out, out_len);
free(out);
free(cipher->incomplete_utf8);
cipher->incomplete_utf8=NULL;
out = (unsigned char*)complete_out;
out_len += cipher->incomplete_utf8_len;
}
// Check to see if we have a complete utf8 stream
int utf8_len = LengthWithoutIncompleteUtf8((char *)out, out_len);
if (utf8_len<out_len) { // We have an incomplete ut8 ending
cipher->incomplete_utf8_len = out_len-utf8_len;
cipher->incomplete_utf8 = (unsigned char *)malloc(cipher->incomplete_utf8_len+1);
memcpy(cipher->incomplete_utf8, &out[utf8_len], cipher->incomplete_utf8_len);
}
outString = Encode(out, utf8_len, enc);
} else {
outString = Encode(out, out_len, enc);
}
}
if (out) free(out);
free(buf);
return scope.Close(outString);
}
static Handle<Value>
DecipherFinal(const Arguments& args) {
Decipher *cipher = ObjectWrap::Unwrap<Decipher>(args.This());
HandleScope scope;
unsigned char* out_value;
int out_len;
char* out_hexdigest;
int out_hex_len;
Local<Value> outString ;
int r = cipher->DecipherFinal(&out_value, &out_len, false);
if (out_len == 0 || r == 0) {
return scope.Close(String::New(""));
}
if (args.Length() == 0 || !args[0]->IsString()) {
outString = Encode(out_value, out_len, BINARY);
} else {
enum encoding enc = ParseEncoding(args[0]);
if (enc == UTF8) {
// See if we have any overhang from last utf8 partial ending
if (cipher->incomplete_utf8!=NULL) {
char* complete_out = (char *)malloc(cipher->incomplete_utf8_len + out_len);
memcpy(complete_out, cipher->incomplete_utf8, cipher->incomplete_utf8_len);
memcpy((char *)complete_out+cipher->incomplete_utf8_len, out_value, out_len);
free(cipher->incomplete_utf8);
cipher->incomplete_utf8=NULL;
outString = Encode(complete_out, cipher->incomplete_utf8_len+out_len, enc);
free(complete_out);
} else {
outString = Encode(out_value, out_len, enc);
}
} else {
outString = Encode(out_value, out_len, enc);
}
}
free(out_value);
return scope.Close(outString);
}
static Handle<Value>
DecipherFinalTolerate(const Arguments& args) {
Decipher *cipher = ObjectWrap::Unwrap<Decipher>(args.This());
HandleScope scope;
unsigned char* out_value;
int out_len;
char* out_hexdigest;
int out_hex_len;
Local<Value> outString ;
int r = cipher->DecipherFinal(&out_value, &out_len, true);
if (out_len == 0 || r == 0) {
return scope.Close(String::New(""));
}
if (args.Length() == 0 || !args[0]->IsString()) {
outString = Encode(out_value, out_len, BINARY);
} else {
enum encoding enc = ParseEncoding(args[0]);
if (enc == UTF8) {
// See if we have any overhang from last utf8 partial ending
if (cipher->incomplete_utf8!=NULL) {
char* complete_out = (char *)malloc(cipher->incomplete_utf8_len + out_len);
memcpy(complete_out, cipher->incomplete_utf8, cipher->incomplete_utf8_len);
memcpy((char *)complete_out+cipher->incomplete_utf8_len, out_value, out_len);
free(cipher->incomplete_utf8);
cipher->incomplete_utf8=NULL;
outString = Encode(complete_out, cipher->incomplete_utf8_len+out_len, enc);
free(complete_out);
} else {
outString = Encode(out_value, out_len, enc);
}
} else {
outString = Encode(out_value, out_len, enc);
}
}
free(out_value);
return scope.Close(outString);
}
Decipher () : ObjectWrap ()
{
initialised = false;
}
~Decipher ()
{
}
private:
EVP_CIPHER_CTX ctx;
const EVP_CIPHER *cipher;
bool initialised;
unsigned char* incomplete_utf8;
int incomplete_utf8_len;
char incomplete_hex;
bool incomplete_hex_flag;
};
class Hmac : public ObjectWrap {
public:
static void
Initialize (v8::Handle<v8::Object> target)
{
HandleScope scope;
Local<FunctionTemplate> t = FunctionTemplate::New(New);
t->InstanceTemplate()->SetInternalFieldCount(1);
NODE_SET_PROTOTYPE_METHOD(t, "init", HmacInit);
NODE_SET_PROTOTYPE_METHOD(t, "update", HmacUpdate);
NODE_SET_PROTOTYPE_METHOD(t, "digest", HmacDigest);
target->Set(String::NewSymbol("Hmac"), t->GetFunction());
}
bool HmacInit(char* hashType, char* key, int key_len)
{
md = EVP_get_digestbyname(hashType);
if(!md) {
fprintf(stderr, "node-crypto : Unknown message digest %s\n", hashType);
return false;
}
HMAC_CTX_init(&ctx);
HMAC_Init(&ctx, key, key_len, md);
initialised = true;
return true;
}
int HmacUpdate(char* data, int len) {
if (!initialised)
return 0;
HMAC_Update(&ctx, (unsigned char*)data, len);
return 1;
}
int HmacDigest(unsigned char** md_value, unsigned int *md_len) {
if (!initialised)
return 0;
*md_value = (unsigned char*) malloc(EVP_MAX_MD_SIZE);
HMAC_Final(&ctx, *md_value, md_len);
HMAC_CTX_cleanup(&ctx);
initialised = false;
return 1;
}
protected:
static Handle<Value>
New (const Arguments& args)
{
HandleScope scope;
Hmac *hmac = new Hmac();
hmac->Wrap(args.This());
return args.This();
}
static Handle<Value>
HmacInit(const Arguments& args) {
Hmac *hmac = ObjectWrap::Unwrap<Hmac>(args.This());
HandleScope scope;
if (args.Length() == 0 || !args[0]->IsString()) {
return ThrowException(String::New("Must give hashtype string as argument"));
}
ssize_t len = DecodeBytes(args[1], BINARY);
if (len < 0) {
Local<Value> exception = Exception::TypeError(String::New("Bad argument"));
return ThrowException(exception);
}
char* buf = new char[len];
ssize_t written = DecodeWrite(buf, len, args[1], BINARY);
assert(written == len);
String::Utf8Value hashType(args[0]->ToString());
bool r = hmac->HmacInit(*hashType, buf, len);
return args.This();
}
static Handle<Value>
HmacUpdate(const Arguments& args) {
Hmac *hmac = ObjectWrap::Unwrap<Hmac>(args.This());
HandleScope scope;
enum encoding enc = ParseEncoding(args[1]);
ssize_t len = DecodeBytes(args[0], enc);
if (len < 0) {
Local<Value> exception = Exception::TypeError(String::New("Bad argument"));
return ThrowException(exception);
}
char* buf = new char[len];
ssize_t written = DecodeWrite(buf, len, args[0], enc);
assert(written == len);
int r = hmac->HmacUpdate(buf, len);
return args.This();
}
static Handle<Value>
HmacDigest(const Arguments& args) {
Hmac *hmac = ObjectWrap::Unwrap<Hmac>(args.This());
HandleScope scope;
unsigned char* md_value;
unsigned int md_len;
char* md_hexdigest;
int md_hex_len;
Local<Value> outString ;
int r = hmac->HmacDigest(&md_value, &md_len);
if (md_len == 0 || r == 0) {
return scope.Close(String::New(""));
}
if (args.Length() == 0 || !args[0]->IsString()) {
// Binary
outString = Encode(md_value, md_len, BINARY);
} else {
String::Utf8Value encoding(args[0]->ToString());
if (strcasecmp(*encoding, "hex") == 0) {
// Hex encoding
hex_encode(md_value, md_len, &md_hexdigest, &md_hex_len);
outString = Encode(md_hexdigest, md_hex_len, BINARY);
free(md_hexdigest);
} else if (strcasecmp(*encoding, "base64") == 0) {
base64(md_value, md_len, &md_hexdigest, &md_hex_len);
outString = Encode(md_hexdigest, md_hex_len, BINARY);
free(md_hexdigest);
} else if (strcasecmp(*encoding, "binary") == 0) {
outString = Encode(md_value, md_len, BINARY);
} else {
fprintf(stderr, "node-crypto : Hmac .digest encoding "
"can be binary, hex or base64\n");
}
}
free(md_value);
return scope.Close(outString);
}
Hmac () : ObjectWrap ()
{
initialised = false;
}
~Hmac ()
{
}
private:
HMAC_CTX ctx;
const EVP_MD *md;
bool initialised;
};
class Hash : public ObjectWrap {
public:
static void
Initialize (v8::Handle<v8::Object> target)
{
HandleScope scope;
Local<FunctionTemplate> t = FunctionTemplate::New(New);
t->InstanceTemplate()->SetInternalFieldCount(1);
NODE_SET_PROTOTYPE_METHOD(t, "init", HashInit);
NODE_SET_PROTOTYPE_METHOD(t, "update", HashUpdate);
NODE_SET_PROTOTYPE_METHOD(t, "digest", HashDigest);
target->Set(String::NewSymbol("Hash"), t->GetFunction());
}
bool HashInit (const char* hashType)
{
md = EVP_get_digestbyname(hashType);
if(!md) {
fprintf(stderr, "node-crypto : Unknown message digest %s\n", hashType);
return false;
}
EVP_MD_CTX_init(&mdctx);
EVP_DigestInit_ex(&mdctx, md, NULL);
initialised = true;
return true;
}
int HashUpdate(char* data, int len) {
if (!initialised)
return 0;
EVP_DigestUpdate(&mdctx, data, len);
return 1;
}
int HashDigest(unsigned char** md_value, unsigned int *md_len) {
if (!initialised)
return 0;
*md_value = (unsigned char*) malloc(EVP_MAX_MD_SIZE);
EVP_DigestFinal_ex(&mdctx, *md_value, md_len);
EVP_MD_CTX_cleanup(&mdctx);
initialised = false;
return 1;
}
protected:
static Handle<Value>
New (const Arguments& args)
{
HandleScope scope;
Hash *hash = new Hash();
hash->Wrap(args.This());
return args.This();
}
static Handle<Value>
HashInit(const Arguments& args) {
Hash *hash = ObjectWrap::Unwrap<Hash>(args.This());
HandleScope scope;
if (args.Length() == 0 || !args[0]->IsString()) {
return ThrowException(String::New("Must give hashtype string as argument"));
}
String::Utf8Value hashType(args[0]->ToString());
bool r = hash->HashInit(*hashType);
return args.This();
}
static Handle<Value>
HashUpdate(const Arguments& args) {
Hash *hash = ObjectWrap::Unwrap<Hash>(args.This());
HandleScope scope;
enum encoding enc = ParseEncoding(args[1]);
ssize_t len = DecodeBytes(args[0], enc);
if (len < 0) {
Local<Value> exception = Exception::TypeError(String::New("Bad argument"));
return ThrowException(exception);
}
char* buf = new char[len];
ssize_t written = DecodeWrite(buf, len, args[0], enc);
assert(written == len);
int r = hash->HashUpdate(buf, len);
return args.This();
}
static Handle<Value>
HashDigest(const Arguments& args) {
Hash *hash = ObjectWrap::Unwrap<Hash>(args.This());
HandleScope scope;
unsigned char* md_value;
unsigned int md_len;
char* md_hexdigest;
int md_hex_len;
Local<Value> outString ;
int r = hash->HashDigest(&md_value, &md_len);
if (md_len == 0 || r == 0) {
return scope.Close(String::New(""));
}
if (args.Length() == 0 || !args[0]->IsString()) {
// Binary
outString = Encode(md_value, md_len, BINARY);
} else {
String::Utf8Value encoding(args[0]->ToString());
if (strcasecmp(*encoding, "hex") == 0) {
// Hex encoding
hex_encode(md_value, md_len, &md_hexdigest, &md_hex_len);
outString = Encode(md_hexdigest, md_hex_len, BINARY);
free(md_hexdigest);
} else if (strcasecmp(*encoding, "base64") == 0) {
base64(md_value, md_len, &md_hexdigest, &md_hex_len);
outString = Encode(md_hexdigest, md_hex_len, BINARY);
free(md_hexdigest);
} else if (strcasecmp(*encoding, "binary") == 0) {
outString = Encode(md_value, md_len, BINARY);
} else {
fprintf(stderr, "node-crypto : Hash .digest encoding "
"can be binary, hex or base64\n");
}
}
free(md_value);
return scope.Close(outString);
}
Hash () : ObjectWrap ()
{
initialised = false;
}
~Hash ()
{
}
private:
EVP_MD_CTX mdctx;
const EVP_MD *md;
bool initialised;
};
class Sign : public ObjectWrap {
public:
static void
Initialize (v8::Handle<v8::Object> target)
{
HandleScope scope;
Local<FunctionTemplate> t = FunctionTemplate::New(New);
t->InstanceTemplate()->SetInternalFieldCount(1);
NODE_SET_PROTOTYPE_METHOD(t, "init", SignInit);
NODE_SET_PROTOTYPE_METHOD(t, "update", SignUpdate);
NODE_SET_PROTOTYPE_METHOD(t, "sign", SignFinal);
target->Set(String::NewSymbol("Sign"), t->GetFunction());
}
bool SignInit (const char* signType)
{
md = EVP_get_digestbyname(signType);
if(!md) {
printf("Unknown message digest %s\n", signType);
return false;
}
EVP_MD_CTX_init(&mdctx);
EVP_SignInit_ex(&mdctx, md, NULL);
initialised = true;
return true;
}
int SignUpdate(char* data, int len) {
if (!initialised)
return 0;
EVP_SignUpdate(&mdctx, data, len);
return 1;
}
int SignFinal(unsigned char** md_value, unsigned int *md_len, char* keyPem, int keyPemLen) {
if (!initialised)
return 0;
BIO *bp = NULL;
EVP_PKEY* pkey;
bp = BIO_new(BIO_s_mem());
if(!BIO_write(bp, keyPem, keyPemLen))
return 0;
pkey = PEM_read_bio_PrivateKey( bp, NULL, NULL, NULL );
if (pkey == NULL)
return 0;
EVP_SignFinal(&mdctx, *md_value, md_len, pkey);
EVP_MD_CTX_cleanup(&mdctx);
initialised = false;
EVP_PKEY_free(pkey);
BIO_free(bp);
return 1;
}
protected:
static Handle<Value>
New (const Arguments& args)
{
HandleScope scope;
Sign *sign = new Sign();
sign->Wrap(args.This());
return args.This();
}
static Handle<Value>
SignInit(const Arguments& args) {
Sign *sign = ObjectWrap::Unwrap<Sign>(args.This());
HandleScope scope;
if (args.Length() == 0 || !args[0]->IsString()) {
return ThrowException(String::New("Must give signtype string as argument"));
}
String::Utf8Value signType(args[0]->ToString());
bool r = sign->SignInit(*signType);
return args.This();
}
static Handle<Value>
SignUpdate(const Arguments& args) {
Sign *sign = ObjectWrap::Unwrap<Sign>(args.This());
HandleScope scope;
enum encoding enc = ParseEncoding(args[1]);
ssize_t len = DecodeBytes(args[0], enc);
if (len < 0) {
Local<Value> exception = Exception::TypeError(String::New("Bad argument"));
return ThrowException(exception);
}
char* buf = new char[len];
ssize_t written = DecodeWrite(buf, len, args[0], enc);
assert(written == len);
int r = sign->SignUpdate(buf, len);
return args.This();
}
static Handle<Value>
SignFinal(const Arguments& args) {
Sign *sign = ObjectWrap::Unwrap<Sign>(args.This());
HandleScope scope;
unsigned char* md_value;
unsigned int md_len;
char* md_hexdigest;
int md_hex_len;
Local<Value> outString;
md_len = 8192; // Maximum key size is 8192 bits
md_value = new unsigned char[md_len];
ssize_t len = DecodeBytes(args[0], BINARY);
if (len < 0) {
Local<Value> exception = Exception::TypeError(String::New("Bad argument"));
return ThrowException(exception);
}
char* buf = new char[len];
ssize_t written = DecodeWrite(buf, len, args[0], BINARY);
assert(written == len);
int r = sign->SignFinal(&md_value, &md_len, buf, len);
if (md_len == 0 || r == 0) {
return scope.Close(String::New(""));
}
if (args.Length() == 1 || !args[1]->IsString()) {
// Binary
outString = Encode(md_value, md_len, BINARY);
} else {
String::Utf8Value encoding(args[1]->ToString());
if (strcasecmp(*encoding, "hex") == 0) {
// Hex encoding
hex_encode(md_value, md_len, &md_hexdigest, &md_hex_len);
outString = Encode(md_hexdigest, md_hex_len, BINARY);
free(md_hexdigest);
} else if (strcasecmp(*encoding, "base64") == 0) {
base64(md_value, md_len, &md_hexdigest, &md_hex_len);
outString = Encode(md_hexdigest, md_hex_len, BINARY);
free(md_hexdigest);
} else if (strcasecmp(*encoding, "binary") == 0) {
outString = Encode(md_value, md_len, BINARY);
} else {
outString = String::New("");
fprintf(stderr, "node-crypto : Sign .sign encoding "
"can be binary, hex or base64\n");
}
}
return scope.Close(outString);
}
Sign () : ObjectWrap ()
{
initialised = false;
}
~Sign ()
{
}
private:
EVP_MD_CTX mdctx;
const EVP_MD *md;
bool initialised;
};
class Verify : public ObjectWrap {
public:
static void
Initialize (v8::Handle<v8::Object> target)
{
HandleScope scope;
Local<FunctionTemplate> t = FunctionTemplate::New(New);
t->InstanceTemplate()->SetInternalFieldCount(1);
NODE_SET_PROTOTYPE_METHOD(t, "init", VerifyInit);
NODE_SET_PROTOTYPE_METHOD(t, "update", VerifyUpdate);
NODE_SET_PROTOTYPE_METHOD(t, "verify", VerifyFinal);
target->Set(String::NewSymbol("Verify"), t->GetFunction());
}
bool VerifyInit (const char* verifyType)
{
md = EVP_get_digestbyname(verifyType);
if(!md) {
fprintf(stderr, "node-crypto : Unknown message digest %s\n", verifyType);
return false;
}
EVP_MD_CTX_init(&mdctx);
EVP_VerifyInit_ex(&mdctx, md, NULL);
initialised = true;
return true;
}
int VerifyUpdate(char* data, int len) {
if (!initialised)
return 0;
EVP_VerifyUpdate(&mdctx, data, len);
return 1;
}
int VerifyFinal(char* keyPem, int keyPemLen, unsigned char* sig, int siglen) {
if (!initialised)
return 0;
BIO *bp = NULL;
EVP_PKEY* pkey;
X509 * x509;
bp = BIO_new(BIO_s_mem());
if(!BIO_write(bp, keyPem, keyPemLen))
return 0;
x509 = PEM_read_bio_X509(bp, NULL, NULL, NULL );
if (x509==NULL)
return 0;
pkey=X509_get_pubkey(x509);
if (pkey==NULL)
return 0;
int r = EVP_VerifyFinal(&mdctx, sig, siglen, pkey);
EVP_PKEY_free (pkey);
if (r != 1) {
ERR_print_errors_fp (stderr);
}
X509_free(x509);
BIO_free(bp);
EVP_MD_CTX_cleanup(&mdctx);
initialised = false;
return r;
}
protected:
static Handle<Value>
New (const Arguments& args)
{
HandleScope scope;
Verify *verify = new Verify();
verify->Wrap(args.This());
return args.This();
}
static Handle<Value>
VerifyInit(const Arguments& args) {
Verify *verify = ObjectWrap::Unwrap<Verify>(args.This());
HandleScope scope;
if (args.Length() == 0 || !args[0]->IsString()) {
return ThrowException(String::New("Must give verifytype string as argument"));
}
String::Utf8Value verifyType(args[0]->ToString());
bool r = verify->VerifyInit(*verifyType);
return args.This();
}
static Handle<Value>
VerifyUpdate(const Arguments& args) {
Verify *verify = ObjectWrap::Unwrap<Verify>(args.This());
HandleScope scope;
enum encoding enc = ParseEncoding(args[1]);
ssize_t len = DecodeBytes(args[0], enc);
if (len < 0) {
Local<Value> exception = Exception::TypeError(String::New("Bad argument"));
return ThrowException(exception);
}
char* buf = new char[len];
ssize_t written = DecodeWrite(buf, len, args[0], enc);
assert(written == len);
int r = verify->VerifyUpdate(buf, len);
return args.This();
}
static Handle<Value>
VerifyFinal(const Arguments& args) {
Verify *verify = ObjectWrap::Unwrap<Verify>(args.This());
HandleScope scope;
ssize_t klen = DecodeBytes(args[0], BINARY);
if (klen < 0) {
Local<Value> exception = Exception::TypeError(String::New("Bad argument"));
return ThrowException(exception);
}
char* kbuf = new char[klen];
ssize_t kwritten = DecodeWrite(kbuf, klen, args[0], BINARY);
assert(kwritten == klen);
ssize_t hlen = DecodeBytes(args[1], BINARY);
if (hlen < 0) {
Local<Value> exception = Exception::TypeError(String::New("Bad argument"));
return ThrowException(exception);
}
unsigned char* hbuf = new unsigned char[hlen];
ssize_t hwritten = DecodeWrite((char *)hbuf, hlen, args[1], BINARY);
assert(hwritten == hlen);
unsigned char* dbuf;
int dlen;
int r=-1;
if (args.Length() == 2 || !args[2]->IsString()) {
// Binary
r = verify->VerifyFinal(kbuf, klen, hbuf, hlen);
} else {
String::Utf8Value encoding(args[2]->ToString());
if (strcasecmp(*encoding, "hex") == 0) {
// Hex encoding
hex_decode(hbuf, hlen, (char **)&dbuf, &dlen);
r = verify->VerifyFinal(kbuf, klen, dbuf, dlen);
free(dbuf);
} else if (strcasecmp(*encoding, "base64") == 0) {
// Base64 encoding
unbase64(hbuf, hlen, (char **)&dbuf, &dlen);
r = verify->VerifyFinal(kbuf, klen, dbuf, dlen);
free(dbuf);
} else if (strcasecmp(*encoding, "binary") == 0) {
r = verify->VerifyFinal(kbuf, klen, hbuf, hlen);
} else {
fprintf(stderr, "node-crypto : Verify .verify encoding "
"can be binary, hex or base64\n");
}
}
return scope.Close(Integer::New(r));
}
Verify () : ObjectWrap ()
{
initialised = false;
}
~Verify ()
{
}
private:
EVP_MD_CTX mdctx;
const EVP_MD *md;
bool initialised;
};
void InitCrypto(Handle<Object> target) {
HandleScope scope;
SSL_library_init();
OpenSSL_add_all_algorithms();
OpenSSL_add_all_digests();
SSL_load_error_strings();
ERR_load_crypto_strings();
SecureContext::Initialize(target);
SecureStream::Initialize(target);
Cipher::Initialize(target);
Decipher::Initialize(target);
Hmac::Initialize(target);
Hash::Initialize(target);
Sign::Initialize(target);
Verify::Initialize(target);
subject_symbol = NODE_PSYMBOL("subject");
issuer_symbol = NODE_PSYMBOL("issuer");
valid_from_symbol = NODE_PSYMBOL("valid_from");
valid_to_symbol = NODE_PSYMBOL("valid_to");
name_symbol = NODE_PSYMBOL("name");
version_symbol = NODE_PSYMBOL("version");
}
} // namespace node