|
|
|
// Copyright 2006-2009 the V8 project authors. All rights reserved.
|
|
|
|
// Redistribution and use in source and binary forms, with or without
|
|
|
|
// modification, are permitted provided that the following conditions are
|
|
|
|
// met:
|
|
|
|
//
|
|
|
|
// * Redistributions of source code must retain the above copyright
|
|
|
|
// notice, this list of conditions and the following disclaimer.
|
|
|
|
// * Redistributions in binary form must reproduce the above
|
|
|
|
// copyright notice, this list of conditions and the following
|
|
|
|
// disclaimer in the documentation and/or other materials provided
|
|
|
|
// with the distribution.
|
|
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
|
|
// contributors may be used to endorse or promote products derived
|
|
|
|
// from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
|
|
#include "v8.h"
|
|
|
|
|
|
|
|
#include "bootstrapper.h"
|
|
|
|
#include "codegen-inl.h"
|
|
|
|
#include "compiler.h"
|
|
|
|
#include "debug.h"
|
|
|
|
#include "parser.h"
|
|
|
|
#include "register-allocator-inl.h"
|
|
|
|
#include "runtime.h"
|
|
|
|
#include "scopes.h"
|
|
|
|
|
|
|
|
|
|
|
|
namespace v8 {
|
|
|
|
namespace internal {
|
|
|
|
|
|
|
|
#define __ ACCESS_MASM(masm_)
|
|
|
|
|
|
|
|
static void EmitIdenticalObjectComparison(MacroAssembler* masm,
|
|
|
|
Label* slow,
|
|
|
|
Condition cc);
|
|
|
|
static void EmitSmiNonsmiComparison(MacroAssembler* masm,
|
|
|
|
Label* rhs_not_nan,
|
|
|
|
Label* slow,
|
|
|
|
bool strict);
|
|
|
|
static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc);
|
|
|
|
static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm);
|
|
|
|
static void MultiplyByKnownInt(MacroAssembler* masm,
|
|
|
|
Register source,
|
|
|
|
Register destination,
|
|
|
|
int known_int);
|
|
|
|
static bool IsEasyToMultiplyBy(int x);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// -------------------------------------------------------------------------
|
|
|
|
// Platform-specific DeferredCode functions.
|
|
|
|
|
|
|
|
void DeferredCode::SaveRegisters() {
|
|
|
|
for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) {
|
|
|
|
int action = registers_[i];
|
|
|
|
if (action == kPush) {
|
|
|
|
__ push(RegisterAllocator::ToRegister(i));
|
|
|
|
} else if (action != kIgnore && (action & kSyncedFlag) == 0) {
|
|
|
|
__ str(RegisterAllocator::ToRegister(i), MemOperand(fp, action));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void DeferredCode::RestoreRegisters() {
|
|
|
|
// Restore registers in reverse order due to the stack.
|
|
|
|
for (int i = RegisterAllocator::kNumRegisters - 1; i >= 0; i--) {
|
|
|
|
int action = registers_[i];
|
|
|
|
if (action == kPush) {
|
|
|
|
__ pop(RegisterAllocator::ToRegister(i));
|
|
|
|
} else if (action != kIgnore) {
|
|
|
|
action &= ~kSyncedFlag;
|
|
|
|
__ ldr(RegisterAllocator::ToRegister(i), MemOperand(fp, action));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// -------------------------------------------------------------------------
|
|
|
|
// CodeGenState implementation.
|
|
|
|
|
|
|
|
CodeGenState::CodeGenState(CodeGenerator* owner)
|
|
|
|
: owner_(owner),
|
|
|
|
true_target_(NULL),
|
|
|
|
false_target_(NULL),
|
|
|
|
previous_(NULL) {
|
|
|
|
owner_->set_state(this);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
CodeGenState::CodeGenState(CodeGenerator* owner,
|
|
|
|
JumpTarget* true_target,
|
|
|
|
JumpTarget* false_target)
|
|
|
|
: owner_(owner),
|
|
|
|
true_target_(true_target),
|
|
|
|
false_target_(false_target),
|
|
|
|
previous_(owner->state()) {
|
|
|
|
owner_->set_state(this);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
CodeGenState::~CodeGenState() {
|
|
|
|
ASSERT(owner_->state() == this);
|
|
|
|
owner_->set_state(previous_);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// -------------------------------------------------------------------------
|
|
|
|
// CodeGenerator implementation
|
|
|
|
|
|
|
|
CodeGenerator::CodeGenerator(int buffer_size, Handle<Script> script,
|
|
|
|
bool is_eval)
|
|
|
|
: is_eval_(is_eval),
|
|
|
|
script_(script),
|
|
|
|
deferred_(8),
|
|
|
|
masm_(new MacroAssembler(NULL, buffer_size)),
|
|
|
|
scope_(NULL),
|
|
|
|
frame_(NULL),
|
|
|
|
allocator_(NULL),
|
|
|
|
cc_reg_(al),
|
|
|
|
state_(NULL),
|
|
|
|
function_return_is_shadowed_(false) {
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Calling conventions:
|
|
|
|
// fp: caller's frame pointer
|
|
|
|
// sp: stack pointer
|
|
|
|
// r1: called JS function
|
|
|
|
// cp: callee's context
|
|
|
|
|
|
|
|
void CodeGenerator::GenCode(FunctionLiteral* fun) {
|
|
|
|
// Record the position for debugging purposes.
|
|
|
|
CodeForFunctionPosition(fun);
|
|
|
|
|
|
|
|
ZoneList<Statement*>* body = fun->body();
|
|
|
|
|
|
|
|
// Initialize state.
|
|
|
|
ASSERT(scope_ == NULL);
|
|
|
|
scope_ = fun->scope();
|
|
|
|
ASSERT(allocator_ == NULL);
|
|
|
|
RegisterAllocator register_allocator(this);
|
|
|
|
allocator_ = ®ister_allocator;
|
|
|
|
ASSERT(frame_ == NULL);
|
|
|
|
frame_ = new VirtualFrame();
|
|
|
|
cc_reg_ = al;
|
|
|
|
{
|
|
|
|
CodeGenState state(this);
|
|
|
|
|
|
|
|
// Entry:
|
|
|
|
// Stack: receiver, arguments
|
|
|
|
// lr: return address
|
|
|
|
// fp: caller's frame pointer
|
|
|
|
// sp: stack pointer
|
|
|
|
// r1: called JS function
|
|
|
|
// cp: callee's context
|
|
|
|
allocator_->Initialize();
|
|
|
|
frame_->Enter();
|
|
|
|
// tos: code slot
|
|
|
|
#ifdef DEBUG
|
|
|
|
if (strlen(FLAG_stop_at) > 0 &&
|
|
|
|
fun->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
|
|
|
|
frame_->SpillAll();
|
|
|
|
__ stop("stop-at");
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Allocate space for locals and initialize them. This also checks
|
|
|
|
// for stack overflow.
|
|
|
|
frame_->AllocateStackSlots();
|
|
|
|
// Initialize the function return target after the locals are set
|
|
|
|
// up, because it needs the expected frame height from the frame.
|
|
|
|
function_return_.set_direction(JumpTarget::BIDIRECTIONAL);
|
|
|
|
function_return_is_shadowed_ = false;
|
|
|
|
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
if (scope_->num_heap_slots() > 0) {
|
|
|
|
// Allocate local context.
|
|
|
|
// Get outer context and create a new context based on it.
|
|
|
|
__ ldr(r0, frame_->Function());
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
frame_->CallRuntime(Runtime::kNewContext, 1); // r0 holds the result
|
|
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
JumpTarget verified_true;
|
|
|
|
__ cmp(r0, Operand(cp));
|
|
|
|
verified_true.Branch(eq);
|
|
|
|
__ stop("NewContext: r0 is expected to be the same as cp");
|
|
|
|
verified_true.Bind();
|
|
|
|
#endif
|
|
|
|
// Update context local.
|
|
|
|
__ str(cp, frame_->Context());
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO(1241774): Improve this code:
|
|
|
|
// 1) only needed if we have a context
|
|
|
|
// 2) no need to recompute context ptr every single time
|
|
|
|
// 3) don't copy parameter operand code from SlotOperand!
|
|
|
|
{
|
|
|
|
Comment cmnt2(masm_, "[ copy context parameters into .context");
|
|
|
|
|
|
|
|
// Note that iteration order is relevant here! If we have the same
|
|
|
|
// parameter twice (e.g., function (x, y, x)), and that parameter
|
|
|
|
// needs to be copied into the context, it must be the last argument
|
|
|
|
// passed to the parameter that needs to be copied. This is a rare
|
|
|
|
// case so we don't check for it, instead we rely on the copying
|
|
|
|
// order: such a parameter is copied repeatedly into the same
|
|
|
|
// context location and thus the last value is what is seen inside
|
|
|
|
// the function.
|
|
|
|
for (int i = 0; i < scope_->num_parameters(); i++) {
|
|
|
|
Variable* par = scope_->parameter(i);
|
|
|
|
Slot* slot = par->slot();
|
|
|
|
if (slot != NULL && slot->type() == Slot::CONTEXT) {
|
|
|
|
ASSERT(!scope_->is_global_scope()); // no parameters in global scope
|
|
|
|
__ ldr(r1, frame_->ParameterAt(i));
|
|
|
|
// Loads r2 with context; used below in RecordWrite.
|
|
|
|
__ str(r1, SlotOperand(slot, r2));
|
|
|
|
// Load the offset into r3.
|
|
|
|
int slot_offset =
|
|
|
|
FixedArray::kHeaderSize + slot->index() * kPointerSize;
|
|
|
|
__ mov(r3, Operand(slot_offset));
|
|
|
|
__ RecordWrite(r2, r3, r1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Store the arguments object. This must happen after context
|
|
|
|
// initialization because the arguments object may be stored in the
|
|
|
|
// context.
|
|
|
|
if (scope_->arguments() != NULL) {
|
|
|
|
ASSERT(scope_->arguments_shadow() != NULL);
|
|
|
|
Comment cmnt(masm_, "[ allocate arguments object");
|
|
|
|
{ Reference shadow_ref(this, scope_->arguments_shadow());
|
|
|
|
{ Reference arguments_ref(this, scope_->arguments());
|
|
|
|
ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT);
|
|
|
|
__ ldr(r2, frame_->Function());
|
|
|
|
// The receiver is below the arguments, the return address,
|
|
|
|
// and the frame pointer on the stack.
|
|
|
|
const int kReceiverDisplacement = 2 + scope_->num_parameters();
|
|
|
|
__ add(r1, fp, Operand(kReceiverDisplacement * kPointerSize));
|
|
|
|
__ mov(r0, Operand(Smi::FromInt(scope_->num_parameters())));
|
|
|
|
frame_->Adjust(3);
|
|
|
|
__ stm(db_w, sp, r0.bit() | r1.bit() | r2.bit());
|
|
|
|
frame_->CallStub(&stub, 3);
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
arguments_ref.SetValue(NOT_CONST_INIT);
|
|
|
|
}
|
|
|
|
shadow_ref.SetValue(NOT_CONST_INIT);
|
|
|
|
}
|
|
|
|
frame_->Drop(); // Value is no longer needed.
|
|
|
|
}
|
|
|
|
|
|
|
|
// Generate code to 'execute' declarations and initialize functions
|
|
|
|
// (source elements). In case of an illegal redeclaration we need to
|
|
|
|
// handle that instead of processing the declarations.
|
|
|
|
if (scope_->HasIllegalRedeclaration()) {
|
|
|
|
Comment cmnt(masm_, "[ illegal redeclarations");
|
|
|
|
scope_->VisitIllegalRedeclaration(this);
|
|
|
|
} else {
|
|
|
|
Comment cmnt(masm_, "[ declarations");
|
|
|
|
ProcessDeclarations(scope_->declarations());
|
|
|
|
// Bail out if a stack-overflow exception occurred when processing
|
|
|
|
// declarations.
|
|
|
|
if (HasStackOverflow()) return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (FLAG_trace) {
|
|
|
|
frame_->CallRuntime(Runtime::kTraceEnter, 0);
|
|
|
|
// Ignore the return value.
|
|
|
|
}
|
|
|
|
|
|
|
|
// Compile the body of the function in a vanilla state. Don't
|
|
|
|
// bother compiling all the code if the scope has an illegal
|
|
|
|
// redeclaration.
|
|
|
|
if (!scope_->HasIllegalRedeclaration()) {
|
|
|
|
Comment cmnt(masm_, "[ function body");
|
|
|
|
#ifdef DEBUG
|
|
|
|
bool is_builtin = Bootstrapper::IsActive();
|
|
|
|
bool should_trace =
|
|
|
|
is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls;
|
|
|
|
if (should_trace) {
|
|
|
|
frame_->CallRuntime(Runtime::kDebugTrace, 0);
|
|
|
|
// Ignore the return value.
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
VisitStatementsAndSpill(body);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Generate the return sequence if necessary.
|
|
|
|
if (has_valid_frame() || function_return_.is_linked()) {
|
|
|
|
if (!function_return_.is_linked()) {
|
|
|
|
CodeForReturnPosition(fun);
|
|
|
|
}
|
|
|
|
// exit
|
|
|
|
// r0: result
|
|
|
|
// sp: stack pointer
|
|
|
|
// fp: frame pointer
|
|
|
|
// cp: callee's context
|
|
|
|
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
|
|
|
|
|
|
|
|
function_return_.Bind();
|
|
|
|
if (FLAG_trace) {
|
|
|
|
// Push the return value on the stack as the parameter.
|
|
|
|
// Runtime::TraceExit returns the parameter as it is.
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
frame_->CallRuntime(Runtime::kTraceExit, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Add a label for checking the size of the code used for returning.
|
|
|
|
Label check_exit_codesize;
|
|
|
|
masm_->bind(&check_exit_codesize);
|
|
|
|
|
|
|
|
// Calculate the exact length of the return sequence and make sure that
|
|
|
|
// the constant pool is not emitted inside of the return sequence.
|
|
|
|
int32_t sp_delta = (scope_->num_parameters() + 1) * kPointerSize;
|
|
|
|
int return_sequence_length = Assembler::kJSReturnSequenceLength;
|
|
|
|
if (!masm_->ImmediateFitsAddrMode1Instruction(sp_delta)) {
|
|
|
|
// Additional mov instruction generated.
|
|
|
|
return_sequence_length++;
|
|
|
|
}
|
|
|
|
masm_->BlockConstPoolFor(return_sequence_length);
|
|
|
|
|
|
|
|
// Tear down the frame which will restore the caller's frame pointer and
|
|
|
|
// the link register.
|
|
|
|
frame_->Exit();
|
|
|
|
|
|
|
|
// Here we use masm_-> instead of the __ macro to avoid the code coverage
|
|
|
|
// tool from instrumenting as we rely on the code size here.
|
|
|
|
masm_->add(sp, sp, Operand(sp_delta));
|
|
|
|
masm_->Jump(lr);
|
|
|
|
|
|
|
|
// Check that the size of the code used for returning matches what is
|
|
|
|
// expected by the debugger. The add instruction above is an addressing
|
|
|
|
// mode 1 instruction where there are restrictions on which immediate values
|
|
|
|
// can be encoded in the instruction and which immediate values requires
|
|
|
|
// use of an additional instruction for moving the immediate to a temporary
|
|
|
|
// register.
|
|
|
|
ASSERT_EQ(return_sequence_length,
|
|
|
|
masm_->InstructionsGeneratedSince(&check_exit_codesize));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Code generation state must be reset.
|
|
|
|
ASSERT(!has_cc());
|
|
|
|
ASSERT(state_ == NULL);
|
|
|
|
ASSERT(!function_return_is_shadowed_);
|
|
|
|
function_return_.Unuse();
|
|
|
|
DeleteFrame();
|
|
|
|
|
|
|
|
// Process any deferred code using the register allocator.
|
|
|
|
if (!HasStackOverflow()) {
|
|
|
|
ProcessDeferred();
|
|
|
|
}
|
|
|
|
|
|
|
|
allocator_ = NULL;
|
|
|
|
scope_ = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
MemOperand CodeGenerator::SlotOperand(Slot* slot, Register tmp) {
|
|
|
|
// Currently, this assertion will fail if we try to assign to
|
|
|
|
// a constant variable that is constant because it is read-only
|
|
|
|
// (such as the variable referring to a named function expression).
|
|
|
|
// We need to implement assignments to read-only variables.
|
|
|
|
// Ideally, we should do this during AST generation (by converting
|
|
|
|
// such assignments into expression statements); however, in general
|
|
|
|
// we may not be able to make the decision until past AST generation,
|
|
|
|
// that is when the entire program is known.
|
|
|
|
ASSERT(slot != NULL);
|
|
|
|
int index = slot->index();
|
|
|
|
switch (slot->type()) {
|
|
|
|
case Slot::PARAMETER:
|
|
|
|
return frame_->ParameterAt(index);
|
|
|
|
|
|
|
|
case Slot::LOCAL:
|
|
|
|
return frame_->LocalAt(index);
|
|
|
|
|
|
|
|
case Slot::CONTEXT: {
|
|
|
|
// Follow the context chain if necessary.
|
|
|
|
ASSERT(!tmp.is(cp)); // do not overwrite context register
|
|
|
|
Register context = cp;
|
|
|
|
int chain_length = scope()->ContextChainLength(slot->var()->scope());
|
|
|
|
for (int i = 0; i < chain_length; i++) {
|
|
|
|
// Load the closure.
|
|
|
|
// (All contexts, even 'with' contexts, have a closure,
|
|
|
|
// and it is the same for all contexts inside a function.
|
|
|
|
// There is no need to go to the function context first.)
|
|
|
|
__ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX));
|
|
|
|
// Load the function context (which is the incoming, outer context).
|
|
|
|
__ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset));
|
|
|
|
context = tmp;
|
|
|
|
}
|
|
|
|
// We may have a 'with' context now. Get the function context.
|
|
|
|
// (In fact this mov may never be the needed, since the scope analysis
|
|
|
|
// may not permit a direct context access in this case and thus we are
|
|
|
|
// always at a function context. However it is safe to dereference be-
|
|
|
|
// cause the function context of a function context is itself. Before
|
|
|
|
// deleting this mov we should try to create a counter-example first,
|
|
|
|
// though...)
|
|
|
|
__ ldr(tmp, ContextOperand(context, Context::FCONTEXT_INDEX));
|
|
|
|
return ContextOperand(tmp, index);
|
|
|
|
}
|
|
|
|
|
|
|
|
default:
|
|
|
|
UNREACHABLE();
|
|
|
|
return MemOperand(r0, 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
MemOperand CodeGenerator::ContextSlotOperandCheckExtensions(
|
|
|
|
Slot* slot,
|
|
|
|
Register tmp,
|
|
|
|
Register tmp2,
|
|
|
|
JumpTarget* slow) {
|
|
|
|
ASSERT(slot->type() == Slot::CONTEXT);
|
|
|
|
Register context = cp;
|
|
|
|
|
|
|
|
for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) {
|
|
|
|
if (s->num_heap_slots() > 0) {
|
|
|
|
if (s->calls_eval()) {
|
|
|
|
// Check that extension is NULL.
|
|
|
|
__ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX));
|
|
|
|
__ tst(tmp2, tmp2);
|
|
|
|
slow->Branch(ne);
|
|
|
|
}
|
|
|
|
__ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX));
|
|
|
|
__ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset));
|
|
|
|
context = tmp;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Check that last extension is NULL.
|
|
|
|
__ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX));
|
|
|
|
__ tst(tmp2, tmp2);
|
|
|
|
slow->Branch(ne);
|
|
|
|
__ ldr(tmp, ContextOperand(context, Context::FCONTEXT_INDEX));
|
|
|
|
return ContextOperand(tmp, slot->index());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Loads a value on TOS. If it is a boolean value, the result may have been
|
|
|
|
// (partially) translated into branches, or it may have set the condition
|
|
|
|
// code register. If force_cc is set, the value is forced to set the
|
|
|
|
// condition code register and no value is pushed. If the condition code
|
|
|
|
// register was set, has_cc() is true and cc_reg_ contains the condition to
|
|
|
|
// test for 'true'.
|
|
|
|
void CodeGenerator::LoadCondition(Expression* x,
|
|
|
|
JumpTarget* true_target,
|
|
|
|
JumpTarget* false_target,
|
|
|
|
bool force_cc) {
|
|
|
|
ASSERT(!has_cc());
|
|
|
|
int original_height = frame_->height();
|
|
|
|
|
|
|
|
{ CodeGenState new_state(this, true_target, false_target);
|
|
|
|
Visit(x);
|
|
|
|
|
|
|
|
// If we hit a stack overflow, we may not have actually visited
|
|
|
|
// the expression. In that case, we ensure that we have a
|
|
|
|
// valid-looking frame state because we will continue to generate
|
|
|
|
// code as we unwind the C++ stack.
|
|
|
|
//
|
|
|
|
// It's possible to have both a stack overflow and a valid frame
|
|
|
|
// state (eg, a subexpression overflowed, visiting it returned
|
|
|
|
// with a dummied frame state, and visiting this expression
|
|
|
|
// returned with a normal-looking state).
|
|
|
|
if (HasStackOverflow() &&
|
|
|
|
has_valid_frame() &&
|
|
|
|
!has_cc() &&
|
|
|
|
frame_->height() == original_height) {
|
|
|
|
true_target->Jump();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (force_cc && frame_ != NULL && !has_cc()) {
|
|
|
|
// Convert the TOS value to a boolean in the condition code register.
|
|
|
|
ToBoolean(true_target, false_target);
|
|
|
|
}
|
|
|
|
ASSERT(!force_cc || !has_valid_frame() || has_cc());
|
|
|
|
ASSERT(!has_valid_frame() ||
|
|
|
|
(has_cc() && frame_->height() == original_height) ||
|
|
|
|
(!has_cc() && frame_->height() == original_height + 1));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::Load(Expression* expr) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
JumpTarget true_target;
|
|
|
|
JumpTarget false_target;
|
|
|
|
LoadCondition(expr, &true_target, &false_target, false);
|
|
|
|
|
|
|
|
if (has_cc()) {
|
|
|
|
// Convert cc_reg_ into a boolean value.
|
|
|
|
JumpTarget loaded;
|
|
|
|
JumpTarget materialize_true;
|
|
|
|
materialize_true.Branch(cc_reg_);
|
|
|
|
__ LoadRoot(r0, Heap::kFalseValueRootIndex);
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
loaded.Jump();
|
|
|
|
materialize_true.Bind();
|
|
|
|
__ LoadRoot(r0, Heap::kTrueValueRootIndex);
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
loaded.Bind();
|
|
|
|
cc_reg_ = al;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (true_target.is_linked() || false_target.is_linked()) {
|
|
|
|
// We have at least one condition value that has been "translated"
|
|
|
|
// into a branch, thus it needs to be loaded explicitly.
|
|
|
|
JumpTarget loaded;
|
|
|
|
if (frame_ != NULL) {
|
|
|
|
loaded.Jump(); // Don't lose the current TOS.
|
|
|
|
}
|
|
|
|
bool both = true_target.is_linked() && false_target.is_linked();
|
|
|
|
// Load "true" if necessary.
|
|
|
|
if (true_target.is_linked()) {
|
|
|
|
true_target.Bind();
|
|
|
|
__ LoadRoot(r0, Heap::kTrueValueRootIndex);
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
}
|
|
|
|
// If both "true" and "false" need to be loaded jump across the code for
|
|
|
|
// "false".
|
|
|
|
if (both) {
|
|
|
|
loaded.Jump();
|
|
|
|
}
|
|
|
|
// Load "false" if necessary.
|
|
|
|
if (false_target.is_linked()) {
|
|
|
|
false_target.Bind();
|
|
|
|
__ LoadRoot(r0, Heap::kFalseValueRootIndex);
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
}
|
|
|
|
// A value is loaded on all paths reaching this point.
|
|
|
|
loaded.Bind();
|
|
|
|
}
|
|
|
|
ASSERT(has_valid_frame());
|
|
|
|
ASSERT(!has_cc());
|
|
|
|
ASSERT(frame_->height() == original_height + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::LoadGlobal() {
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
__ ldr(r0, GlobalObject());
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::LoadGlobalReceiver(Register scratch) {
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
__ ldr(scratch, ContextOperand(cp, Context::GLOBAL_INDEX));
|
|
|
|
__ ldr(scratch,
|
|
|
|
FieldMemOperand(scratch, GlobalObject::kGlobalReceiverOffset));
|
|
|
|
frame_->EmitPush(scratch);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::LoadTypeofExpression(Expression* expr) {
|
|
|
|
// Special handling of identifiers as subexpressions of typeof.
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Variable* variable = expr->AsVariableProxy()->AsVariable();
|
|
|
|
if (variable != NULL && !variable->is_this() && variable->is_global()) {
|
|
|
|
// For a global variable we build the property reference
|
|
|
|
// <global>.<variable> and perform a (regular non-contextual) property
|
|
|
|
// load to make sure we do not get reference errors.
|
|
|
|
Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX);
|
|
|
|
Literal key(variable->name());
|
|
|
|
Property property(&global, &key, RelocInfo::kNoPosition);
|
|
|
|
Reference ref(this, &property);
|
|
|
|
ref.GetValueAndSpill();
|
|
|
|
} else if (variable != NULL && variable->slot() != NULL) {
|
|
|
|
// For a variable that rewrites to a slot, we signal it is the immediate
|
|
|
|
// subexpression of a typeof.
|
|
|
|
LoadFromSlot(variable->slot(), INSIDE_TYPEOF);
|
|
|
|
frame_->SpillAll();
|
|
|
|
} else {
|
|
|
|
// Anything else can be handled normally.
|
|
|
|
LoadAndSpill(expr);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Reference::Reference(CodeGenerator* cgen, Expression* expression)
|
|
|
|
: cgen_(cgen), expression_(expression), type_(ILLEGAL) {
|
|
|
|
cgen->LoadReference(this);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Reference::~Reference() {
|
|
|
|
cgen_->UnloadReference(this);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::LoadReference(Reference* ref) {
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ LoadReference");
|
|
|
|
Expression* e = ref->expression();
|
|
|
|
Property* property = e->AsProperty();
|
|
|
|
Variable* var = e->AsVariableProxy()->AsVariable();
|
|
|
|
|
|
|
|
if (property != NULL) {
|
|
|
|
// The expression is either a property or a variable proxy that rewrites
|
|
|
|
// to a property.
|
|
|
|
LoadAndSpill(property->obj());
|
|
|
|
// We use a named reference if the key is a literal symbol, unless it is
|
|
|
|
// a string that can be legally parsed as an integer. This is because
|
|
|
|
// otherwise we will not get into the slow case code that handles [] on
|
|
|
|
// String objects.
|
|
|
|
Literal* literal = property->key()->AsLiteral();
|
|
|
|
uint32_t dummy;
|
|
|
|
if (literal != NULL &&
|
|
|
|
literal->handle()->IsSymbol() &&
|
|
|
|
!String::cast(*(literal->handle()))->AsArrayIndex(&dummy)) {
|
|
|
|
ref->set_type(Reference::NAMED);
|
|
|
|
} else {
|
|
|
|
LoadAndSpill(property->key());
|
|
|
|
ref->set_type(Reference::KEYED);
|
|
|
|
}
|
|
|
|
} else if (var != NULL) {
|
|
|
|
// The expression is a variable proxy that does not rewrite to a
|
|
|
|
// property. Global variables are treated as named property references.
|
|
|
|
if (var->is_global()) {
|
|
|
|
LoadGlobal();
|
|
|
|
ref->set_type(Reference::NAMED);
|
|
|
|
} else {
|
|
|
|
ASSERT(var->slot() != NULL);
|
|
|
|
ref->set_type(Reference::SLOT);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// Anything else is a runtime error.
|
|
|
|
LoadAndSpill(e);
|
|
|
|
frame_->CallRuntime(Runtime::kThrowReferenceError, 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::UnloadReference(Reference* ref) {
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
// Pop a reference from the stack while preserving TOS.
|
|
|
|
Comment cmnt(masm_, "[ UnloadReference");
|
|
|
|
int size = ref->size();
|
|
|
|
if (size > 0) {
|
|
|
|
frame_->EmitPop(r0);
|
|
|
|
frame_->Drop(size);
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// ECMA-262, section 9.2, page 30: ToBoolean(). Convert the given
|
|
|
|
// register to a boolean in the condition code register. The code
|
|
|
|
// may jump to 'false_target' in case the register converts to 'false'.
|
|
|
|
void CodeGenerator::ToBoolean(JumpTarget* true_target,
|
|
|
|
JumpTarget* false_target) {
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
// Note: The generated code snippet does not change stack variables.
|
|
|
|
// Only the condition code should be set.
|
|
|
|
frame_->EmitPop(r0);
|
|
|
|
|
|
|
|
// Fast case checks
|
|
|
|
|
|
|
|
// Check if the value is 'false'.
|
|
|
|
__ LoadRoot(ip, Heap::kFalseValueRootIndex);
|
|
|
|
__ cmp(r0, ip);
|
|
|
|
false_target->Branch(eq);
|
|
|
|
|
|
|
|
// Check if the value is 'true'.
|
|
|
|
__ LoadRoot(ip, Heap::kTrueValueRootIndex);
|
|
|
|
__ cmp(r0, ip);
|
|
|
|
true_target->Branch(eq);
|
|
|
|
|
|
|
|
// Check if the value is 'undefined'.
|
|
|
|
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
|
|
|
|
__ cmp(r0, ip);
|
|
|
|
false_target->Branch(eq);
|
|
|
|
|
|
|
|
// Check if the value is a smi.
|
|
|
|
__ cmp(r0, Operand(Smi::FromInt(0)));
|
|
|
|
false_target->Branch(eq);
|
|
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
|
|
true_target->Branch(eq);
|
|
|
|
|
|
|
|
// Slow case: call the runtime.
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
frame_->CallRuntime(Runtime::kToBool, 1);
|
|
|
|
// Convert the result (r0) to a condition code.
|
|
|
|
__ LoadRoot(ip, Heap::kFalseValueRootIndex);
|
|
|
|
__ cmp(r0, ip);
|
|
|
|
|
|
|
|
cc_reg_ = ne;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::GenericBinaryOperation(Token::Value op,
|
|
|
|
OverwriteMode overwrite_mode,
|
|
|
|
int constant_rhs) {
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
// sp[0] : y
|
|
|
|
// sp[1] : x
|
|
|
|
// result : r0
|
|
|
|
|
|
|
|
// Stub is entered with a call: 'return address' is in lr.
|
|
|
|
switch (op) {
|
|
|
|
case Token::ADD: // fall through.
|
|
|
|
case Token::SUB: // fall through.
|
|
|
|
case Token::MUL:
|
|
|
|
case Token::DIV:
|
|
|
|
case Token::MOD:
|
|
|
|
case Token::BIT_OR:
|
|
|
|
case Token::BIT_AND:
|
|
|
|
case Token::BIT_XOR:
|
|
|
|
case Token::SHL:
|
|
|
|
case Token::SHR:
|
|
|
|
case Token::SAR: {
|
|
|
|
frame_->EmitPop(r0); // r0 : y
|
|
|
|
frame_->EmitPop(r1); // r1 : x
|
|
|
|
GenericBinaryOpStub stub(op, overwrite_mode, constant_rhs);
|
|
|
|
frame_->CallStub(&stub, 0);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case Token::COMMA:
|
|
|
|
frame_->EmitPop(r0);
|
|
|
|
// simply discard left value
|
|
|
|
frame_->Drop();
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
// Other cases should have been handled before this point.
|
|
|
|
UNREACHABLE();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class DeferredInlineSmiOperation: public DeferredCode {
|
|
|
|
public:
|
|
|
|
DeferredInlineSmiOperation(Token::Value op,
|
|
|
|
int value,
|
|
|
|
bool reversed,
|
|
|
|
OverwriteMode overwrite_mode)
|
|
|
|
: op_(op),
|
|
|
|
value_(value),
|
|
|
|
reversed_(reversed),
|
|
|
|
overwrite_mode_(overwrite_mode) {
|
|
|
|
set_comment("[ DeferredInlinedSmiOperation");
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual void Generate();
|
|
|
|
|
|
|
|
private:
|
|
|
|
Token::Value op_;
|
|
|
|
int value_;
|
|
|
|
bool reversed_;
|
|
|
|
OverwriteMode overwrite_mode_;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
void DeferredInlineSmiOperation::Generate() {
|
|
|
|
switch (op_) {
|
|
|
|
case Token::ADD: {
|
|
|
|
// Revert optimistic add.
|
|
|
|
if (reversed_) {
|
|
|
|
__ sub(r0, r0, Operand(Smi::FromInt(value_)));
|
|
|
|
__ mov(r1, Operand(Smi::FromInt(value_)));
|
|
|
|
} else {
|
|
|
|
__ sub(r1, r0, Operand(Smi::FromInt(value_)));
|
|
|
|
__ mov(r0, Operand(Smi::FromInt(value_)));
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case Token::SUB: {
|
|
|
|
// Revert optimistic sub.
|
|
|
|
if (reversed_) {
|
|
|
|
__ rsb(r0, r0, Operand(Smi::FromInt(value_)));
|
|
|
|
__ mov(r1, Operand(Smi::FromInt(value_)));
|
|
|
|
} else {
|
|
|
|
__ add(r1, r0, Operand(Smi::FromInt(value_)));
|
|
|
|
__ mov(r0, Operand(Smi::FromInt(value_)));
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// For these operations there is no optimistic operation that needs to be
|
|
|
|
// reverted.
|
|
|
|
case Token::MUL:
|
|
|
|
case Token::MOD:
|
|
|
|
case Token::BIT_OR:
|
|
|
|
case Token::BIT_XOR:
|
|
|
|
case Token::BIT_AND: {
|
|
|
|
if (reversed_) {
|
|
|
|
__ mov(r1, Operand(Smi::FromInt(value_)));
|
|
|
|
} else {
|
|
|
|
__ mov(r1, Operand(r0));
|
|
|
|
__ mov(r0, Operand(Smi::FromInt(value_)));
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case Token::SHL:
|
|
|
|
case Token::SHR:
|
|
|
|
case Token::SAR: {
|
|
|
|
if (!reversed_) {
|
|
|
|
__ mov(r1, Operand(r0));
|
|
|
|
__ mov(r0, Operand(Smi::FromInt(value_)));
|
|
|
|
} else {
|
|
|
|
UNREACHABLE(); // Should have been handled in SmiOperation.
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
default:
|
|
|
|
// Other cases should have been handled before this point.
|
|
|
|
UNREACHABLE();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
GenericBinaryOpStub stub(op_, overwrite_mode_, value_);
|
|
|
|
__ CallStub(&stub);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static bool PopCountLessThanEqual2(unsigned int x) {
|
|
|
|
x &= x - 1;
|
|
|
|
return (x & (x - 1)) == 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Returns the index of the lowest bit set.
|
|
|
|
static int BitPosition(unsigned x) {
|
|
|
|
int bit_posn = 0;
|
|
|
|
while ((x & 0xf) == 0) {
|
|
|
|
bit_posn += 4;
|
|
|
|
x >>= 4;
|
|
|
|
}
|
|
|
|
while ((x & 1) == 0) {
|
|
|
|
bit_posn++;
|
|
|
|
x >>= 1;
|
|
|
|
}
|
|
|
|
return bit_posn;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::SmiOperation(Token::Value op,
|
|
|
|
Handle<Object> value,
|
|
|
|
bool reversed,
|
|
|
|
OverwriteMode mode) {
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
// NOTE: This is an attempt to inline (a bit) more of the code for
|
|
|
|
// some possible smi operations (like + and -) when (at least) one
|
|
|
|
// of the operands is a literal smi. With this optimization, the
|
|
|
|
// performance of the system is increased by ~15%, and the generated
|
|
|
|
// code size is increased by ~1% (measured on a combination of
|
|
|
|
// different benchmarks).
|
|
|
|
|
|
|
|
// sp[0] : operand
|
|
|
|
|
|
|
|
int int_value = Smi::cast(*value)->value();
|
|
|
|
|
|
|
|
JumpTarget exit;
|
|
|
|
frame_->EmitPop(r0);
|
|
|
|
|
|
|
|
bool something_to_inline = true;
|
|
|
|
switch (op) {
|
|
|
|
case Token::ADD: {
|
|
|
|
DeferredCode* deferred =
|
|
|
|
new DeferredInlineSmiOperation(op, int_value, reversed, mode);
|
|
|
|
|
|
|
|
__ add(r0, r0, Operand(value), SetCC);
|
|
|
|
deferred->Branch(vs);
|
|
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
|
|
deferred->Branch(ne);
|
|
|
|
deferred->BindExit();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case Token::SUB: {
|
|
|
|
DeferredCode* deferred =
|
|
|
|
new DeferredInlineSmiOperation(op, int_value, reversed, mode);
|
|
|
|
|
|
|
|
if (reversed) {
|
|
|
|
__ rsb(r0, r0, Operand(value), SetCC);
|
|
|
|
} else {
|
|
|
|
__ sub(r0, r0, Operand(value), SetCC);
|
|
|
|
}
|
|
|
|
deferred->Branch(vs);
|
|
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
|
|
deferred->Branch(ne);
|
|
|
|
deferred->BindExit();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
case Token::BIT_OR:
|
|
|
|
case Token::BIT_XOR:
|
|
|
|
case Token::BIT_AND: {
|
|
|
|
DeferredCode* deferred =
|
|
|
|
new DeferredInlineSmiOperation(op, int_value, reversed, mode);
|
|
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
|
|
deferred->Branch(ne);
|
|
|
|
switch (op) {
|
|
|
|
case Token::BIT_OR: __ orr(r0, r0, Operand(value)); break;
|
|
|
|
case Token::BIT_XOR: __ eor(r0, r0, Operand(value)); break;
|
|
|
|
case Token::BIT_AND: __ and_(r0, r0, Operand(value)); break;
|
|
|
|
default: UNREACHABLE();
|
|
|
|
}
|
|
|
|
deferred->BindExit();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case Token::SHL:
|
|
|
|
case Token::SHR:
|
|
|
|
case Token::SAR: {
|
|
|
|
if (reversed) {
|
|
|
|
something_to_inline = false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
int shift_value = int_value & 0x1f; // least significant 5 bits
|
|
|
|
DeferredCode* deferred =
|
|
|
|
new DeferredInlineSmiOperation(op, shift_value, false, mode);
|
|
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
|
|
deferred->Branch(ne);
|
|
|
|
__ mov(r2, Operand(r0, ASR, kSmiTagSize)); // remove tags
|
|
|
|
switch (op) {
|
|
|
|
case Token::SHL: {
|
|
|
|
if (shift_value != 0) {
|
|
|
|
__ mov(r2, Operand(r2, LSL, shift_value));
|
|
|
|
}
|
|
|
|
// check that the *unsigned* result fits in a smi
|
|
|
|
__ add(r3, r2, Operand(0x40000000), SetCC);
|
|
|
|
deferred->Branch(mi);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case Token::SHR: {
|
|
|
|
// LSR by immediate 0 means shifting 32 bits.
|
|
|
|
if (shift_value != 0) {
|
|
|
|
__ mov(r2, Operand(r2, LSR, shift_value));
|
|
|
|
}
|
|
|
|
// check that the *unsigned* result fits in a smi
|
|
|
|
// neither of the two high-order bits can be set:
|
|
|
|
// - 0x80000000: high bit would be lost when smi tagging
|
|
|
|
// - 0x40000000: this number would convert to negative when
|
|
|
|
// smi tagging these two cases can only happen with shifts
|
|
|
|
// by 0 or 1 when handed a valid smi
|
|
|
|
__ and_(r3, r2, Operand(0xc0000000), SetCC);
|
|
|
|
deferred->Branch(ne);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case Token::SAR: {
|
|
|
|
if (shift_value != 0) {
|
|
|
|
// ASR by immediate 0 means shifting 32 bits.
|
|
|
|
__ mov(r2, Operand(r2, ASR, shift_value));
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default: UNREACHABLE();
|
|
|
|
}
|
|
|
|
__ mov(r0, Operand(r2, LSL, kSmiTagSize));
|
|
|
|
deferred->BindExit();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case Token::MOD: {
|
|
|
|
if (reversed || int_value < 2 || !IsPowerOf2(int_value)) {
|
|
|
|
something_to_inline = false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
DeferredCode* deferred =
|
|
|
|
new DeferredInlineSmiOperation(op, int_value, reversed, mode);
|
|
|
|
unsigned mask = (0x80000000u | kSmiTagMask);
|
|
|
|
__ tst(r0, Operand(mask));
|
|
|
|
deferred->Branch(ne); // Go to deferred code on non-Smis and negative.
|
|
|
|
mask = (int_value << kSmiTagSize) - 1;
|
|
|
|
__ and_(r0, r0, Operand(mask));
|
|
|
|
deferred->BindExit();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case Token::MUL: {
|
|
|
|
if (!IsEasyToMultiplyBy(int_value)) {
|
|
|
|
something_to_inline = false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
DeferredCode* deferred =
|
|
|
|
new DeferredInlineSmiOperation(op, int_value, reversed, mode);
|
|
|
|
unsigned max_smi_that_wont_overflow = Smi::kMaxValue / int_value;
|
|
|
|
max_smi_that_wont_overflow <<= kSmiTagSize;
|
|
|
|
unsigned mask = 0x80000000u;
|
|
|
|
while ((mask & max_smi_that_wont_overflow) == 0) {
|
|
|
|
mask |= mask >> 1;
|
|
|
|
}
|
|
|
|
mask |= kSmiTagMask;
|
|
|
|
// This does a single mask that checks for a too high value in a
|
|
|
|
// conservative way and for a non-Smi. It also filters out negative
|
|
|
|
// numbers, unfortunately, but since this code is inline we prefer
|
|
|
|
// brevity to comprehensiveness.
|
|
|
|
__ tst(r0, Operand(mask));
|
|
|
|
deferred->Branch(ne);
|
|
|
|
MultiplyByKnownInt(masm_, r0, r0, int_value);
|
|
|
|
deferred->BindExit();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
default:
|
|
|
|
something_to_inline = false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!something_to_inline) {
|
|
|
|
if (!reversed) {
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
__ mov(r0, Operand(value));
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
GenericBinaryOperation(op, mode, int_value);
|
|
|
|
} else {
|
|
|
|
__ mov(ip, Operand(value));
|
|
|
|
frame_->EmitPush(ip);
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
GenericBinaryOperation(op, mode, kUnknownIntValue);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
exit.Bind();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::Comparison(Condition cc,
|
|
|
|
Expression* left,
|
|
|
|
Expression* right,
|
|
|
|
bool strict) {
|
|
|
|
if (left != NULL) LoadAndSpill(left);
|
|
|
|
if (right != NULL) LoadAndSpill(right);
|
|
|
|
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
// sp[0] : y
|
|
|
|
// sp[1] : x
|
|
|
|
// result : cc register
|
|
|
|
|
|
|
|
// Strict only makes sense for equality comparisons.
|
|
|
|
ASSERT(!strict || cc == eq);
|
|
|
|
|
|
|
|
JumpTarget exit;
|
|
|
|
JumpTarget smi;
|
|
|
|
// Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order.
|
|
|
|
if (cc == gt || cc == le) {
|
|
|
|
cc = ReverseCondition(cc);
|
|
|
|
frame_->EmitPop(r1);
|
|
|
|
frame_->EmitPop(r0);
|
|
|
|
} else {
|
|
|
|
frame_->EmitPop(r0);
|
|
|
|
frame_->EmitPop(r1);
|
|
|
|
}
|
|
|
|
__ orr(r2, r0, Operand(r1));
|
|
|
|
__ tst(r2, Operand(kSmiTagMask));
|
|
|
|
smi.Branch(eq);
|
|
|
|
|
|
|
|
// Perform non-smi comparison by stub.
|
|
|
|
// CompareStub takes arguments in r0 and r1, returns <0, >0 or 0 in r0.
|
|
|
|
// We call with 0 args because there are 0 on the stack.
|
|
|
|
CompareStub stub(cc, strict);
|
|
|
|
frame_->CallStub(&stub, 0);
|
|
|
|
__ cmp(r0, Operand(0));
|
|
|
|
exit.Jump();
|
|
|
|
|
|
|
|
// Do smi comparisons by pointer comparison.
|
|
|
|
smi.Bind();
|
|
|
|
__ cmp(r1, Operand(r0));
|
|
|
|
|
|
|
|
exit.Bind();
|
|
|
|
cc_reg_ = cc;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Call the function on the stack with the given arguments.
|
|
|
|
void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args,
|
|
|
|
int position) {
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
// Push the arguments ("left-to-right") on the stack.
|
|
|
|
int arg_count = args->length();
|
|
|
|
for (int i = 0; i < arg_count; i++) {
|
|
|
|
LoadAndSpill(args->at(i));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Record the position for debugging purposes.
|
|
|
|
CodeForSourcePosition(position);
|
|
|
|
|
|
|
|
// Use the shared code stub to call the function.
|
|
|
|
InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
|
|
|
|
CallFunctionStub call_function(arg_count, in_loop);
|
|
|
|
frame_->CallStub(&call_function, arg_count + 1);
|
|
|
|
|
|
|
|
// Restore context and pop function from the stack.
|
|
|
|
__ ldr(cp, frame_->Context());
|
|
|
|
frame_->Drop(); // discard the TOS
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::Branch(bool if_true, JumpTarget* target) {
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
ASSERT(has_cc());
|
|
|
|
Condition cc = if_true ? cc_reg_ : NegateCondition(cc_reg_);
|
|
|
|
target->Branch(cc);
|
|
|
|
cc_reg_ = al;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::CheckStack() {
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ check stack");
|
|
|
|
__ LoadRoot(ip, Heap::kStackLimitRootIndex);
|
|
|
|
// Put the lr setup instruction in the delay slot. kInstrSize is added to
|
|
|
|
// the implicit 8 byte offset that always applies to operations with pc and
|
|
|
|
// gives a return address 12 bytes down.
|
|
|
|
masm_->add(lr, pc, Operand(Assembler::kInstrSize));
|
|
|
|
masm_->cmp(sp, Operand(ip));
|
|
|
|
StackCheckStub stub;
|
|
|
|
// Call the stub if lower.
|
|
|
|
masm_->mov(pc,
|
|
|
|
Operand(reinterpret_cast<intptr_t>(stub.GetCode().location()),
|
|
|
|
RelocInfo::CODE_TARGET),
|
|
|
|
LeaveCC,
|
|
|
|
lo);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitStatements(ZoneList<Statement*>* statements) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
for (int i = 0; frame_ != NULL && i < statements->length(); i++) {
|
|
|
|
VisitAndSpill(statements->at(i));
|
|
|
|
}
|
|
|
|
ASSERT(!has_valid_frame() || frame_->height() == original_height);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitBlock(Block* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ Block");
|
|
|
|
CodeForStatementPosition(node);
|
|
|
|
node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
|
|
|
VisitStatementsAndSpill(node->statements());
|
|
|
|
if (node->break_target()->is_linked()) {
|
|
|
|
node->break_target()->Bind();
|
|
|
|
}
|
|
|
|
node->break_target()->Unuse();
|
|
|
|
ASSERT(!has_valid_frame() || frame_->height() == original_height);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
frame_->EmitPush(cp);
|
|
|
|
__ mov(r0, Operand(pairs));
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
__ mov(r0, Operand(Smi::FromInt(is_eval() ? 1 : 0)));
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
frame_->CallRuntime(Runtime::kDeclareGlobals, 3);
|
|
|
|
// The result is discarded.
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitDeclaration(Declaration* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ Declaration");
|
|
|
|
Variable* var = node->proxy()->var();
|
|
|
|
ASSERT(var != NULL); // must have been resolved
|
|
|
|
Slot* slot = var->slot();
|
|
|
|
|
|
|
|
// If it was not possible to allocate the variable at compile time,
|
|
|
|
// we need to "declare" it at runtime to make sure it actually
|
|
|
|
// exists in the local context.
|
|
|
|
if (slot != NULL && slot->type() == Slot::LOOKUP) {
|
|
|
|
// Variables with a "LOOKUP" slot were introduced as non-locals
|
|
|
|
// during variable resolution and must have mode DYNAMIC.
|
|
|
|
ASSERT(var->is_dynamic());
|
|
|
|
// For now, just do a runtime call.
|
|
|
|
frame_->EmitPush(cp);
|
|
|
|
__ mov(r0, Operand(var->name()));
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
// Declaration nodes are always declared in only two modes.
|
|
|
|
ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST);
|
|
|
|
PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY;
|
|
|
|
__ mov(r0, Operand(Smi::FromInt(attr)));
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
// Push initial value, if any.
|
|
|
|
// Note: For variables we must not push an initial value (such as
|
|
|
|
// 'undefined') because we may have a (legal) redeclaration and we
|
|
|
|
// must not destroy the current value.
|
|
|
|
if (node->mode() == Variable::CONST) {
|
|
|
|
__ LoadRoot(r0, Heap::kTheHoleValueRootIndex);
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
} else if (node->fun() != NULL) {
|
|
|
|
LoadAndSpill(node->fun());
|
|
|
|
} else {
|
|
|
|
__ mov(r0, Operand(0)); // no initial value!
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
}
|
|
|
|
frame_->CallRuntime(Runtime::kDeclareContextSlot, 4);
|
|
|
|
// Ignore the return value (declarations are statements).
|
|
|
|
ASSERT(frame_->height() == original_height);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
ASSERT(!var->is_global());
|
|
|
|
|
|
|
|
// If we have a function or a constant, we need to initialize the variable.
|
|
|
|
Expression* val = NULL;
|
|
|
|
if (node->mode() == Variable::CONST) {
|
|
|
|
val = new Literal(Factory::the_hole_value());
|
|
|
|
} else {
|
|
|
|
val = node->fun(); // NULL if we don't have a function
|
|
|
|
}
|
|
|
|
|
|
|
|
if (val != NULL) {
|
|
|
|
{
|
|
|
|
// Set initial value.
|
|
|
|
Reference target(this, node->proxy());
|
|
|
|
LoadAndSpill(val);
|
|
|
|
target.SetValue(NOT_CONST_INIT);
|
|
|
|
// The reference is removed from the stack (preserving TOS) when
|
|
|
|
// it goes out of scope.
|
|
|
|
}
|
|
|
|
// Get rid of the assigned value (declarations are statements).
|
|
|
|
frame_->Drop();
|
|
|
|
}
|
|
|
|
ASSERT(frame_->height() == original_height);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ ExpressionStatement");
|
|
|
|
CodeForStatementPosition(node);
|
|
|
|
Expression* expression = node->expression();
|
|
|
|
expression->MarkAsStatement();
|
|
|
|
LoadAndSpill(expression);
|
|
|
|
frame_->Drop();
|
|
|
|
ASSERT(frame_->height() == original_height);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitEmptyStatement(EmptyStatement* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "// EmptyStatement");
|
|
|
|
CodeForStatementPosition(node);
|
|
|
|
// nothing to do
|
|
|
|
ASSERT(frame_->height() == original_height);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitIfStatement(IfStatement* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ IfStatement");
|
|
|
|
// Generate different code depending on which parts of the if statement
|
|
|
|
// are present or not.
|
|
|
|
bool has_then_stm = node->HasThenStatement();
|
|
|
|
bool has_else_stm = node->HasElseStatement();
|
|
|
|
|
|
|
|
CodeForStatementPosition(node);
|
|
|
|
|
|
|
|
JumpTarget exit;
|
|
|
|
if (has_then_stm && has_else_stm) {
|
|
|
|
Comment cmnt(masm_, "[ IfThenElse");
|
|
|
|
JumpTarget then;
|
|
|
|
JumpTarget else_;
|
|
|
|
// if (cond)
|
|
|
|
LoadConditionAndSpill(node->condition(), &then, &else_, true);
|
|
|
|
if (frame_ != NULL) {
|
|
|
|
Branch(false, &else_);
|
|
|
|
}
|
|
|
|
// then
|
|
|
|
if (frame_ != NULL || then.is_linked()) {
|
|
|
|
then.Bind();
|
|
|
|
VisitAndSpill(node->then_statement());
|
|
|
|
}
|
|
|
|
if (frame_ != NULL) {
|
|
|
|
exit.Jump();
|
|
|
|
}
|
|
|
|
// else
|
|
|
|
if (else_.is_linked()) {
|
|
|
|
else_.Bind();
|
|
|
|
VisitAndSpill(node->else_statement());
|
|
|
|
}
|
|
|
|
|
|
|
|
} else if (has_then_stm) {
|
|
|
|
Comment cmnt(masm_, "[ IfThen");
|
|
|
|
ASSERT(!has_else_stm);
|
|
|
|
JumpTarget then;
|
|
|
|
// if (cond)
|
|
|
|
LoadConditionAndSpill(node->condition(), &then, &exit, true);
|
|
|
|
if (frame_ != NULL) {
|
|
|
|
Branch(false, &exit);
|
|
|
|
}
|
|
|
|
// then
|
|
|
|
if (frame_ != NULL || then.is_linked()) {
|
|
|
|
then.Bind();
|
|
|
|
VisitAndSpill(node->then_statement());
|
|
|
|
}
|
|
|
|
|
|
|
|
} else if (has_else_stm) {
|
|
|
|
Comment cmnt(masm_, "[ IfElse");
|
|
|
|
ASSERT(!has_then_stm);
|
|
|
|
JumpTarget else_;
|
|
|
|
// if (!cond)
|
|
|
|
LoadConditionAndSpill(node->condition(), &exit, &else_, true);
|
|
|
|
if (frame_ != NULL) {
|
|
|
|
Branch(true, &exit);
|
|
|
|
}
|
|
|
|
// else
|
|
|
|
if (frame_ != NULL || else_.is_linked()) {
|
|
|
|
else_.Bind();
|
|
|
|
VisitAndSpill(node->else_statement());
|
|
|
|
}
|
|
|
|
|
|
|
|
} else {
|
|
|
|
Comment cmnt(masm_, "[ If");
|
|
|
|
ASSERT(!has_then_stm && !has_else_stm);
|
|
|
|
// if (cond)
|
|
|
|
LoadConditionAndSpill(node->condition(), &exit, &exit, false);
|
|
|
|
if (frame_ != NULL) {
|
|
|
|
if (has_cc()) {
|
|
|
|
cc_reg_ = al;
|
|
|
|
} else {
|
|
|
|
frame_->Drop();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// end
|
|
|
|
if (exit.is_linked()) {
|
|
|
|
exit.Bind();
|
|
|
|
}
|
|
|
|
ASSERT(!has_valid_frame() || frame_->height() == original_height);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitContinueStatement(ContinueStatement* node) {
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ ContinueStatement");
|
|
|
|
CodeForStatementPosition(node);
|
|
|
|
node->target()->continue_target()->Jump();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitBreakStatement(BreakStatement* node) {
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ BreakStatement");
|
|
|
|
CodeForStatementPosition(node);
|
|
|
|
node->target()->break_target()->Jump();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitReturnStatement(ReturnStatement* node) {
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ ReturnStatement");
|
|
|
|
|
|
|
|
CodeForStatementPosition(node);
|
|
|
|
LoadAndSpill(node->expression());
|
|
|
|
if (function_return_is_shadowed_) {
|
|
|
|
frame_->EmitPop(r0);
|
|
|
|
function_return_.Jump();
|
|
|
|
} else {
|
|
|
|
// Pop the result from the frame and prepare the frame for
|
|
|
|
// returning thus making it easier to merge.
|
|
|
|
frame_->EmitPop(r0);
|
|
|
|
frame_->PrepareForReturn();
|
|
|
|
|
|
|
|
function_return_.Jump();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ WithEnterStatement");
|
|
|
|
CodeForStatementPosition(node);
|
|
|
|
LoadAndSpill(node->expression());
|
|
|
|
if (node->is_catch_block()) {
|
|
|
|
frame_->CallRuntime(Runtime::kPushCatchContext, 1);
|
|
|
|
} else {
|
|
|
|
frame_->CallRuntime(Runtime::kPushContext, 1);
|
|
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
|
|
JumpTarget verified_true;
|
|
|
|
__ cmp(r0, Operand(cp));
|
|
|
|
verified_true.Branch(eq);
|
|
|
|
__ stop("PushContext: r0 is expected to be the same as cp");
|
|
|
|
verified_true.Bind();
|
|
|
|
#endif
|
|
|
|
// Update context local.
|
|
|
|
__ str(cp, frame_->Context());
|
|
|
|
ASSERT(frame_->height() == original_height);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitWithExitStatement(WithExitStatement* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ WithExitStatement");
|
|
|
|
CodeForStatementPosition(node);
|
|
|
|
// Pop context.
|
|
|
|
__ ldr(cp, ContextOperand(cp, Context::PREVIOUS_INDEX));
|
|
|
|
// Update context local.
|
|
|
|
__ str(cp, frame_->Context());
|
|
|
|
ASSERT(frame_->height() == original_height);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitSwitchStatement(SwitchStatement* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ SwitchStatement");
|
|
|
|
CodeForStatementPosition(node);
|
|
|
|
node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
|
|
|
|
|
|
|
LoadAndSpill(node->tag());
|
|
|
|
|
|
|
|
JumpTarget next_test;
|
|
|
|
JumpTarget fall_through;
|
|
|
|
JumpTarget default_entry;
|
|
|
|
JumpTarget default_exit(JumpTarget::BIDIRECTIONAL);
|
|
|
|
ZoneList<CaseClause*>* cases = node->cases();
|
|
|
|
int length = cases->length();
|
|
|
|
CaseClause* default_clause = NULL;
|
|
|
|
|
|
|
|
for (int i = 0; i < length; i++) {
|
|
|
|
CaseClause* clause = cases->at(i);
|
|
|
|
if (clause->is_default()) {
|
|
|
|
// Remember the default clause and compile it at the end.
|
|
|
|
default_clause = clause;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
Comment cmnt(masm_, "[ Case clause");
|
|
|
|
// Compile the test.
|
|
|
|
next_test.Bind();
|
|
|
|
next_test.Unuse();
|
|
|
|
// Duplicate TOS.
|
|
|
|
__ ldr(r0, frame_->Top());
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
Comparison(eq, NULL, clause->label(), true);
|
|
|
|
Branch(false, &next_test);
|
|
|
|
|
|
|
|
// Before entering the body from the test, remove the switch value from
|
|
|
|
// the stack.
|
|
|
|
frame_->Drop();
|
|
|
|
|
|
|
|
// Label the body so that fall through is enabled.
|
|
|
|
if (i > 0 && cases->at(i - 1)->is_default()) {
|
|
|
|
default_exit.Bind();
|
|
|
|
} else {
|
|
|
|
fall_through.Bind();
|
|
|
|
fall_through.Unuse();
|
|
|
|
}
|
|
|
|
VisitStatementsAndSpill(clause->statements());
|
|
|
|
|
|
|
|
// If control flow can fall through from the body, jump to the next body
|
|
|
|
// or the end of the statement.
|
|
|
|
if (frame_ != NULL) {
|
|
|
|
if (i < length - 1 && cases->at(i + 1)->is_default()) {
|
|
|
|
default_entry.Jump();
|
|
|
|
} else {
|
|
|
|
fall_through.Jump();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// The final "test" removes the switch value.
|
|
|
|
next_test.Bind();
|
|
|
|
frame_->Drop();
|
|
|
|
|
|
|
|
// If there is a default clause, compile it.
|
|
|
|
if (default_clause != NULL) {
|
|
|
|
Comment cmnt(masm_, "[ Default clause");
|
|
|
|
default_entry.Bind();
|
|
|
|
VisitStatementsAndSpill(default_clause->statements());
|
|
|
|
// If control flow can fall out of the default and there is a case after
|
|
|
|
// it, jup to that case's body.
|
|
|
|
if (frame_ != NULL && default_exit.is_bound()) {
|
|
|
|
default_exit.Jump();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (fall_through.is_linked()) {
|
|
|
|
fall_through.Bind();
|
|
|
|
}
|
|
|
|
|
|
|
|
if (node->break_target()->is_linked()) {
|
|
|
|
node->break_target()->Bind();
|
|
|
|
}
|
|
|
|
node->break_target()->Unuse();
|
|
|
|
ASSERT(!has_valid_frame() || frame_->height() == original_height);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitDoWhileStatement(DoWhileStatement* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ DoWhileStatement");
|
|
|
|
CodeForStatementPosition(node);
|
|
|
|
node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
|
|
|
JumpTarget body(JumpTarget::BIDIRECTIONAL);
|
|
|
|
|
|
|
|
// Label the top of the loop for the backward CFG edge. If the test
|
|
|
|
// is always true we can use the continue target, and if the test is
|
|
|
|
// always false there is no need.
|
|
|
|
ConditionAnalysis info = AnalyzeCondition(node->cond());
|
|
|
|
switch (info) {
|
|
|
|
case ALWAYS_TRUE:
|
|
|
|
node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
|
|
|
|
node->continue_target()->Bind();
|
|
|
|
break;
|
|
|
|
case ALWAYS_FALSE:
|
|
|
|
node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
|
|
|
break;
|
|
|
|
case DONT_KNOW:
|
|
|
|
node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
|
|
|
body.Bind();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
CheckStack(); // TODO(1222600): ignore if body contains calls.
|
|
|
|
VisitAndSpill(node->body());
|
|
|
|
|
|
|
|
// Compile the test.
|
|
|
|
switch (info) {
|
|
|
|
case ALWAYS_TRUE:
|
|
|
|
// If control can fall off the end of the body, jump back to the
|
|
|
|
// top.
|
|
|
|
if (has_valid_frame()) {
|
|
|
|
node->continue_target()->Jump();
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case ALWAYS_FALSE:
|
|
|
|
// If we have a continue in the body, we only have to bind its
|
|
|
|
// jump target.
|
|
|
|
if (node->continue_target()->is_linked()) {
|
|
|
|
node->continue_target()->Bind();
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case DONT_KNOW:
|
|
|
|
// We have to compile the test expression if it can be reached by
|
|
|
|
// control flow falling out of the body or via continue.
|
|
|
|
if (node->continue_target()->is_linked()) {
|
|
|
|
node->continue_target()->Bind();
|
|
|
|
}
|
|
|
|
if (has_valid_frame()) {
|
|
|
|
Comment cmnt(masm_, "[ DoWhileCondition");
|
|
|
|
CodeForDoWhileConditionPosition(node);
|
|
|
|
LoadConditionAndSpill(node->cond(), &body, node->break_target(), true);
|
|
|
|
if (has_valid_frame()) {
|
|
|
|
// A invalid frame here indicates that control did not
|
|
|
|
// fall out of the test expression.
|
|
|
|
Branch(true, &body);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (node->break_target()->is_linked()) {
|
|
|
|
node->break_target()->Bind();
|
|
|
|
}
|
|
|
|
ASSERT(!has_valid_frame() || frame_->height() == original_height);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitWhileStatement(WhileStatement* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ WhileStatement");
|
|
|
|
CodeForStatementPosition(node);
|
|
|
|
|
|
|
|
// If the test is never true and has no side effects there is no need
|
|
|
|
// to compile the test or body.
|
|
|
|
ConditionAnalysis info = AnalyzeCondition(node->cond());
|
|
|
|
if (info == ALWAYS_FALSE) return;
|
|
|
|
|
|
|
|
node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
|
|
|
|
|
|
|
// Label the top of the loop with the continue target for the backward
|
|
|
|
// CFG edge.
|
|
|
|
node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
|
|
|
|
node->continue_target()->Bind();
|
|
|
|
|
|
|
|
if (info == DONT_KNOW) {
|
|
|
|
JumpTarget body;
|
|
|
|
LoadConditionAndSpill(node->cond(), &body, node->break_target(), true);
|
|
|
|
if (has_valid_frame()) {
|
|
|
|
// A NULL frame indicates that control did not fall out of the
|
|
|
|
// test expression.
|
|
|
|
Branch(false, node->break_target());
|
|
|
|
}
|
|
|
|
if (has_valid_frame() || body.is_linked()) {
|
|
|
|
body.Bind();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (has_valid_frame()) {
|
|
|
|
CheckStack(); // TODO(1222600): ignore if body contains calls.
|
|
|
|
VisitAndSpill(node->body());
|
|
|
|
|
|
|
|
// If control flow can fall out of the body, jump back to the top.
|
|
|
|
if (has_valid_frame()) {
|
|
|
|
node->continue_target()->Jump();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (node->break_target()->is_linked()) {
|
|
|
|
node->break_target()->Bind();
|
|
|
|
}
|
|
|
|
ASSERT(!has_valid_frame() || frame_->height() == original_height);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitForStatement(ForStatement* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ ForStatement");
|
|
|
|
CodeForStatementPosition(node);
|
|
|
|
if (node->init() != NULL) {
|
|
|
|
VisitAndSpill(node->init());
|
|
|
|
}
|
|
|
|
|
|
|
|
// If the test is never true there is no need to compile the test or
|
|
|
|
// body.
|
|
|
|
ConditionAnalysis info = AnalyzeCondition(node->cond());
|
|
|
|
if (info == ALWAYS_FALSE) return;
|
|
|
|
|
|
|
|
node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
|
|
|
|
|
|
|
// If there is no update statement, label the top of the loop with the
|
|
|
|
// continue target, otherwise with the loop target.
|
|
|
|
JumpTarget loop(JumpTarget::BIDIRECTIONAL);
|
|
|
|
if (node->next() == NULL) {
|
|
|
|
node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
|
|
|
|
node->continue_target()->Bind();
|
|
|
|
} else {
|
|
|
|
node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
|
|
|
loop.Bind();
|
|
|
|
}
|
|
|
|
|
|
|
|
// If the test is always true, there is no need to compile it.
|
|
|
|
if (info == DONT_KNOW) {
|
|
|
|
JumpTarget body;
|
|
|
|
LoadConditionAndSpill(node->cond(), &body, node->break_target(), true);
|
|
|
|
if (has_valid_frame()) {
|
|
|
|
Branch(false, node->break_target());
|
|
|
|
}
|
|
|
|
if (has_valid_frame() || body.is_linked()) {
|
|
|
|
body.Bind();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (has_valid_frame()) {
|
|
|
|
CheckStack(); // TODO(1222600): ignore if body contains calls.
|
|
|
|
VisitAndSpill(node->body());
|
|
|
|
|
|
|
|
if (node->next() == NULL) {
|
|
|
|
// If there is no update statement and control flow can fall out
|
|
|
|
// of the loop, jump directly to the continue label.
|
|
|
|
if (has_valid_frame()) {
|
|
|
|
node->continue_target()->Jump();
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// If there is an update statement and control flow can reach it
|
|
|
|
// via falling out of the body of the loop or continuing, we
|
|
|
|
// compile the update statement.
|
|
|
|
if (node->continue_target()->is_linked()) {
|
|
|
|
node->continue_target()->Bind();
|
|
|
|
}
|
|
|
|
if (has_valid_frame()) {
|
|
|
|
// Record source position of the statement as this code which is
|
|
|
|
// after the code for the body actually belongs to the loop
|
|
|
|
// statement and not the body.
|
|
|
|
CodeForStatementPosition(node);
|
|
|
|
VisitAndSpill(node->next());
|
|
|
|
loop.Jump();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (node->break_target()->is_linked()) {
|
|
|
|
node->break_target()->Bind();
|
|
|
|
}
|
|
|
|
ASSERT(!has_valid_frame() || frame_->height() == original_height);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitForInStatement(ForInStatement* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ ForInStatement");
|
|
|
|
CodeForStatementPosition(node);
|
|
|
|
|
|
|
|
JumpTarget primitive;
|
|
|
|
JumpTarget jsobject;
|
|
|
|
JumpTarget fixed_array;
|
|
|
|
JumpTarget entry(JumpTarget::BIDIRECTIONAL);
|
|
|
|
JumpTarget end_del_check;
|
|
|
|
JumpTarget exit;
|
|
|
|
|
|
|
|
// Get the object to enumerate over (converted to JSObject).
|
|
|
|
LoadAndSpill(node->enumerable());
|
|
|
|
|
|
|
|
// Both SpiderMonkey and kjs ignore null and undefined in contrast
|
|
|
|
// to the specification. 12.6.4 mandates a call to ToObject.
|
|
|
|
frame_->EmitPop(r0);
|
|
|
|
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
|
|
|
|
__ cmp(r0, ip);
|
|
|
|
exit.Branch(eq);
|
|
|
|
__ LoadRoot(ip, Heap::kNullValueRootIndex);
|
|
|
|
__ cmp(r0, ip);
|
|
|
|
exit.Branch(eq);
|
|
|
|
|
|
|
|
// Stack layout in body:
|
|
|
|
// [iteration counter (Smi)]
|
|
|
|
// [length of array]
|
|
|
|
// [FixedArray]
|
|
|
|
// [Map or 0]
|
|
|
|
// [Object]
|
|
|
|
|
|
|
|
// Check if enumerable is already a JSObject
|
|
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
|
|
primitive.Branch(eq);
|
|
|
|
__ CompareObjectType(r0, r1, r1, FIRST_JS_OBJECT_TYPE);
|
|
|
|
jsobject.Branch(hs);
|
|
|
|
|
|
|
|
primitive.Bind();
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
frame_->InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS, 1);
|
|
|
|
|
|
|
|
jsobject.Bind();
|
|
|
|
// Get the set of properties (as a FixedArray or Map).
|
|
|
|
// r0: value to be iterated over
|
|
|
|
frame_->EmitPush(r0); // Push the object being iterated over.
|
|
|
|
|
|
|
|
// Check cache validity in generated code. This is a fast case for
|
|
|
|
// the JSObject::IsSimpleEnum cache validity checks. If we cannot
|
|
|
|
// guarantee cache validity, call the runtime system to check cache
|
|
|
|
// validity or get the property names in a fixed array.
|
|
|
|
JumpTarget call_runtime;
|
|
|
|
JumpTarget loop(JumpTarget::BIDIRECTIONAL);
|
|
|
|
JumpTarget check_prototype;
|
|
|
|
JumpTarget use_cache;
|
|
|
|
__ mov(r1, Operand(r0));
|
|
|
|
loop.Bind();
|
|
|
|
// Check that there are no elements.
|
|
|
|
__ ldr(r2, FieldMemOperand(r1, JSObject::kElementsOffset));
|
|
|
|
__ LoadRoot(r4, Heap::kEmptyFixedArrayRootIndex);
|
|
|
|
__ cmp(r2, r4);
|
|
|
|
call_runtime.Branch(ne);
|
|
|
|
// Check that instance descriptors are not empty so that we can
|
|
|
|
// check for an enum cache. Leave the map in r3 for the subsequent
|
|
|
|
// prototype load.
|
|
|
|
__ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset));
|
|
|
|
__ ldr(r2, FieldMemOperand(r3, Map::kInstanceDescriptorsOffset));
|
|
|
|
__ LoadRoot(ip, Heap::kEmptyDescriptorArrayRootIndex);
|
|
|
|
__ cmp(r2, ip);
|
|
|
|
call_runtime.Branch(eq);
|
|
|
|
// Check that there in an enum cache in the non-empty instance
|
|
|
|
// descriptors. This is the case if the next enumeration index
|
|
|
|
// field does not contain a smi.
|
|
|
|
__ ldr(r2, FieldMemOperand(r2, DescriptorArray::kEnumerationIndexOffset));
|
|
|
|
__ tst(r2, Operand(kSmiTagMask));
|
|
|
|
call_runtime.Branch(eq);
|
|
|
|
// For all objects but the receiver, check that the cache is empty.
|
|
|
|
// r4: empty fixed array root.
|
|
|
|
__ cmp(r1, r0);
|
|
|
|
check_prototype.Branch(eq);
|
|
|
|
__ ldr(r2, FieldMemOperand(r2, DescriptorArray::kEnumCacheBridgeCacheOffset));
|
|
|
|
__ cmp(r2, r4);
|
|
|
|
call_runtime.Branch(ne);
|
|
|
|
check_prototype.Bind();
|
|
|
|
// Load the prototype from the map and loop if non-null.
|
|
|
|
__ ldr(r1, FieldMemOperand(r3, Map::kPrototypeOffset));
|
|
|
|
__ LoadRoot(ip, Heap::kNullValueRootIndex);
|
|
|
|
__ cmp(r1, ip);
|
|
|
|
loop.Branch(ne);
|
|
|
|
// The enum cache is valid. Load the map of the object being
|
|
|
|
// iterated over and use the cache for the iteration.
|
|
|
|
__ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset));
|
|
|
|
use_cache.Jump();
|
|
|
|
|
|
|
|
call_runtime.Bind();
|
|
|
|
// Call the runtime to get the property names for the object.
|
|
|
|
frame_->EmitPush(r0); // push the object (slot 4) for the runtime call
|
|
|
|
frame_->CallRuntime(Runtime::kGetPropertyNamesFast, 1);
|
|
|
|
|
|
|
|
// If we got a map from the runtime call, we can do a fast
|
|
|
|
// modification check. Otherwise, we got a fixed array, and we have
|
|
|
|
// to do a slow check.
|
|
|
|
// r0: map or fixed array (result from call to
|
|
|
|
// Runtime::kGetPropertyNamesFast)
|
|
|
|
__ mov(r2, Operand(r0));
|
|
|
|
__ ldr(r1, FieldMemOperand(r2, HeapObject::kMapOffset));
|
|
|
|
__ LoadRoot(ip, Heap::kMetaMapRootIndex);
|
|
|
|
__ cmp(r1, ip);
|
|
|
|
fixed_array.Branch(ne);
|
|
|
|
|
|
|
|
use_cache.Bind();
|
|
|
|
// Get enum cache
|
|
|
|
// r0: map (either the result from a call to
|
|
|
|
// Runtime::kGetPropertyNamesFast or has been fetched directly from
|
|
|
|
// the object)
|
|
|
|
__ mov(r1, Operand(r0));
|
|
|
|
__ ldr(r1, FieldMemOperand(r1, Map::kInstanceDescriptorsOffset));
|
|
|
|
__ ldr(r1, FieldMemOperand(r1, DescriptorArray::kEnumerationIndexOffset));
|
|
|
|
__ ldr(r2,
|
|
|
|
FieldMemOperand(r1, DescriptorArray::kEnumCacheBridgeCacheOffset));
|
|
|
|
|
|
|
|
frame_->EmitPush(r0); // map
|
|
|
|
frame_->EmitPush(r2); // enum cache bridge cache
|
|
|
|
__ ldr(r0, FieldMemOperand(r2, FixedArray::kLengthOffset));
|
|
|
|
__ mov(r0, Operand(r0, LSL, kSmiTagSize));
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
__ mov(r0, Operand(Smi::FromInt(0)));
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
entry.Jump();
|
|
|
|
|
|
|
|
fixed_array.Bind();
|
|
|
|
__ mov(r1, Operand(Smi::FromInt(0)));
|
|
|
|
frame_->EmitPush(r1); // insert 0 in place of Map
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
|
|
|
|
// Push the length of the array and the initial index onto the stack.
|
|
|
|
__ ldr(r0, FieldMemOperand(r0, FixedArray::kLengthOffset));
|
|
|
|
__ mov(r0, Operand(r0, LSL, kSmiTagSize));
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
__ mov(r0, Operand(Smi::FromInt(0))); // init index
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
|
|
|
|
// Condition.
|
|
|
|
entry.Bind();
|
|
|
|
// sp[0] : index
|
|
|
|
// sp[1] : array/enum cache length
|
|
|
|
// sp[2] : array or enum cache
|
|
|
|
// sp[3] : 0 or map
|
|
|
|
// sp[4] : enumerable
|
|
|
|
// Grab the current frame's height for the break and continue
|
|
|
|
// targets only after all the state is pushed on the frame.
|
|
|
|
node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
|
|
|
node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
|
|
|
|
|
|
|
__ ldr(r0, frame_->ElementAt(0)); // load the current count
|
|
|
|
__ ldr(r1, frame_->ElementAt(1)); // load the length
|
|
|
|
__ cmp(r0, Operand(r1)); // compare to the array length
|
|
|
|
node->break_target()->Branch(hs);
|
|
|
|
|
|
|
|
__ ldr(r0, frame_->ElementAt(0));
|
|
|
|
|
|
|
|
// Get the i'th entry of the array.
|
|
|
|
__ ldr(r2, frame_->ElementAt(2));
|
|
|
|
__ add(r2, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
|
|
|
|
__ ldr(r3, MemOperand(r2, r0, LSL, kPointerSizeLog2 - kSmiTagSize));
|
|
|
|
|
|
|
|
// Get Map or 0.
|
|
|
|
__ ldr(r2, frame_->ElementAt(3));
|
|
|
|
// Check if this (still) matches the map of the enumerable.
|
|
|
|
// If not, we have to filter the key.
|
|
|
|
__ ldr(r1, frame_->ElementAt(4));
|
|
|
|
__ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset));
|
|
|
|
__ cmp(r1, Operand(r2));
|
|
|
|
end_del_check.Branch(eq);
|
|
|
|
|
|
|
|
// Convert the entry to a string (or null if it isn't a property anymore).
|
|
|
|
__ ldr(r0, frame_->ElementAt(4)); // push enumerable
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
frame_->EmitPush(r3); // push entry
|
|
|
|
frame_->InvokeBuiltin(Builtins::FILTER_KEY, CALL_JS, 2);
|
|
|
|
__ mov(r3, Operand(r0));
|
|
|
|
|
|
|
|
// If the property has been removed while iterating, we just skip it.
|
|
|
|
__ LoadRoot(ip, Heap::kNullValueRootIndex);
|
|
|
|
__ cmp(r3, ip);
|
|
|
|
node->continue_target()->Branch(eq);
|
|
|
|
|
|
|
|
end_del_check.Bind();
|
|
|
|
// Store the entry in the 'each' expression and take another spin in the
|
|
|
|
// loop. r3: i'th entry of the enum cache (or string there of)
|
|
|
|
frame_->EmitPush(r3); // push entry
|
|
|
|
{ Reference each(this, node->each());
|
|
|
|
if (!each.is_illegal()) {
|
|
|
|
if (each.size() > 0) {
|
|
|
|
__ ldr(r0, frame_->ElementAt(each.size()));
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
}
|
|
|
|
// If the reference was to a slot we rely on the convenient property
|
|
|
|
// that it doesn't matter whether a value (eg, r3 pushed above) is
|
|
|
|
// right on top of or right underneath a zero-sized reference.
|
|
|
|
each.SetValue(NOT_CONST_INIT);
|
|
|
|
if (each.size() > 0) {
|
|
|
|
// It's safe to pop the value lying on top of the reference before
|
|
|
|
// unloading the reference itself (which preserves the top of stack,
|
|
|
|
// ie, now the topmost value of the non-zero sized reference), since
|
|
|
|
// we will discard the top of stack after unloading the reference
|
|
|
|
// anyway.
|
|
|
|
frame_->EmitPop(r0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Discard the i'th entry pushed above or else the remainder of the
|
|
|
|
// reference, whichever is currently on top of the stack.
|
|
|
|
frame_->Drop();
|
|
|
|
|
|
|
|
// Body.
|
|
|
|
CheckStack(); // TODO(1222600): ignore if body contains calls.
|
|
|
|
VisitAndSpill(node->body());
|
|
|
|
|
|
|
|
// Next. Reestablish a spilled frame in case we are coming here via
|
|
|
|
// a continue in the body.
|
|
|
|
node->continue_target()->Bind();
|
|
|
|
frame_->SpillAll();
|
|
|
|
frame_->EmitPop(r0);
|
|
|
|
__ add(r0, r0, Operand(Smi::FromInt(1)));
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
entry.Jump();
|
|
|
|
|
|
|
|
// Cleanup. No need to spill because VirtualFrame::Drop is safe for
|
|
|
|
// any frame.
|
|
|
|
node->break_target()->Bind();
|
|
|
|
frame_->Drop(5);
|
|
|
|
|
|
|
|
// Exit.
|
|
|
|
exit.Bind();
|
|
|
|
node->continue_target()->Unuse();
|
|
|
|
node->break_target()->Unuse();
|
|
|
|
ASSERT(frame_->height() == original_height);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ TryCatchStatement");
|
|
|
|
CodeForStatementPosition(node);
|
|
|
|
|
|
|
|
JumpTarget try_block;
|
|
|
|
JumpTarget exit;
|
|
|
|
|
|
|
|
try_block.Call();
|
|
|
|
// --- Catch block ---
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
|
|
|
|
// Store the caught exception in the catch variable.
|
|
|
|
{ Reference ref(this, node->catch_var());
|
|
|
|
ASSERT(ref.is_slot());
|
|
|
|
// Here we make use of the convenient property that it doesn't matter
|
|
|
|
// whether a value is immediately on top of or underneath a zero-sized
|
|
|
|
// reference.
|
|
|
|
ref.SetValue(NOT_CONST_INIT);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Remove the exception from the stack.
|
|
|
|
frame_->Drop();
|
|
|
|
|
|
|
|
VisitStatementsAndSpill(node->catch_block()->statements());
|
|
|
|
if (frame_ != NULL) {
|
|
|
|
exit.Jump();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// --- Try block ---
|
|
|
|
try_block.Bind();
|
|
|
|
|
|
|
|
frame_->PushTryHandler(TRY_CATCH_HANDLER);
|
|
|
|
int handler_height = frame_->height();
|
|
|
|
|
|
|
|
// Shadow the labels for all escapes from the try block, including
|
|
|
|
// returns. During shadowing, the original label is hidden as the
|
|
|
|
// LabelShadow and operations on the original actually affect the
|
|
|
|
// shadowing label.
|
|
|
|
//
|
|
|
|
// We should probably try to unify the escaping labels and the return
|
|
|
|
// label.
|
|
|
|
int nof_escapes = node->escaping_targets()->length();
|
|
|
|
List<ShadowTarget*> shadows(1 + nof_escapes);
|
|
|
|
|
|
|
|
// Add the shadow target for the function return.
|
|
|
|
static const int kReturnShadowIndex = 0;
|
|
|
|
shadows.Add(new ShadowTarget(&function_return_));
|
|
|
|
bool function_return_was_shadowed = function_return_is_shadowed_;
|
|
|
|
function_return_is_shadowed_ = true;
|
|
|
|
ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_);
|
|
|
|
|
|
|
|
// Add the remaining shadow targets.
|
|
|
|
for (int i = 0; i < nof_escapes; i++) {
|
|
|
|
shadows.Add(new ShadowTarget(node->escaping_targets()->at(i)));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Generate code for the statements in the try block.
|
|
|
|
VisitStatementsAndSpill(node->try_block()->statements());
|
|
|
|
|
|
|
|
// Stop the introduced shadowing and count the number of required unlinks.
|
|
|
|
// After shadowing stops, the original labels are unshadowed and the
|
|
|
|
// LabelShadows represent the formerly shadowing labels.
|
|
|
|
bool has_unlinks = false;
|
|
|
|
for (int i = 0; i < shadows.length(); i++) {
|
|
|
|
shadows[i]->StopShadowing();
|
|
|
|
has_unlinks = has_unlinks || shadows[i]->is_linked();
|
|
|
|
}
|
|
|
|
function_return_is_shadowed_ = function_return_was_shadowed;
|
|
|
|
|
|
|
|
// Get an external reference to the handler address.
|
|
|
|
ExternalReference handler_address(Top::k_handler_address);
|
|
|
|
|
|
|
|
// If we can fall off the end of the try block, unlink from try chain.
|
|
|
|
if (has_valid_frame()) {
|
|
|
|
// The next handler address is on top of the frame. Unlink from
|
|
|
|
// the handler list and drop the rest of this handler from the
|
|
|
|
// frame.
|
|
|
|
ASSERT(StackHandlerConstants::kNextOffset == 0);
|
|
|
|
frame_->EmitPop(r1);
|
|
|
|
__ mov(r3, Operand(handler_address));
|
|
|
|
__ str(r1, MemOperand(r3));
|
|
|
|
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
|
|
|
|
if (has_unlinks) {
|
|
|
|
exit.Jump();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Generate unlink code for the (formerly) shadowing labels that have been
|
|
|
|
// jumped to. Deallocate each shadow target.
|
|
|
|
for (int i = 0; i < shadows.length(); i++) {
|
|
|
|
if (shadows[i]->is_linked()) {
|
|
|
|
// Unlink from try chain;
|
|
|
|
shadows[i]->Bind();
|
|
|
|
// Because we can be jumping here (to spilled code) from unspilled
|
|
|
|
// code, we need to reestablish a spilled frame at this block.
|
|
|
|
frame_->SpillAll();
|
|
|
|
|
|
|
|
// Reload sp from the top handler, because some statements that we
|
|
|
|
// break from (eg, for...in) may have left stuff on the stack.
|
|
|
|
__ mov(r3, Operand(handler_address));
|
|
|
|
__ ldr(sp, MemOperand(r3));
|
|
|
|
frame_->Forget(frame_->height() - handler_height);
|
|
|
|
|
|
|
|
ASSERT(StackHandlerConstants::kNextOffset == 0);
|
|
|
|
frame_->EmitPop(r1);
|
|
|
|
__ str(r1, MemOperand(r3));
|
|
|
|
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
|
|
|
|
|
|
|
|
if (!function_return_is_shadowed_ && i == kReturnShadowIndex) {
|
|
|
|
frame_->PrepareForReturn();
|
|
|
|
}
|
|
|
|
shadows[i]->other_target()->Jump();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
exit.Bind();
|
|
|
|
ASSERT(!has_valid_frame() || frame_->height() == original_height);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ TryFinallyStatement");
|
|
|
|
CodeForStatementPosition(node);
|
|
|
|
|
|
|
|
// State: Used to keep track of reason for entering the finally
|
|
|
|
// block. Should probably be extended to hold information for
|
|
|
|
// break/continue from within the try block.
|
|
|
|
enum { FALLING, THROWING, JUMPING };
|
|
|
|
|
|
|
|
JumpTarget try_block;
|
|
|
|
JumpTarget finally_block;
|
|
|
|
|
|
|
|
try_block.Call();
|
|
|
|
|
|
|
|
frame_->EmitPush(r0); // save exception object on the stack
|
|
|
|
// In case of thrown exceptions, this is where we continue.
|
|
|
|
__ mov(r2, Operand(Smi::FromInt(THROWING)));
|
|
|
|
finally_block.Jump();
|
|
|
|
|
|
|
|
// --- Try block ---
|
|
|
|
try_block.Bind();
|
|
|
|
|
|
|
|
frame_->PushTryHandler(TRY_FINALLY_HANDLER);
|
|
|
|
int handler_height = frame_->height();
|
|
|
|
|
|
|
|
// Shadow the labels for all escapes from the try block, including
|
|
|
|
// returns. Shadowing hides the original label as the LabelShadow and
|
|
|
|
// operations on the original actually affect the shadowing label.
|
|
|
|
//
|
|
|
|
// We should probably try to unify the escaping labels and the return
|
|
|
|
// label.
|
|
|
|
int nof_escapes = node->escaping_targets()->length();
|
|
|
|
List<ShadowTarget*> shadows(1 + nof_escapes);
|
|
|
|
|
|
|
|
// Add the shadow target for the function return.
|
|
|
|
static const int kReturnShadowIndex = 0;
|
|
|
|
shadows.Add(new ShadowTarget(&function_return_));
|
|
|
|
bool function_return_was_shadowed = function_return_is_shadowed_;
|
|
|
|
function_return_is_shadowed_ = true;
|
|
|
|
ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_);
|
|
|
|
|
|
|
|
// Add the remaining shadow targets.
|
|
|
|
for (int i = 0; i < nof_escapes; i++) {
|
|
|
|
shadows.Add(new ShadowTarget(node->escaping_targets()->at(i)));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Generate code for the statements in the try block.
|
|
|
|
VisitStatementsAndSpill(node->try_block()->statements());
|
|
|
|
|
|
|
|
// Stop the introduced shadowing and count the number of required unlinks.
|
|
|
|
// After shadowing stops, the original labels are unshadowed and the
|
|
|
|
// LabelShadows represent the formerly shadowing labels.
|
|
|
|
int nof_unlinks = 0;
|
|
|
|
for (int i = 0; i < shadows.length(); i++) {
|
|
|
|
shadows[i]->StopShadowing();
|
|
|
|
if (shadows[i]->is_linked()) nof_unlinks++;
|
|
|
|
}
|
|
|
|
function_return_is_shadowed_ = function_return_was_shadowed;
|
|
|
|
|
|
|
|
// Get an external reference to the handler address.
|
|
|
|
ExternalReference handler_address(Top::k_handler_address);
|
|
|
|
|
|
|
|
// If we can fall off the end of the try block, unlink from the try
|
|
|
|
// chain and set the state on the frame to FALLING.
|
|
|
|
if (has_valid_frame()) {
|
|
|
|
// The next handler address is on top of the frame.
|
|
|
|
ASSERT(StackHandlerConstants::kNextOffset == 0);
|
|
|
|
frame_->EmitPop(r1);
|
|
|
|
__ mov(r3, Operand(handler_address));
|
|
|
|
__ str(r1, MemOperand(r3));
|
|
|
|
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
|
|
|
|
|
|
|
|
// Fake a top of stack value (unneeded when FALLING) and set the
|
|
|
|
// state in r2, then jump around the unlink blocks if any.
|
|
|
|
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
__ mov(r2, Operand(Smi::FromInt(FALLING)));
|
|
|
|
if (nof_unlinks > 0) {
|
|
|
|
finally_block.Jump();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Generate code to unlink and set the state for the (formerly)
|
|
|
|
// shadowing targets that have been jumped to.
|
|
|
|
for (int i = 0; i < shadows.length(); i++) {
|
|
|
|
if (shadows[i]->is_linked()) {
|
|
|
|
// If we have come from the shadowed return, the return value is
|
|
|
|
// in (a non-refcounted reference to) r0. We must preserve it
|
|
|
|
// until it is pushed.
|
|
|
|
//
|
|
|
|
// Because we can be jumping here (to spilled code) from
|
|
|
|
// unspilled code, we need to reestablish a spilled frame at
|
|
|
|
// this block.
|
|
|
|
shadows[i]->Bind();
|
|
|
|
frame_->SpillAll();
|
|
|
|
|
|
|
|
// Reload sp from the top handler, because some statements that
|
|
|
|
// we break from (eg, for...in) may have left stuff on the
|
|
|
|
// stack.
|
|
|
|
__ mov(r3, Operand(handler_address));
|
|
|
|
__ ldr(sp, MemOperand(r3));
|
|
|
|
frame_->Forget(frame_->height() - handler_height);
|
|
|
|
|
|
|
|
// Unlink this handler and drop it from the frame. The next
|
|
|
|
// handler address is currently on top of the frame.
|
|
|
|
ASSERT(StackHandlerConstants::kNextOffset == 0);
|
|
|
|
frame_->EmitPop(r1);
|
|
|
|
__ str(r1, MemOperand(r3));
|
|
|
|
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
|
|
|
|
|
|
|
|
if (i == kReturnShadowIndex) {
|
|
|
|
// If this label shadowed the function return, materialize the
|
|
|
|
// return value on the stack.
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
} else {
|
|
|
|
// Fake TOS for targets that shadowed breaks and continues.
|
|
|
|
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
}
|
|
|
|
__ mov(r2, Operand(Smi::FromInt(JUMPING + i)));
|
|
|
|
if (--nof_unlinks > 0) {
|
|
|
|
// If this is not the last unlink block, jump around the next.
|
|
|
|
finally_block.Jump();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// --- Finally block ---
|
|
|
|
finally_block.Bind();
|
|
|
|
|
|
|
|
// Push the state on the stack.
|
|
|
|
frame_->EmitPush(r2);
|
|
|
|
|
|
|
|
// We keep two elements on the stack - the (possibly faked) result
|
|
|
|
// and the state - while evaluating the finally block.
|
|
|
|
//
|
|
|
|
// Generate code for the statements in the finally block.
|
|
|
|
VisitStatementsAndSpill(node->finally_block()->statements());
|
|
|
|
|
|
|
|
if (has_valid_frame()) {
|
|
|
|
// Restore state and return value or faked TOS.
|
|
|
|
frame_->EmitPop(r2);
|
|
|
|
frame_->EmitPop(r0);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Generate code to jump to the right destination for all used
|
|
|
|
// formerly shadowing targets. Deallocate each shadow target.
|
|
|
|
for (int i = 0; i < shadows.length(); i++) {
|
|
|
|
if (has_valid_frame() && shadows[i]->is_bound()) {
|
|
|
|
JumpTarget* original = shadows[i]->other_target();
|
|
|
|
__ cmp(r2, Operand(Smi::FromInt(JUMPING + i)));
|
|
|
|
if (!function_return_is_shadowed_ && i == kReturnShadowIndex) {
|
|
|
|
JumpTarget skip;
|
|
|
|
skip.Branch(ne);
|
|
|
|
frame_->PrepareForReturn();
|
|
|
|
original->Jump();
|
|
|
|
skip.Bind();
|
|
|
|
} else {
|
|
|
|
original->Branch(eq);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (has_valid_frame()) {
|
|
|
|
// Check if we need to rethrow the exception.
|
|
|
|
JumpTarget exit;
|
|
|
|
__ cmp(r2, Operand(Smi::FromInt(THROWING)));
|
|
|
|
exit.Branch(ne);
|
|
|
|
|
|
|
|
// Rethrow exception.
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
frame_->CallRuntime(Runtime::kReThrow, 1);
|
|
|
|
|
|
|
|
// Done.
|
|
|
|
exit.Bind();
|
|
|
|
}
|
|
|
|
ASSERT(!has_valid_frame() || frame_->height() == original_height);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitDebuggerStatement(DebuggerStatement* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ DebuggerStatament");
|
|
|
|
CodeForStatementPosition(node);
|
|
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
|
|
frame_->CallRuntime(Runtime::kDebugBreak, 0);
|
|
|
|
#endif
|
|
|
|
// Ignore the return value.
|
|
|
|
ASSERT(frame_->height() == original_height);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::InstantiateBoilerplate(Handle<JSFunction> boilerplate) {
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
ASSERT(boilerplate->IsBoilerplate());
|
|
|
|
|
|
|
|
// Create a new closure.
|
|
|
|
frame_->EmitPush(cp);
|
|
|
|
__ mov(r0, Operand(boilerplate));
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
frame_->CallRuntime(Runtime::kNewClosure, 2);
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ FunctionLiteral");
|
|
|
|
|
|
|
|
// Build the function boilerplate and instantiate it.
|
|
|
|
Handle<JSFunction> boilerplate =
|
|
|
|
Compiler::BuildBoilerplate(node, script_, this);
|
|
|
|
// Check for stack-overflow exception.
|
|
|
|
if (HasStackOverflow()) {
|
|
|
|
ASSERT(frame_->height() == original_height);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
InstantiateBoilerplate(boilerplate);
|
|
|
|
ASSERT(frame_->height() == original_height + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitFunctionBoilerplateLiteral(
|
|
|
|
FunctionBoilerplateLiteral* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ FunctionBoilerplateLiteral");
|
|
|
|
InstantiateBoilerplate(node->boilerplate());
|
|
|
|
ASSERT(frame_->height() == original_height + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitConditional(Conditional* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ Conditional");
|
|
|
|
JumpTarget then;
|
|
|
|
JumpTarget else_;
|
|
|
|
LoadConditionAndSpill(node->condition(), &then, &else_, true);
|
|
|
|
if (has_valid_frame()) {
|
|
|
|
Branch(false, &else_);
|
|
|
|
}
|
|
|
|
if (has_valid_frame() || then.is_linked()) {
|
|
|
|
then.Bind();
|
|
|
|
LoadAndSpill(node->then_expression());
|
|
|
|
}
|
|
|
|
if (else_.is_linked()) {
|
|
|
|
JumpTarget exit;
|
|
|
|
if (has_valid_frame()) exit.Jump();
|
|
|
|
else_.Bind();
|
|
|
|
LoadAndSpill(node->else_expression());
|
|
|
|
if (exit.is_linked()) exit.Bind();
|
|
|
|
}
|
|
|
|
ASSERT(frame_->height() == original_height + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) {
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
if (slot->type() == Slot::LOOKUP) {
|
|
|
|
ASSERT(slot->var()->is_dynamic());
|
|
|
|
|
|
|
|
JumpTarget slow;
|
|
|
|
JumpTarget done;
|
|
|
|
|
|
|
|
// Generate fast-case code for variables that might be shadowed by
|
|
|
|
// eval-introduced variables. Eval is used a lot without
|
|
|
|
// introducing variables. In those cases, we do not want to
|
|
|
|
// perform a runtime call for all variables in the scope
|
|
|
|
// containing the eval.
|
|
|
|
if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) {
|
|
|
|
LoadFromGlobalSlotCheckExtensions(slot, typeof_state, r1, r2, &slow);
|
|
|
|
// If there was no control flow to slow, we can exit early.
|
|
|
|
if (!slow.is_linked()) {
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
done.Jump();
|
|
|
|
|
|
|
|
} else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) {
|
|
|
|
Slot* potential_slot = slot->var()->local_if_not_shadowed()->slot();
|
|
|
|
// Only generate the fast case for locals that rewrite to slots.
|
|
|
|
// This rules out argument loads.
|
|
|
|
if (potential_slot != NULL) {
|
|
|
|
__ ldr(r0,
|
|
|
|
ContextSlotOperandCheckExtensions(potential_slot,
|
|
|
|
r1,
|
|
|
|
r2,
|
|
|
|
&slow));
|
|
|
|
if (potential_slot->var()->mode() == Variable::CONST) {
|
|
|
|
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
|
|
|
|
__ cmp(r0, ip);
|
|
|
|
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex, eq);
|
|
|
|
}
|
|
|
|
// There is always control flow to slow from
|
|
|
|
// ContextSlotOperandCheckExtensions so we have to jump around
|
|
|
|
// it.
|
|
|
|
done.Jump();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
slow.Bind();
|
|
|
|
frame_->EmitPush(cp);
|
|
|
|
__ mov(r0, Operand(slot->var()->name()));
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
|
|
|
|
if (typeof_state == INSIDE_TYPEOF) {
|
|
|
|
frame_->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
|
|
|
|
} else {
|
|
|
|
frame_->CallRuntime(Runtime::kLoadContextSlot, 2);
|
|
|
|
}
|
|
|
|
|
|
|
|
done.Bind();
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
|
|
|
|
} else {
|
|
|
|
// Special handling for locals allocated in registers.
|
|
|
|
__ ldr(r0, SlotOperand(slot, r2));
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
if (slot->var()->mode() == Variable::CONST) {
|
|
|
|
// Const slots may contain 'the hole' value (the constant hasn't been
|
|
|
|
// initialized yet) which needs to be converted into the 'undefined'
|
|
|
|
// value.
|
|
|
|
Comment cmnt(masm_, "[ Unhole const");
|
|
|
|
frame_->EmitPop(r0);
|
|
|
|
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
|
|
|
|
__ cmp(r0, ip);
|
|
|
|
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex, eq);
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::LoadFromGlobalSlotCheckExtensions(Slot* slot,
|
|
|
|
TypeofState typeof_state,
|
|
|
|
Register tmp,
|
|
|
|
Register tmp2,
|
|
|
|
JumpTarget* slow) {
|
|
|
|
// Check that no extension objects have been created by calls to
|
|
|
|
// eval from the current scope to the global scope.
|
|
|
|
Register context = cp;
|
|
|
|
Scope* s = scope();
|
|
|
|
while (s != NULL) {
|
|
|
|
if (s->num_heap_slots() > 0) {
|
|
|
|
if (s->calls_eval()) {
|
|
|
|
// Check that extension is NULL.
|
|
|
|
__ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX));
|
|
|
|
__ tst(tmp2, tmp2);
|
|
|
|
slow->Branch(ne);
|
|
|
|
}
|
|
|
|
// Load next context in chain.
|
|
|
|
__ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX));
|
|
|
|
__ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset));
|
|
|
|
context = tmp;
|
|
|
|
}
|
|
|
|
// If no outer scope calls eval, we do not need to check more
|
|
|
|
// context extensions.
|
|
|
|
if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break;
|
|
|
|
s = s->outer_scope();
|
|
|
|
}
|
|
|
|
|
|
|
|
if (s->is_eval_scope()) {
|
|
|
|
Label next, fast;
|
|
|
|
if (!context.is(tmp)) {
|
|
|
|
__ mov(tmp, Operand(context));
|
|
|
|
}
|
|
|
|
__ bind(&next);
|
|
|
|
// Terminate at global context.
|
|
|
|
__ ldr(tmp2, FieldMemOperand(tmp, HeapObject::kMapOffset));
|
|
|
|
__ LoadRoot(ip, Heap::kGlobalContextMapRootIndex);
|
|
|
|
__ cmp(tmp2, ip);
|
|
|
|
__ b(eq, &fast);
|
|
|
|
// Check that extension is NULL.
|
|
|
|
__ ldr(tmp2, ContextOperand(tmp, Context::EXTENSION_INDEX));
|
|
|
|
__ tst(tmp2, tmp2);
|
|
|
|
slow->Branch(ne);
|
|
|
|
// Load next context in chain.
|
|
|
|
__ ldr(tmp, ContextOperand(tmp, Context::CLOSURE_INDEX));
|
|
|
|
__ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset));
|
|
|
|
__ b(&next);
|
|
|
|
__ bind(&fast);
|
|
|
|
}
|
|
|
|
|
|
|
|
// All extension objects were empty and it is safe to use a global
|
|
|
|
// load IC call.
|
|
|
|
Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
|
|
|
|
// Load the global object.
|
|
|
|
LoadGlobal();
|
|
|
|
// Setup the name register.
|
|
|
|
Result name(r2);
|
|
|
|
__ mov(r2, Operand(slot->var()->name()));
|
|
|
|
// Call IC stub.
|
|
|
|
if (typeof_state == INSIDE_TYPEOF) {
|
|
|
|
frame_->CallCodeObject(ic, RelocInfo::CODE_TARGET, &name, 0);
|
|
|
|
} else {
|
|
|
|
frame_->CallCodeObject(ic, RelocInfo::CODE_TARGET_CONTEXT, &name, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Drop the global object. The result is in r0.
|
|
|
|
frame_->Drop();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitSlot(Slot* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ Slot");
|
|
|
|
LoadFromSlot(node, NOT_INSIDE_TYPEOF);
|
|
|
|
ASSERT(frame_->height() == original_height + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitVariableProxy(VariableProxy* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ VariableProxy");
|
|
|
|
|
|
|
|
Variable* var = node->var();
|
|
|
|
Expression* expr = var->rewrite();
|
|
|
|
if (expr != NULL) {
|
|
|
|
Visit(expr);
|
|
|
|
} else {
|
|
|
|
ASSERT(var->is_global());
|
|
|
|
Reference ref(this, node);
|
|
|
|
ref.GetValueAndSpill();
|
|
|
|
}
|
|
|
|
ASSERT(frame_->height() == original_height + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitLiteral(Literal* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ Literal");
|
|
|
|
__ mov(r0, Operand(node->handle()));
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
ASSERT(frame_->height() == original_height + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ RexExp Literal");
|
|
|
|
|
|
|
|
// Retrieve the literal array and check the allocated entry.
|
|
|
|
|
|
|
|
// Load the function of this activation.
|
|
|
|
__ ldr(r1, frame_->Function());
|
|
|
|
|
|
|
|
// Load the literals array of the function.
|
|
|
|
__ ldr(r1, FieldMemOperand(r1, JSFunction::kLiteralsOffset));
|
|
|
|
|
|
|
|
// Load the literal at the ast saved index.
|
|
|
|
int literal_offset =
|
|
|
|
FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
|
|
|
|
__ ldr(r2, FieldMemOperand(r1, literal_offset));
|
|
|
|
|
|
|
|
JumpTarget done;
|
|
|
|
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
|
|
|
|
__ cmp(r2, ip);
|
|
|
|
done.Branch(ne);
|
|
|
|
|
|
|
|
// If the entry is undefined we call the runtime system to computed
|
|
|
|
// the literal.
|
|
|
|
frame_->EmitPush(r1); // literal array (0)
|
|
|
|
__ mov(r0, Operand(Smi::FromInt(node->literal_index())));
|
|
|
|
frame_->EmitPush(r0); // literal index (1)
|
|
|
|
__ mov(r0, Operand(node->pattern())); // RegExp pattern (2)
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
__ mov(r0, Operand(node->flags())); // RegExp flags (3)
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
frame_->CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
|
|
|
|
__ mov(r2, Operand(r0));
|
|
|
|
|
|
|
|
done.Bind();
|
|
|
|
// Push the literal.
|
|
|
|
frame_->EmitPush(r2);
|
|
|
|
ASSERT(frame_->height() == original_height + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// This deferred code stub will be used for creating the boilerplate
|
|
|
|
// by calling Runtime_CreateObjectLiteralBoilerplate.
|
|
|
|
// Each created boilerplate is stored in the JSFunction and they are
|
|
|
|
// therefore context dependent.
|
|
|
|
class DeferredObjectLiteral: public DeferredCode {
|
|
|
|
public:
|
|
|
|
explicit DeferredObjectLiteral(ObjectLiteral* node) : node_(node) {
|
|
|
|
set_comment("[ DeferredObjectLiteral");
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual void Generate();
|
|
|
|
|
|
|
|
private:
|
|
|
|
ObjectLiteral* node_;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
void DeferredObjectLiteral::Generate() {
|
|
|
|
// Argument is passed in r1.
|
|
|
|
|
|
|
|
// If the entry is undefined we call the runtime system to compute
|
|
|
|
// the literal.
|
|
|
|
// Literal array (0).
|
|
|
|
__ push(r1);
|
|
|
|
// Literal index (1).
|
|
|
|
__ mov(r0, Operand(Smi::FromInt(node_->literal_index())));
|
|
|
|
__ push(r0);
|
|
|
|
// Constant properties (2).
|
|
|
|
__ mov(r0, Operand(node_->constant_properties()));
|
|
|
|
__ push(r0);
|
|
|
|
__ CallRuntime(Runtime::kCreateObjectLiteralBoilerplate, 3);
|
|
|
|
__ mov(r2, Operand(r0));
|
|
|
|
// Result is returned in r2.
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitObjectLiteral(ObjectLiteral* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ ObjectLiteral");
|
|
|
|
|
|
|
|
DeferredObjectLiteral* deferred = new DeferredObjectLiteral(node);
|
|
|
|
|
|
|
|
// Retrieve the literal array and check the allocated entry.
|
|
|
|
|
|
|
|
// Load the function of this activation.
|
|
|
|
__ ldr(r1, frame_->Function());
|
|
|
|
|
|
|
|
// Load the literals array of the function.
|
|
|
|
__ ldr(r1, FieldMemOperand(r1, JSFunction::kLiteralsOffset));
|
|
|
|
|
|
|
|
// Load the literal at the ast saved index.
|
|
|
|
int literal_offset =
|
|
|
|
FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
|
|
|
|
__ ldr(r2, FieldMemOperand(r1, literal_offset));
|
|
|
|
|
|
|
|
// Check whether we need to materialize the object literal boilerplate.
|
|
|
|
// If so, jump to the deferred code.
|
|
|
|
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
|
|
|
|
__ cmp(r2, Operand(ip));
|
|
|
|
deferred->Branch(eq);
|
|
|
|
deferred->BindExit();
|
|
|
|
|
|
|
|
// Push the object literal boilerplate.
|
|
|
|
frame_->EmitPush(r2);
|
|
|
|
|
|
|
|
// Clone the boilerplate object.
|
|
|
|
Runtime::FunctionId clone_function_id = Runtime::kCloneLiteralBoilerplate;
|
|
|
|
if (node->depth() == 1) {
|
|
|
|
clone_function_id = Runtime::kCloneShallowLiteralBoilerplate;
|
|
|
|
}
|
|
|
|
frame_->CallRuntime(clone_function_id, 1);
|
|
|
|
frame_->EmitPush(r0); // save the result
|
|
|
|
// r0: cloned object literal
|
|
|
|
|
|
|
|
for (int i = 0; i < node->properties()->length(); i++) {
|
|
|
|
ObjectLiteral::Property* property = node->properties()->at(i);
|
|
|
|
Literal* key = property->key();
|
|
|
|
Expression* value = property->value();
|
|
|
|
switch (property->kind()) {
|
|
|
|
case ObjectLiteral::Property::CONSTANT:
|
|
|
|
break;
|
|
|
|
case ObjectLiteral::Property::MATERIALIZED_LITERAL:
|
|
|
|
if (CompileTimeValue::IsCompileTimeValue(property->value())) break;
|
|
|
|
// else fall through
|
|
|
|
case ObjectLiteral::Property::COMPUTED: // fall through
|
|
|
|
case ObjectLiteral::Property::PROTOTYPE: {
|
|
|
|
frame_->EmitPush(r0); // dup the result
|
|
|
|
LoadAndSpill(key);
|
|
|
|
LoadAndSpill(value);
|
|
|
|
frame_->CallRuntime(Runtime::kSetProperty, 3);
|
|
|
|
// restore r0
|
|
|
|
__ ldr(r0, frame_->Top());
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case ObjectLiteral::Property::SETTER: {
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
LoadAndSpill(key);
|
|
|
|
__ mov(r0, Operand(Smi::FromInt(1)));
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
LoadAndSpill(value);
|
|
|
|
frame_->CallRuntime(Runtime::kDefineAccessor, 4);
|
|
|
|
__ ldr(r0, frame_->Top());
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case ObjectLiteral::Property::GETTER: {
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
LoadAndSpill(key);
|
|
|
|
__ mov(r0, Operand(Smi::FromInt(0)));
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
LoadAndSpill(value);
|
|
|
|
frame_->CallRuntime(Runtime::kDefineAccessor, 4);
|
|
|
|
__ ldr(r0, frame_->Top());
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ASSERT(frame_->height() == original_height + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// This deferred code stub will be used for creating the boilerplate
|
|
|
|
// by calling Runtime_CreateArrayLiteralBoilerplate.
|
|
|
|
// Each created boilerplate is stored in the JSFunction and they are
|
|
|
|
// therefore context dependent.
|
|
|
|
class DeferredArrayLiteral: public DeferredCode {
|
|
|
|
public:
|
|
|
|
explicit DeferredArrayLiteral(ArrayLiteral* node) : node_(node) {
|
|
|
|
set_comment("[ DeferredArrayLiteral");
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual void Generate();
|
|
|
|
|
|
|
|
private:
|
|
|
|
ArrayLiteral* node_;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
void DeferredArrayLiteral::Generate() {
|
|
|
|
// Argument is passed in r1.
|
|
|
|
|
|
|
|
// If the entry is undefined we call the runtime system to computed
|
|
|
|
// the literal.
|
|
|
|
// Literal array (0).
|
|
|
|
__ push(r1);
|
|
|
|
// Literal index (1).
|
|
|
|
__ mov(r0, Operand(Smi::FromInt(node_->literal_index())));
|
|
|
|
__ push(r0);
|
|
|
|
// Constant properties (2).
|
|
|
|
__ mov(r0, Operand(node_->literals()));
|
|
|
|
__ push(r0);
|
|
|
|
__ CallRuntime(Runtime::kCreateArrayLiteralBoilerplate, 3);
|
|
|
|
__ mov(r2, Operand(r0));
|
|
|
|
// Result is returned in r2.
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitArrayLiteral(ArrayLiteral* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ ArrayLiteral");
|
|
|
|
|
|
|
|
DeferredArrayLiteral* deferred = new DeferredArrayLiteral(node);
|
|
|
|
|
|
|
|
// Retrieve the literal array and check the allocated entry.
|
|
|
|
|
|
|
|
// Load the function of this activation.
|
|
|
|
__ ldr(r1, frame_->Function());
|
|
|
|
|
|
|
|
// Load the literals array of the function.
|
|
|
|
__ ldr(r1, FieldMemOperand(r1, JSFunction::kLiteralsOffset));
|
|
|
|
|
|
|
|
// Load the literal at the ast saved index.
|
|
|
|
int literal_offset =
|
|
|
|
FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
|
|
|
|
__ ldr(r2, FieldMemOperand(r1, literal_offset));
|
|
|
|
|
|
|
|
// Check whether we need to materialize the object literal boilerplate.
|
|
|
|
// If so, jump to the deferred code.
|
|
|
|
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
|
|
|
|
__ cmp(r2, Operand(ip));
|
|
|
|
deferred->Branch(eq);
|
|
|
|
deferred->BindExit();
|
|
|
|
|
|
|
|
// Push the object literal boilerplate.
|
|
|
|
frame_->EmitPush(r2);
|
|
|
|
|
|
|
|
// Clone the boilerplate object.
|
|
|
|
Runtime::FunctionId clone_function_id = Runtime::kCloneLiteralBoilerplate;
|
|
|
|
if (node->depth() == 1) {
|
|
|
|
clone_function_id = Runtime::kCloneShallowLiteralBoilerplate;
|
|
|
|
}
|
|
|
|
frame_->CallRuntime(clone_function_id, 1);
|
|
|
|
frame_->EmitPush(r0); // save the result
|
|
|
|
// r0: cloned object literal
|
|
|
|
|
|
|
|
// Generate code to set the elements in the array that are not
|
|
|
|
// literals.
|
|
|
|
for (int i = 0; i < node->values()->length(); i++) {
|
|
|
|
Expression* value = node->values()->at(i);
|
|
|
|
|
|
|
|
// If value is a literal the property value is already set in the
|
|
|
|
// boilerplate object.
|
|
|
|
if (value->AsLiteral() != NULL) continue;
|
|
|
|
// If value is a materialized literal the property value is already set
|
|
|
|
// in the boilerplate object if it is simple.
|
|
|
|
if (CompileTimeValue::IsCompileTimeValue(value)) continue;
|
|
|
|
|
|
|
|
// The property must be set by generated code.
|
|
|
|
LoadAndSpill(value);
|
|
|
|
frame_->EmitPop(r0);
|
|
|
|
|
|
|
|
// Fetch the object literal.
|
|
|
|
__ ldr(r1, frame_->Top());
|
|
|
|
// Get the elements array.
|
|
|
|
__ ldr(r1, FieldMemOperand(r1, JSObject::kElementsOffset));
|
|
|
|
|
|
|
|
// Write to the indexed properties array.
|
|
|
|
int offset = i * kPointerSize + FixedArray::kHeaderSize;
|
|
|
|
__ str(r0, FieldMemOperand(r1, offset));
|
|
|
|
|
|
|
|
// Update the write barrier for the array address.
|
|
|
|
__ mov(r3, Operand(offset));
|
|
|
|
__ RecordWrite(r1, r3, r2);
|
|
|
|
}
|
|
|
|
ASSERT(frame_->height() == original_height + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
// Call runtime routine to allocate the catch extension object and
|
|
|
|
// assign the exception value to the catch variable.
|
|
|
|
Comment cmnt(masm_, "[ CatchExtensionObject");
|
|
|
|
LoadAndSpill(node->key());
|
|
|
|
LoadAndSpill(node->value());
|
|
|
|
frame_->CallRuntime(Runtime::kCreateCatchExtensionObject, 2);
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
ASSERT(frame_->height() == original_height + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitAssignment(Assignment* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ Assignment");
|
|
|
|
|
|
|
|
{ Reference target(this, node->target());
|
|
|
|
if (target.is_illegal()) {
|
|
|
|
// Fool the virtual frame into thinking that we left the assignment's
|
|
|
|
// value on the frame.
|
|
|
|
__ mov(r0, Operand(Smi::FromInt(0)));
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
ASSERT(frame_->height() == original_height + 1);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (node->op() == Token::ASSIGN ||
|
|
|
|
node->op() == Token::INIT_VAR ||
|
|
|
|
node->op() == Token::INIT_CONST) {
|
|
|
|
LoadAndSpill(node->value());
|
|
|
|
|
|
|
|
} else {
|
|
|
|
// +=, *= and similar binary assignments.
|
|
|
|
// Get the old value of the lhs.
|
|
|
|
target.GetValueAndSpill();
|
|
|
|
Literal* literal = node->value()->AsLiteral();
|
|
|
|
bool overwrite =
|
|
|
|
(node->value()->AsBinaryOperation() != NULL &&
|
|
|
|
node->value()->AsBinaryOperation()->ResultOverwriteAllowed());
|
|
|
|
if (literal != NULL && literal->handle()->IsSmi()) {
|
|
|
|
SmiOperation(node->binary_op(),
|
|
|
|
literal->handle(),
|
|
|
|
false,
|
|
|
|
overwrite ? OVERWRITE_RIGHT : NO_OVERWRITE);
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
|
|
|
|
} else {
|
|
|
|
LoadAndSpill(node->value());
|
|
|
|
GenericBinaryOperation(node->binary_op(),
|
|
|
|
overwrite ? OVERWRITE_RIGHT : NO_OVERWRITE);
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Variable* var = node->target()->AsVariableProxy()->AsVariable();
|
|
|
|
if (var != NULL &&
|
|
|
|
(var->mode() == Variable::CONST) &&
|
|
|
|
node->op() != Token::INIT_VAR && node->op() != Token::INIT_CONST) {
|
|
|
|
// Assignment ignored - leave the value on the stack.
|
|
|
|
|
|
|
|
} else {
|
|
|
|
CodeForSourcePosition(node->position());
|
|
|
|
if (node->op() == Token::INIT_CONST) {
|
|
|
|
// Dynamic constant initializations must use the function context
|
|
|
|
// and initialize the actual constant declared. Dynamic variable
|
|
|
|
// initializations are simply assignments and use SetValue.
|
|
|
|
target.SetValue(CONST_INIT);
|
|
|
|
} else {
|
|
|
|
target.SetValue(NOT_CONST_INIT);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ASSERT(frame_->height() == original_height + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitThrow(Throw* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ Throw");
|
|
|
|
|
|
|
|
LoadAndSpill(node->exception());
|
|
|
|
CodeForSourcePosition(node->position());
|
|
|
|
frame_->CallRuntime(Runtime::kThrow, 1);
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
ASSERT(frame_->height() == original_height + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitProperty(Property* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ Property");
|
|
|
|
|
|
|
|
{ Reference property(this, node);
|
|
|
|
property.GetValueAndSpill();
|
|
|
|
}
|
|
|
|
ASSERT(frame_->height() == original_height + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitCall(Call* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ Call");
|
|
|
|
|
|
|
|
Expression* function = node->expression();
|
|
|
|
ZoneList<Expression*>* args = node->arguments();
|
|
|
|
|
|
|
|
// Standard function call.
|
|
|
|
// Check if the function is a variable or a property.
|
|
|
|
Variable* var = function->AsVariableProxy()->AsVariable();
|
|
|
|
Property* property = function->AsProperty();
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------
|
|
|
|
// Fast-case: Use inline caching.
|
|
|
|
// ---
|
|
|
|
// According to ECMA-262, section 11.2.3, page 44, the function to call
|
|
|
|
// must be resolved after the arguments have been evaluated. The IC code
|
|
|
|
// automatically handles this by loading the arguments before the function
|
|
|
|
// is resolved in cache misses (this also holds for megamorphic calls).
|
|
|
|
// ------------------------------------------------------------------------
|
|
|
|
|
|
|
|
if (var != NULL && var->is_possibly_eval()) {
|
|
|
|
// ----------------------------------
|
|
|
|
// JavaScript example: 'eval(arg)' // eval is not known to be shadowed
|
|
|
|
// ----------------------------------
|
|
|
|
|
|
|
|
// In a call to eval, we first call %ResolvePossiblyDirectEval to
|
|
|
|
// resolve the function we need to call and the receiver of the
|
|
|
|
// call. Then we call the resolved function using the given
|
|
|
|
// arguments.
|
|
|
|
// Prepare stack for call to resolved function.
|
|
|
|
LoadAndSpill(function);
|
|
|
|
__ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
|
|
|
|
frame_->EmitPush(r2); // Slot for receiver
|
|
|
|
int arg_count = args->length();
|
|
|
|
for (int i = 0; i < arg_count; i++) {
|
|
|
|
LoadAndSpill(args->at(i));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Prepare stack for call to ResolvePossiblyDirectEval.
|
|
|
|
__ ldr(r1, MemOperand(sp, arg_count * kPointerSize + kPointerSize));
|
|
|
|
frame_->EmitPush(r1);
|
|
|
|
if (arg_count > 0) {
|
|
|
|
__ ldr(r1, MemOperand(sp, arg_count * kPointerSize));
|
|
|
|
frame_->EmitPush(r1);
|
|
|
|
} else {
|
|
|
|
frame_->EmitPush(r2);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Resolve the call.
|
|
|
|
frame_->CallRuntime(Runtime::kResolvePossiblyDirectEval, 2);
|
|
|
|
|
|
|
|
// Touch up stack with the right values for the function and the receiver.
|
|
|
|
__ ldr(r1, FieldMemOperand(r0, FixedArray::kHeaderSize));
|
|
|
|
__ str(r1, MemOperand(sp, (arg_count + 1) * kPointerSize));
|
|
|
|
__ ldr(r1, FieldMemOperand(r0, FixedArray::kHeaderSize + kPointerSize));
|
|
|
|
__ str(r1, MemOperand(sp, arg_count * kPointerSize));
|
|
|
|
|
|
|
|
// Call the function.
|
|
|
|
CodeForSourcePosition(node->position());
|
|
|
|
|
|
|
|
InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
|
|
|
|
CallFunctionStub call_function(arg_count, in_loop);
|
|
|
|
frame_->CallStub(&call_function, arg_count + 1);
|
|
|
|
|
|
|
|
__ ldr(cp, frame_->Context());
|
|
|
|
// Remove the function from the stack.
|
|
|
|
frame_->Drop();
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
|
|
|
|
} else if (var != NULL && !var->is_this() && var->is_global()) {
|
|
|
|
// ----------------------------------
|
|
|
|
// JavaScript example: 'foo(1, 2, 3)' // foo is global
|
|
|
|
// ----------------------------------
|
|
|
|
|
|
|
|
// Push the name of the function and the receiver onto the stack.
|
|
|
|
__ mov(r0, Operand(var->name()));
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
|
|
|
|
// Pass the global object as the receiver and let the IC stub
|
|
|
|
// patch the stack to use the global proxy as 'this' in the
|
|
|
|
// invoked function.
|
|
|
|
LoadGlobal();
|
|
|
|
|
|
|
|
// Load the arguments.
|
|
|
|
int arg_count = args->length();
|
|
|
|
for (int i = 0; i < arg_count; i++) {
|
|
|
|
LoadAndSpill(args->at(i));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Setup the receiver register and call the IC initialization code.
|
|
|
|
InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
|
|
|
|
Handle<Code> stub = ComputeCallInitialize(arg_count, in_loop);
|
|
|
|
CodeForSourcePosition(node->position());
|
|
|
|
frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET_CONTEXT,
|
|
|
|
arg_count + 1);
|
|
|
|
__ ldr(cp, frame_->Context());
|
|
|
|
// Remove the function from the stack.
|
|
|
|
frame_->Drop();
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
|
|
|
|
} else if (var != NULL && var->slot() != NULL &&
|
|
|
|
var->slot()->type() == Slot::LOOKUP) {
|
|
|
|
// ----------------------------------
|
|
|
|
// JavaScript example: 'with (obj) foo(1, 2, 3)' // foo is in obj
|
|
|
|
// ----------------------------------
|
|
|
|
|
|
|
|
// Load the function
|
|
|
|
frame_->EmitPush(cp);
|
|
|
|
__ mov(r0, Operand(var->name()));
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
frame_->CallRuntime(Runtime::kLoadContextSlot, 2);
|
|
|
|
// r0: slot value; r1: receiver
|
|
|
|
|
|
|
|
// Load the receiver.
|
|
|
|
frame_->EmitPush(r0); // function
|
|
|
|
frame_->EmitPush(r1); // receiver
|
|
|
|
|
|
|
|
// Call the function.
|
|
|
|
CallWithArguments(args, node->position());
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
|
|
|
|
} else if (property != NULL) {
|
|
|
|
// Check if the key is a literal string.
|
|
|
|
Literal* literal = property->key()->AsLiteral();
|
|
|
|
|
|
|
|
if (literal != NULL && literal->handle()->IsSymbol()) {
|
|
|
|
// ------------------------------------------------------------------
|
|
|
|
// JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)'
|
|
|
|
// ------------------------------------------------------------------
|
|
|
|
|
|
|
|
// Push the name of the function and the receiver onto the stack.
|
|
|
|
__ mov(r0, Operand(literal->handle()));
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
LoadAndSpill(property->obj());
|
|
|
|
|
|
|
|
// Load the arguments.
|
|
|
|
int arg_count = args->length();
|
|
|
|
for (int i = 0; i < arg_count; i++) {
|
|
|
|
LoadAndSpill(args->at(i));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Set the receiver register and call the IC initialization code.
|
|
|
|
InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
|
|
|
|
Handle<Code> stub = ComputeCallInitialize(arg_count, in_loop);
|
|
|
|
CodeForSourcePosition(node->position());
|
|
|
|
frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET, arg_count + 1);
|
|
|
|
__ ldr(cp, frame_->Context());
|
|
|
|
|
|
|
|
// Remove the function from the stack.
|
|
|
|
frame_->Drop();
|
|
|
|
|
|
|
|
frame_->EmitPush(r0); // push after get rid of function from the stack
|
|
|
|
|
|
|
|
} else {
|
|
|
|
// -------------------------------------------
|
|
|
|
// JavaScript example: 'array[index](1, 2, 3)'
|
|
|
|
// -------------------------------------------
|
|
|
|
|
|
|
|
// Load the function to call from the property through a reference.
|
|
|
|
Reference ref(this, property);
|
|
|
|
ref.GetValueAndSpill(); // receiver
|
|
|
|
|
|
|
|
// Pass receiver to called function.
|
|
|
|
if (property->is_synthetic()) {
|
|
|
|
LoadGlobalReceiver(r0);
|
|
|
|
} else {
|
|
|
|
__ ldr(r0, frame_->ElementAt(ref.size()));
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Call the function.
|
|
|
|
CallWithArguments(args, node->position());
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
}
|
|
|
|
|
|
|
|
} else {
|
|
|
|
// ----------------------------------
|
|
|
|
// JavaScript example: 'foo(1, 2, 3)' // foo is not global
|
|
|
|
// ----------------------------------
|
|
|
|
|
|
|
|
// Load the function.
|
|
|
|
LoadAndSpill(function);
|
|
|
|
|
|
|
|
// Pass the global proxy as the receiver.
|
|
|
|
LoadGlobalReceiver(r0);
|
|
|
|
|
|
|
|
// Call the function.
|
|
|
|
CallWithArguments(args, node->position());
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
}
|
|
|
|
ASSERT(frame_->height() == original_height + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitCallNew(CallNew* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ CallNew");
|
|
|
|
|
|
|
|
// According to ECMA-262, section 11.2.2, page 44, the function
|
|
|
|
// expression in new calls must be evaluated before the
|
|
|
|
// arguments. This is different from ordinary calls, where the
|
|
|
|
// actual function to call is resolved after the arguments have been
|
|
|
|
// evaluated.
|
|
|
|
|
|
|
|
// Compute function to call and use the global object as the
|
|
|
|
// receiver. There is no need to use the global proxy here because
|
|
|
|
// it will always be replaced with a newly allocated object.
|
|
|
|
LoadAndSpill(node->expression());
|
|
|
|
LoadGlobal();
|
|
|
|
|
|
|
|
// Push the arguments ("left-to-right") on the stack.
|
|
|
|
ZoneList<Expression*>* args = node->arguments();
|
|
|
|
int arg_count = args->length();
|
|
|
|
for (int i = 0; i < arg_count; i++) {
|
|
|
|
LoadAndSpill(args->at(i));
|
|
|
|
}
|
|
|
|
|
|
|
|
// r0: the number of arguments.
|
|
|
|
Result num_args(r0);
|
|
|
|
__ mov(r0, Operand(arg_count));
|
|
|
|
|
|
|
|
// Load the function into r1 as per calling convention.
|
|
|
|
Result function(r1);
|
|
|
|
__ ldr(r1, frame_->ElementAt(arg_count + 1));
|
|
|
|
|
|
|
|
// Call the construct call builtin that handles allocation and
|
|
|
|
// constructor invocation.
|
|
|
|
CodeForSourcePosition(node->position());
|
|
|
|
Handle<Code> ic(Builtins::builtin(Builtins::JSConstructCall));
|
|
|
|
frame_->CallCodeObject(ic,
|
|
|
|
RelocInfo::CONSTRUCT_CALL,
|
|
|
|
&num_args,
|
|
|
|
&function,
|
|
|
|
arg_count + 1);
|
|
|
|
|
|
|
|
// Discard old TOS value and push r0 on the stack (same as Pop(), push(r0)).
|
|
|
|
__ str(r0, frame_->Top());
|
|
|
|
ASSERT(frame_->height() == original_height + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::GenerateClassOf(ZoneList<Expression*>* args) {
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
ASSERT(args->length() == 1);
|
|
|
|
JumpTarget leave, null, function, non_function_constructor;
|
|
|
|
|
|
|
|
// Load the object into r0.
|
|
|
|
LoadAndSpill(args->at(0));
|
|
|
|
frame_->EmitPop(r0);
|
|
|
|
|
|
|
|
// If the object is a smi, we return null.
|
|
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
|
|
null.Branch(eq);
|
|
|
|
|
|
|
|
// Check that the object is a JS object but take special care of JS
|
|
|
|
// functions to make sure they have 'Function' as their class.
|
|
|
|
__ CompareObjectType(r0, r0, r1, FIRST_JS_OBJECT_TYPE);
|
|
|
|
null.Branch(lt);
|
|
|
|
|
|
|
|
// As long as JS_FUNCTION_TYPE is the last instance type and it is
|
|
|
|
// right after LAST_JS_OBJECT_TYPE, we can avoid checking for
|
|
|
|
// LAST_JS_OBJECT_TYPE.
|
|
|
|
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
|
|
|
|
ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
|
|
|
|
__ cmp(r1, Operand(JS_FUNCTION_TYPE));
|
|
|
|
function.Branch(eq);
|
|
|
|
|
|
|
|
// Check if the constructor in the map is a function.
|
|
|
|
__ ldr(r0, FieldMemOperand(r0, Map::kConstructorOffset));
|
|
|
|
__ CompareObjectType(r0, r1, r1, JS_FUNCTION_TYPE);
|
|
|
|
non_function_constructor.Branch(ne);
|
|
|
|
|
|
|
|
// The r0 register now contains the constructor function. Grab the
|
|
|
|
// instance class name from there.
|
|
|
|
__ ldr(r0, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset));
|
|
|
|
__ ldr(r0, FieldMemOperand(r0, SharedFunctionInfo::kInstanceClassNameOffset));
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
leave.Jump();
|
|
|
|
|
|
|
|
// Functions have class 'Function'.
|
|
|
|
function.Bind();
|
|
|
|
__ mov(r0, Operand(Factory::function_class_symbol()));
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
leave.Jump();
|
|
|
|
|
|
|
|
// Objects with a non-function constructor have class 'Object'.
|
|
|
|
non_function_constructor.Bind();
|
|
|
|
__ mov(r0, Operand(Factory::Object_symbol()));
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
leave.Jump();
|
|
|
|
|
|
|
|
// Non-JS objects have class null.
|
|
|
|
null.Bind();
|
|
|
|
__ LoadRoot(r0, Heap::kNullValueRootIndex);
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
|
|
|
|
// All done.
|
|
|
|
leave.Bind();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) {
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
ASSERT(args->length() == 1);
|
|
|
|
JumpTarget leave;
|
|
|
|
LoadAndSpill(args->at(0));
|
|
|
|
frame_->EmitPop(r0); // r0 contains object.
|
|
|
|
// if (object->IsSmi()) return the object.
|
|
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
|
|
leave.Branch(eq);
|
|
|
|
// It is a heap object - get map. If (!object->IsJSValue()) return the object.
|
|
|
|
__ CompareObjectType(r0, r1, r1, JS_VALUE_TYPE);
|
|
|
|
leave.Branch(ne);
|
|
|
|
// Load the value.
|
|
|
|
__ ldr(r0, FieldMemOperand(r0, JSValue::kValueOffset));
|
|
|
|
leave.Bind();
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) {
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
ASSERT(args->length() == 2);
|
|
|
|
JumpTarget leave;
|
|
|
|
LoadAndSpill(args->at(0)); // Load the object.
|
|
|
|
LoadAndSpill(args->at(1)); // Load the value.
|
|
|
|
frame_->EmitPop(r0); // r0 contains value
|
|
|
|
frame_->EmitPop(r1); // r1 contains object
|
|
|
|
// if (object->IsSmi()) return object.
|
|
|
|
__ tst(r1, Operand(kSmiTagMask));
|
|
|
|
leave.Branch(eq);
|
|
|
|
// It is a heap object - get map. If (!object->IsJSValue()) return the object.
|
|
|
|
__ CompareObjectType(r1, r2, r2, JS_VALUE_TYPE);
|
|
|
|
leave.Branch(ne);
|
|
|
|
// Store the value.
|
|
|
|
__ str(r0, FieldMemOperand(r1, JSValue::kValueOffset));
|
|
|
|
// Update the write barrier.
|
|
|
|
__ mov(r2, Operand(JSValue::kValueOffset - kHeapObjectTag));
|
|
|
|
__ RecordWrite(r1, r2, r3);
|
|
|
|
// Leave.
|
|
|
|
leave.Bind();
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) {
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
ASSERT(args->length() == 1);
|
|
|
|
LoadAndSpill(args->at(0));
|
|
|
|
frame_->EmitPop(r0);
|
|
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
|
|
cc_reg_ = eq;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::GenerateLog(ZoneList<Expression*>* args) {
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
// See comment in CodeGenerator::GenerateLog in codegen-ia32.cc.
|
|
|
|
ASSERT_EQ(args->length(), 3);
|
|
|
|
#ifdef ENABLE_LOGGING_AND_PROFILING
|
|
|
|
if (ShouldGenerateLog(args->at(0))) {
|
|
|
|
LoadAndSpill(args->at(1));
|
|
|
|
LoadAndSpill(args->at(2));
|
|
|
|
__ CallRuntime(Runtime::kLog, 2);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) {
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
ASSERT(args->length() == 1);
|
|
|
|
LoadAndSpill(args->at(0));
|
|
|
|
frame_->EmitPop(r0);
|
|
|
|
__ tst(r0, Operand(kSmiTagMask | 0x80000000u));
|
|
|
|
cc_reg_ = eq;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// This should generate code that performs a charCodeAt() call or returns
|
|
|
|
// undefined in order to trigger the slow case, Runtime_StringCharCodeAt.
|
|
|
|
// It is not yet implemented on ARM, so it always goes to the slow case.
|
|
|
|
void CodeGenerator::GenerateFastCharCodeAt(ZoneList<Expression*>* args) {
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
ASSERT(args->length() == 2);
|
|
|
|
Comment(masm_, "[ GenerateFastCharCodeAt");
|
|
|
|
|
|
|
|
LoadAndSpill(args->at(0));
|
|
|
|
LoadAndSpill(args->at(1));
|
|
|
|
frame_->EmitPop(r0); // Index.
|
|
|
|
frame_->EmitPop(r1); // String.
|
|
|
|
|
|
|
|
Label slow, end, not_a_flat_string, ascii_string, try_again_with_new_string;
|
|
|
|
|
|
|
|
__ tst(r1, Operand(kSmiTagMask));
|
|
|
|
__ b(eq, &slow); // The 'string' was a Smi.
|
|
|
|
|
|
|
|
ASSERT(kSmiTag == 0);
|
|
|
|
__ tst(r0, Operand(kSmiTagMask | 0x80000000u));
|
|
|
|
__ b(ne, &slow); // The index was negative or not a Smi.
|
|
|
|
|
|
|
|
__ bind(&try_again_with_new_string);
|
|
|
|
__ CompareObjectType(r1, r2, r2, FIRST_NONSTRING_TYPE);
|
|
|
|
__ b(ge, &slow);
|
|
|
|
|
|
|
|
// Now r2 has the string type.
|
|
|
|
__ ldr(r3, FieldMemOperand(r1, String::kLengthOffset));
|
|
|
|
// Now r3 has the length of the string. Compare with the index.
|
|
|
|
__ cmp(r3, Operand(r0, LSR, kSmiTagSize));
|
|
|
|
__ b(le, &slow);
|
|
|
|
|
|
|
|
// Here we know the index is in range. Check that string is sequential.
|
|
|
|
ASSERT_EQ(0, kSeqStringTag);
|
|
|
|
__ tst(r2, Operand(kStringRepresentationMask));
|
|
|
|
__ b(ne, ¬_a_flat_string);
|
|
|
|
|
|
|
|
// Check whether it is an ASCII string.
|
|
|
|
ASSERT_EQ(0, kTwoByteStringTag);
|
|
|
|
__ tst(r2, Operand(kStringEncodingMask));
|
|
|
|
__ b(ne, &ascii_string);
|
|
|
|
|
|
|
|
// 2-byte string. We can add without shifting since the Smi tag size is the
|
|
|
|
// log2 of the number of bytes in a two-byte character.
|
|
|
|
ASSERT_EQ(1, kSmiTagSize);
|
|
|
|
ASSERT_EQ(0, kSmiShiftSize);
|
|
|
|
__ add(r1, r1, Operand(r0));
|
|
|
|
__ ldrh(r0, FieldMemOperand(r1, SeqTwoByteString::kHeaderSize));
|
|
|
|
__ mov(r0, Operand(r0, LSL, kSmiTagSize));
|
|
|
|
__ jmp(&end);
|
|
|
|
|
|
|
|
__ bind(&ascii_string);
|
|
|
|
__ add(r1, r1, Operand(r0, LSR, kSmiTagSize));
|
|
|
|
__ ldrb(r0, FieldMemOperand(r1, SeqAsciiString::kHeaderSize));
|
|
|
|
__ mov(r0, Operand(r0, LSL, kSmiTagSize));
|
|
|
|
__ jmp(&end);
|
|
|
|
|
|
|
|
__ bind(¬_a_flat_string);
|
|
|
|
__ and_(r2, r2, Operand(kStringRepresentationMask));
|
|
|
|
__ cmp(r2, Operand(kConsStringTag));
|
|
|
|
__ b(ne, &slow);
|
|
|
|
|
|
|
|
// ConsString.
|
|
|
|
// Check that the right hand side is the empty string (ie if this is really a
|
|
|
|
// flat string in a cons string). If that is not the case we would rather go
|
|
|
|
// to the runtime system now, to flatten the string.
|
|
|
|
__ ldr(r2, FieldMemOperand(r1, ConsString::kSecondOffset));
|
|
|
|
__ LoadRoot(r3, Heap::kEmptyStringRootIndex);
|
|
|
|
__ cmp(r2, Operand(r3));
|
|
|
|
__ b(ne, &slow);
|
|
|
|
|
|
|
|
// Get the first of the two strings.
|
|
|
|
__ ldr(r1, FieldMemOperand(r1, ConsString::kFirstOffset));
|
|
|
|
__ jmp(&try_again_with_new_string);
|
|
|
|
|
|
|
|
__ bind(&slow);
|
|
|
|
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
|
|
|
|
|
|
|
|
__ bind(&end);
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) {
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
ASSERT(args->length() == 1);
|
|
|
|
LoadAndSpill(args->at(0));
|
|
|
|
JumpTarget answer;
|
|
|
|
// We need the CC bits to come out as not_equal in the case where the
|
|
|
|
// object is a smi. This can't be done with the usual test opcode so
|
|
|
|
// we use XOR to get the right CC bits.
|
|
|
|
frame_->EmitPop(r0);
|
|
|
|
__ and_(r1, r0, Operand(kSmiTagMask));
|
|
|
|
__ eor(r1, r1, Operand(kSmiTagMask), SetCC);
|
|
|
|
answer.Branch(ne);
|
|
|
|
// It is a heap object - get the map. Check if the object is a JS array.
|
|
|
|
__ CompareObjectType(r0, r1, r1, JS_ARRAY_TYPE);
|
|
|
|
answer.Bind();
|
|
|
|
cc_reg_ = eq;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::GenerateIsObject(ZoneList<Expression*>* args) {
|
|
|
|
// This generates a fast version of:
|
|
|
|
// (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp')
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
ASSERT(args->length() == 1);
|
|
|
|
LoadAndSpill(args->at(0));
|
|
|
|
frame_->EmitPop(r1);
|
|
|
|
__ tst(r1, Operand(kSmiTagMask));
|
|
|
|
false_target()->Branch(eq);
|
|
|
|
|
|
|
|
__ LoadRoot(ip, Heap::kNullValueRootIndex);
|
|
|
|
__ cmp(r1, ip);
|
|
|
|
true_target()->Branch(eq);
|
|
|
|
|
|
|
|
Register map_reg = r2;
|
|
|
|
__ ldr(map_reg, FieldMemOperand(r1, HeapObject::kMapOffset));
|
|
|
|
// Undetectable objects behave like undefined when tested with typeof.
|
|
|
|
__ ldrb(r1, FieldMemOperand(map_reg, Map::kBitFieldOffset));
|
|
|
|
__ and_(r1, r1, Operand(1 << Map::kIsUndetectable));
|
|
|
|
__ cmp(r1, Operand(1 << Map::kIsUndetectable));
|
|
|
|
false_target()->Branch(eq);
|
|
|
|
|
|
|
|
__ ldrb(r1, FieldMemOperand(map_reg, Map::kInstanceTypeOffset));
|
|
|
|
__ cmp(r1, Operand(FIRST_JS_OBJECT_TYPE));
|
|
|
|
false_target()->Branch(lt);
|
|
|
|
__ cmp(r1, Operand(LAST_JS_OBJECT_TYPE));
|
|
|
|
cc_reg_ = le;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::GenerateIsFunction(ZoneList<Expression*>* args) {
|
|
|
|
// This generates a fast version of:
|
|
|
|
// (%_ClassOf(arg) === 'Function')
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
ASSERT(args->length() == 1);
|
|
|
|
LoadAndSpill(args->at(0));
|
|
|
|
frame_->EmitPop(r0);
|
|
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
|
|
false_target()->Branch(eq);
|
|
|
|
Register map_reg = r2;
|
|
|
|
__ CompareObjectType(r0, map_reg, r1, JS_FUNCTION_TYPE);
|
|
|
|
cc_reg_ = eq;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::GenerateIsConstructCall(ZoneList<Expression*>* args) {
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
ASSERT(args->length() == 0);
|
|
|
|
|
|
|
|
// Get the frame pointer for the calling frame.
|
|
|
|
__ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
|
|
|
|
|
|
|
// Skip the arguments adaptor frame if it exists.
|
|
|
|
Label check_frame_marker;
|
|
|
|
__ ldr(r1, MemOperand(r2, StandardFrameConstants::kContextOffset));
|
|
|
|
__ cmp(r1, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
|
|
|
|
__ b(ne, &check_frame_marker);
|
|
|
|
__ ldr(r2, MemOperand(r2, StandardFrameConstants::kCallerFPOffset));
|
|
|
|
|
|
|
|
// Check the marker in the calling frame.
|
|
|
|
__ bind(&check_frame_marker);
|
|
|
|
__ ldr(r1, MemOperand(r2, StandardFrameConstants::kMarkerOffset));
|
|
|
|
__ cmp(r1, Operand(Smi::FromInt(StackFrame::CONSTRUCT)));
|
|
|
|
cc_reg_ = eq;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) {
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
ASSERT(args->length() == 0);
|
|
|
|
|
|
|
|
// Seed the result with the formal parameters count, which will be used
|
|
|
|
// in case no arguments adaptor frame is found below the current frame.
|
|
|
|
__ mov(r0, Operand(Smi::FromInt(scope_->num_parameters())));
|
|
|
|
|
|
|
|
// Call the shared stub to get to the arguments.length.
|
|
|
|
ArgumentsAccessStub stub(ArgumentsAccessStub::READ_LENGTH);
|
|
|
|
frame_->CallStub(&stub, 0);
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::GenerateArgumentsAccess(ZoneList<Expression*>* args) {
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
ASSERT(args->length() == 1);
|
|
|
|
|
|
|
|
// Satisfy contract with ArgumentsAccessStub:
|
|
|
|
// Load the key into r1 and the formal parameters count into r0.
|
|
|
|
LoadAndSpill(args->at(0));
|
|
|
|
frame_->EmitPop(r1);
|
|
|
|
__ mov(r0, Operand(Smi::FromInt(scope_->num_parameters())));
|
|
|
|
|
|
|
|
// Call the shared stub to get to arguments[key].
|
|
|
|
ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT);
|
|
|
|
frame_->CallStub(&stub, 0);
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::GenerateRandomPositiveSmi(ZoneList<Expression*>* args) {
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
ASSERT(args->length() == 0);
|
|
|
|
__ Call(ExternalReference::random_positive_smi_function().address(),
|
|
|
|
RelocInfo::RUNTIME_ENTRY);
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::GenerateFastMathOp(MathOp op, ZoneList<Expression*>* args) {
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
LoadAndSpill(args->at(0));
|
|
|
|
switch (op) {
|
|
|
|
case SIN:
|
|
|
|
frame_->CallRuntime(Runtime::kMath_sin, 1);
|
|
|
|
break;
|
|
|
|
case COS:
|
|
|
|
frame_->CallRuntime(Runtime::kMath_cos, 1);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::GenerateStringAdd(ZoneList<Expression*>* args) {
|
|
|
|
ASSERT_EQ(2, args->length());
|
|
|
|
|
|
|
|
Load(args->at(0));
|
|
|
|
Load(args->at(1));
|
|
|
|
|
|
|
|
frame_->CallRuntime(Runtime::kStringAdd, 2);
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::GenerateObjectEquals(ZoneList<Expression*>* args) {
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
ASSERT(args->length() == 2);
|
|
|
|
|
|
|
|
// Load the two objects into registers and perform the comparison.
|
|
|
|
LoadAndSpill(args->at(0));
|
|
|
|
LoadAndSpill(args->at(1));
|
|
|
|
frame_->EmitPop(r0);
|
|
|
|
frame_->EmitPop(r1);
|
|
|
|
__ cmp(r0, Operand(r1));
|
|
|
|
cc_reg_ = eq;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitCallRuntime(CallRuntime* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
if (CheckForInlineRuntimeCall(node)) {
|
|
|
|
ASSERT((has_cc() && frame_->height() == original_height) ||
|
|
|
|
(!has_cc() && frame_->height() == original_height + 1));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
ZoneList<Expression*>* args = node->arguments();
|
|
|
|
Comment cmnt(masm_, "[ CallRuntime");
|
|
|
|
Runtime::Function* function = node->function();
|
|
|
|
|
|
|
|
if (function == NULL) {
|
|
|
|
// Prepare stack for calling JS runtime function.
|
|
|
|
__ mov(r0, Operand(node->name()));
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
// Push the builtins object found in the current global object.
|
|
|
|
__ ldr(r1, GlobalObject());
|
|
|
|
__ ldr(r0, FieldMemOperand(r1, GlobalObject::kBuiltinsOffset));
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Push the arguments ("left-to-right").
|
|
|
|
int arg_count = args->length();
|
|
|
|
for (int i = 0; i < arg_count; i++) {
|
|
|
|
LoadAndSpill(args->at(i));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (function == NULL) {
|
|
|
|
// Call the JS runtime function.
|
|
|
|
InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
|
|
|
|
Handle<Code> stub = ComputeCallInitialize(arg_count, in_loop);
|
|
|
|
frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET, arg_count + 1);
|
|
|
|
__ ldr(cp, frame_->Context());
|
|
|
|
frame_->Drop();
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
} else {
|
|
|
|
// Call the C runtime function.
|
|
|
|
frame_->CallRuntime(function, arg_count);
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
}
|
|
|
|
ASSERT(frame_->height() == original_height + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ UnaryOperation");
|
|
|
|
|
|
|
|
Token::Value op = node->op();
|
|
|
|
|
|
|
|
if (op == Token::NOT) {
|
|
|
|
LoadConditionAndSpill(node->expression(),
|
|
|
|
false_target(),
|
|
|
|
true_target(),
|
|
|
|
true);
|
|
|
|
// LoadCondition may (and usually does) leave a test and branch to
|
|
|
|
// be emitted by the caller. In that case, negate the condition.
|
|
|
|
if (has_cc()) cc_reg_ = NegateCondition(cc_reg_);
|
|
|
|
|
|
|
|
} else if (op == Token::DELETE) {
|
|
|
|
Property* property = node->expression()->AsProperty();
|
|
|
|
Variable* variable = node->expression()->AsVariableProxy()->AsVariable();
|
|
|
|
if (property != NULL) {
|
|
|
|
LoadAndSpill(property->obj());
|
|
|
|
LoadAndSpill(property->key());
|
|
|
|
frame_->InvokeBuiltin(Builtins::DELETE, CALL_JS, 2);
|
|
|
|
|
|
|
|
} else if (variable != NULL) {
|
|
|
|
Slot* slot = variable->slot();
|
|
|
|
if (variable->is_global()) {
|
|
|
|
LoadGlobal();
|
|
|
|
__ mov(r0, Operand(variable->name()));
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
frame_->InvokeBuiltin(Builtins::DELETE, CALL_JS, 2);
|
|
|
|
|
|
|
|
} else if (slot != NULL && slot->type() == Slot::LOOKUP) {
|
|
|
|
// lookup the context holding the named variable
|
|
|
|
frame_->EmitPush(cp);
|
|
|
|
__ mov(r0, Operand(variable->name()));
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
frame_->CallRuntime(Runtime::kLookupContext, 2);
|
|
|
|
// r0: context
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
__ mov(r0, Operand(variable->name()));
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
frame_->InvokeBuiltin(Builtins::DELETE, CALL_JS, 2);
|
|
|
|
|
|
|
|
} else {
|
|
|
|
// Default: Result of deleting non-global, not dynamically
|
|
|
|
// introduced variables is false.
|
|
|
|
__ LoadRoot(r0, Heap::kFalseValueRootIndex);
|
|
|
|
}
|
|
|
|
|
|
|
|
} else {
|
|
|
|
// Default: Result of deleting expressions is true.
|
|
|
|
LoadAndSpill(node->expression()); // may have side-effects
|
|
|
|
frame_->Drop();
|
|
|
|
__ LoadRoot(r0, Heap::kTrueValueRootIndex);
|
|
|
|
}
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
|
|
|
|
} else if (op == Token::TYPEOF) {
|
|
|
|
// Special case for loading the typeof expression; see comment on
|
|
|
|
// LoadTypeofExpression().
|
|
|
|
LoadTypeofExpression(node->expression());
|
|
|
|
frame_->CallRuntime(Runtime::kTypeof, 1);
|
|
|
|
frame_->EmitPush(r0); // r0 has result
|
|
|
|
|
|
|
|
} else {
|
|
|
|
LoadAndSpill(node->expression());
|
|
|
|
frame_->EmitPop(r0);
|
|
|
|
switch (op) {
|
|
|
|
case Token::NOT:
|
|
|
|
case Token::DELETE:
|
|
|
|
case Token::TYPEOF:
|
|
|
|
UNREACHABLE(); // handled above
|
|
|
|
break;
|
|
|
|
|
|
|
|
case Token::SUB: {
|
|
|
|
bool overwrite =
|
|
|
|
(node->expression()->AsBinaryOperation() != NULL &&
|
|
|
|
node->expression()->AsBinaryOperation()->ResultOverwriteAllowed());
|
|
|
|
UnarySubStub stub(overwrite);
|
|
|
|
frame_->CallStub(&stub, 0);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case Token::BIT_NOT: {
|
|
|
|
// smi check
|
|
|
|
JumpTarget smi_label;
|
|
|
|
JumpTarget continue_label;
|
|
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
|
|
smi_label.Branch(eq);
|
|
|
|
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
frame_->InvokeBuiltin(Builtins::BIT_NOT, CALL_JS, 1);
|
|
|
|
|
|
|
|
continue_label.Jump();
|
|
|
|
smi_label.Bind();
|
|
|
|
__ mvn(r0, Operand(r0));
|
|
|
|
__ bic(r0, r0, Operand(kSmiTagMask)); // bit-clear inverted smi-tag
|
|
|
|
continue_label.Bind();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case Token::VOID:
|
|
|
|
// since the stack top is cached in r0, popping and then
|
|
|
|
// pushing a value can be done by just writing to r0.
|
|
|
|
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case Token::ADD: {
|
|
|
|
// Smi check.
|
|
|
|
JumpTarget continue_label;
|
|
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
|
|
continue_label.Branch(eq);
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
frame_->InvokeBuiltin(Builtins::TO_NUMBER, CALL_JS, 1);
|
|
|
|
continue_label.Bind();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default:
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
frame_->EmitPush(r0); // r0 has result
|
|
|
|
}
|
|
|
|
ASSERT(!has_valid_frame() ||
|
|
|
|
(has_cc() && frame_->height() == original_height) ||
|
|
|
|
(!has_cc() && frame_->height() == original_height + 1));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitCountOperation(CountOperation* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ CountOperation");
|
|
|
|
|
|
|
|
bool is_postfix = node->is_postfix();
|
|
|
|
bool is_increment = node->op() == Token::INC;
|
|
|
|
|
|
|
|
Variable* var = node->expression()->AsVariableProxy()->AsVariable();
|
|
|
|
bool is_const = (var != NULL && var->mode() == Variable::CONST);
|
|
|
|
|
|
|
|
// Postfix: Make room for the result.
|
|
|
|
if (is_postfix) {
|
|
|
|
__ mov(r0, Operand(0));
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
}
|
|
|
|
|
|
|
|
{ Reference target(this, node->expression());
|
|
|
|
if (target.is_illegal()) {
|
|
|
|
// Spoof the virtual frame to have the expected height (one higher
|
|
|
|
// than on entry).
|
|
|
|
if (!is_postfix) {
|
|
|
|
__ mov(r0, Operand(Smi::FromInt(0)));
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
}
|
|
|
|
ASSERT(frame_->height() == original_height + 1);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
target.GetValueAndSpill();
|
|
|
|
frame_->EmitPop(r0);
|
|
|
|
|
|
|
|
JumpTarget slow;
|
|
|
|
JumpTarget exit;
|
|
|
|
|
|
|
|
// Load the value (1) into register r1.
|
|
|
|
__ mov(r1, Operand(Smi::FromInt(1)));
|
|
|
|
|
|
|
|
// Check for smi operand.
|
|
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
|
|
slow.Branch(ne);
|
|
|
|
|
|
|
|
// Postfix: Store the old value as the result.
|
|
|
|
if (is_postfix) {
|
|
|
|
__ str(r0, frame_->ElementAt(target.size()));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Perform optimistic increment/decrement.
|
|
|
|
if (is_increment) {
|
|
|
|
__ add(r0, r0, Operand(r1), SetCC);
|
|
|
|
} else {
|
|
|
|
__ sub(r0, r0, Operand(r1), SetCC);
|
|
|
|
}
|
|
|
|
|
|
|
|
// If the increment/decrement didn't overflow, we're done.
|
|
|
|
exit.Branch(vc);
|
|
|
|
|
|
|
|
// Revert optimistic increment/decrement.
|
|
|
|
if (is_increment) {
|
|
|
|
__ sub(r0, r0, Operand(r1));
|
|
|
|
} else {
|
|
|
|
__ add(r0, r0, Operand(r1));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Slow case: Convert to number.
|
|
|
|
slow.Bind();
|
|
|
|
{
|
|
|
|
// Convert the operand to a number.
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
frame_->InvokeBuiltin(Builtins::TO_NUMBER, CALL_JS, 1);
|
|
|
|
}
|
|
|
|
if (is_postfix) {
|
|
|
|
// Postfix: store to result (on the stack).
|
|
|
|
__ str(r0, frame_->ElementAt(target.size()));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Compute the new value.
|
|
|
|
__ mov(r1, Operand(Smi::FromInt(1)));
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
frame_->EmitPush(r1);
|
|
|
|
if (is_increment) {
|
|
|
|
frame_->CallRuntime(Runtime::kNumberAdd, 2);
|
|
|
|
} else {
|
|
|
|
frame_->CallRuntime(Runtime::kNumberSub, 2);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Store the new value in the target if not const.
|
|
|
|
exit.Bind();
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
if (!is_const) target.SetValue(NOT_CONST_INIT);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Postfix: Discard the new value and use the old.
|
|
|
|
if (is_postfix) frame_->EmitPop(r0);
|
|
|
|
ASSERT(frame_->height() == original_height + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ BinaryOperation");
|
|
|
|
Token::Value op = node->op();
|
|
|
|
|
|
|
|
// According to ECMA-262 section 11.11, page 58, the binary logical
|
|
|
|
// operators must yield the result of one of the two expressions
|
|
|
|
// before any ToBoolean() conversions. This means that the value
|
|
|
|
// produced by a && or || operator is not necessarily a boolean.
|
|
|
|
|
|
|
|
// NOTE: If the left hand side produces a materialized value (not in
|
|
|
|
// the CC register), we force the right hand side to do the
|
|
|
|
// same. This is necessary because we may have to branch to the exit
|
|
|
|
// after evaluating the left hand side (due to the shortcut
|
|
|
|
// semantics), but the compiler must (statically) know if the result
|
|
|
|
// of compiling the binary operation is materialized or not.
|
|
|
|
|
|
|
|
if (op == Token::AND) {
|
|
|
|
JumpTarget is_true;
|
|
|
|
LoadConditionAndSpill(node->left(),
|
|
|
|
&is_true,
|
|
|
|
false_target(),
|
|
|
|
false);
|
|
|
|
if (has_valid_frame() && !has_cc()) {
|
|
|
|
// The left-hand side result is on top of the virtual frame.
|
|
|
|
JumpTarget pop_and_continue;
|
|
|
|
JumpTarget exit;
|
|
|
|
|
|
|
|
__ ldr(r0, frame_->Top()); // Duplicate the stack top.
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
// Avoid popping the result if it converts to 'false' using the
|
|
|
|
// standard ToBoolean() conversion as described in ECMA-262,
|
|
|
|
// section 9.2, page 30.
|
|
|
|
ToBoolean(&pop_and_continue, &exit);
|
|
|
|
Branch(false, &exit);
|
|
|
|
|
|
|
|
// Pop the result of evaluating the first part.
|
|
|
|
pop_and_continue.Bind();
|
|
|
|
frame_->EmitPop(r0);
|
|
|
|
|
|
|
|
// Evaluate right side expression.
|
|
|
|
is_true.Bind();
|
|
|
|
LoadAndSpill(node->right());
|
|
|
|
|
|
|
|
// Exit (always with a materialized value).
|
|
|
|
exit.Bind();
|
|
|
|
} else if (has_cc() || is_true.is_linked()) {
|
|
|
|
// The left-hand side is either (a) partially compiled to
|
|
|
|
// control flow with a final branch left to emit or (b) fully
|
|
|
|
// compiled to control flow and possibly true.
|
|
|
|
if (has_cc()) {
|
|
|
|
Branch(false, false_target());
|
|
|
|
}
|
|
|
|
is_true.Bind();
|
|
|
|
LoadConditionAndSpill(node->right(),
|
|
|
|
true_target(),
|
|
|
|
false_target(),
|
|
|
|
false);
|
|
|
|
} else {
|
|
|
|
// Nothing to do.
|
|
|
|
ASSERT(!has_valid_frame() && !has_cc() && !is_true.is_linked());
|
|
|
|
}
|
|
|
|
|
|
|
|
} else if (op == Token::OR) {
|
|
|
|
JumpTarget is_false;
|
|
|
|
LoadConditionAndSpill(node->left(),
|
|
|
|
true_target(),
|
|
|
|
&is_false,
|
|
|
|
false);
|
|
|
|
if (has_valid_frame() && !has_cc()) {
|
|
|
|
// The left-hand side result is on top of the virtual frame.
|
|
|
|
JumpTarget pop_and_continue;
|
|
|
|
JumpTarget exit;
|
|
|
|
|
|
|
|
__ ldr(r0, frame_->Top());
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
// Avoid popping the result if it converts to 'true' using the
|
|
|
|
// standard ToBoolean() conversion as described in ECMA-262,
|
|
|
|
// section 9.2, page 30.
|
|
|
|
ToBoolean(&exit, &pop_and_continue);
|
|
|
|
Branch(true, &exit);
|
|
|
|
|
|
|
|
// Pop the result of evaluating the first part.
|
|
|
|
pop_and_continue.Bind();
|
|
|
|
frame_->EmitPop(r0);
|
|
|
|
|
|
|
|
// Evaluate right side expression.
|
|
|
|
is_false.Bind();
|
|
|
|
LoadAndSpill(node->right());
|
|
|
|
|
|
|
|
// Exit (always with a materialized value).
|
|
|
|
exit.Bind();
|
|
|
|
} else if (has_cc() || is_false.is_linked()) {
|
|
|
|
// The left-hand side is either (a) partially compiled to
|
|
|
|
// control flow with a final branch left to emit or (b) fully
|
|
|
|
// compiled to control flow and possibly false.
|
|
|
|
if (has_cc()) {
|
|
|
|
Branch(true, true_target());
|
|
|
|
}
|
|
|
|
is_false.Bind();
|
|
|
|
LoadConditionAndSpill(node->right(),
|
|
|
|
true_target(),
|
|
|
|
false_target(),
|
|
|
|
false);
|
|
|
|
} else {
|
|
|
|
// Nothing to do.
|
|
|
|
ASSERT(!has_valid_frame() && !has_cc() && !is_false.is_linked());
|
|
|
|
}
|
|
|
|
|
|
|
|
} else {
|
|
|
|
// Optimize for the case where (at least) one of the expressions
|
|
|
|
// is a literal small integer.
|
|
|
|
Literal* lliteral = node->left()->AsLiteral();
|
|
|
|
Literal* rliteral = node->right()->AsLiteral();
|
|
|
|
// NOTE: The code below assumes that the slow cases (calls to runtime)
|
|
|
|
// never return a constant/immutable object.
|
|
|
|
bool overwrite_left =
|
|
|
|
(node->left()->AsBinaryOperation() != NULL &&
|
|
|
|
node->left()->AsBinaryOperation()->ResultOverwriteAllowed());
|
|
|
|
bool overwrite_right =
|
|
|
|
(node->right()->AsBinaryOperation() != NULL &&
|
|
|
|
node->right()->AsBinaryOperation()->ResultOverwriteAllowed());
|
|
|
|
|
|
|
|
if (rliteral != NULL && rliteral->handle()->IsSmi()) {
|
|
|
|
LoadAndSpill(node->left());
|
|
|
|
SmiOperation(node->op(),
|
|
|
|
rliteral->handle(),
|
|
|
|
false,
|
|
|
|
overwrite_right ? OVERWRITE_RIGHT : NO_OVERWRITE);
|
|
|
|
|
|
|
|
} else if (lliteral != NULL && lliteral->handle()->IsSmi()) {
|
|
|
|
LoadAndSpill(node->right());
|
|
|
|
SmiOperation(node->op(),
|
|
|
|
lliteral->handle(),
|
|
|
|
true,
|
|
|
|
overwrite_left ? OVERWRITE_LEFT : NO_OVERWRITE);
|
|
|
|
|
|
|
|
} else {
|
|
|
|
OverwriteMode overwrite_mode = NO_OVERWRITE;
|
|
|
|
if (overwrite_left) {
|
|
|
|
overwrite_mode = OVERWRITE_LEFT;
|
|
|
|
} else if (overwrite_right) {
|
|
|
|
overwrite_mode = OVERWRITE_RIGHT;
|
|
|
|
}
|
|
|
|
LoadAndSpill(node->left());
|
|
|
|
LoadAndSpill(node->right());
|
|
|
|
GenericBinaryOperation(node->op(), overwrite_mode);
|
|
|
|
}
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
}
|
|
|
|
ASSERT(!has_valid_frame() ||
|
|
|
|
(has_cc() && frame_->height() == original_height) ||
|
|
|
|
(!has_cc() && frame_->height() == original_height + 1));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitThisFunction(ThisFunction* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
__ ldr(r0, frame_->Function());
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
ASSERT(frame_->height() == original_height + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeGenerator::VisitCompareOperation(CompareOperation* node) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
int original_height = frame_->height();
|
|
|
|
#endif
|
|
|
|
VirtualFrame::SpilledScope spilled_scope;
|
|
|
|
Comment cmnt(masm_, "[ CompareOperation");
|
|
|
|
|
|
|
|
// Get the expressions from the node.
|
|
|
|
Expression* left = node->left();
|
|
|
|
Expression* right = node->right();
|
|
|
|
Token::Value op = node->op();
|
|
|
|
|
|
|
|
// To make null checks efficient, we check if either left or right is the
|
|
|
|
// literal 'null'. If so, we optimize the code by inlining a null check
|
|
|
|
// instead of calling the (very) general runtime routine for checking
|
|
|
|
// equality.
|
|
|
|
if (op == Token::EQ || op == Token::EQ_STRICT) {
|
|
|
|
bool left_is_null =
|
|
|
|
left->AsLiteral() != NULL && left->AsLiteral()->IsNull();
|
|
|
|
bool right_is_null =
|
|
|
|
right->AsLiteral() != NULL && right->AsLiteral()->IsNull();
|
|
|
|
// The 'null' value can only be equal to 'null' or 'undefined'.
|
|
|
|
if (left_is_null || right_is_null) {
|
|
|
|
LoadAndSpill(left_is_null ? right : left);
|
|
|
|
frame_->EmitPop(r0);
|
|
|
|
__ LoadRoot(ip, Heap::kNullValueRootIndex);
|
|
|
|
__ cmp(r0, ip);
|
|
|
|
|
|
|
|
// The 'null' value is only equal to 'undefined' if using non-strict
|
|
|
|
// comparisons.
|
|
|
|
if (op != Token::EQ_STRICT) {
|
|
|
|
true_target()->Branch(eq);
|
|
|
|
|
|
|
|
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
|
|
|
|
__ cmp(r0, Operand(ip));
|
|
|
|
true_target()->Branch(eq);
|
|
|
|
|
|
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
|
|
false_target()->Branch(eq);
|
|
|
|
|
|
|
|
// It can be an undetectable object.
|
|
|
|
__ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset));
|
|
|
|
__ ldrb(r0, FieldMemOperand(r0, Map::kBitFieldOffset));
|
|
|
|
__ and_(r0, r0, Operand(1 << Map::kIsUndetectable));
|
|
|
|
__ cmp(r0, Operand(1 << Map::kIsUndetectable));
|
|
|
|
}
|
|
|
|
|
|
|
|
cc_reg_ = eq;
|
|
|
|
ASSERT(has_cc() && frame_->height() == original_height);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// To make typeof testing for natives implemented in JavaScript really
|
|
|
|
// efficient, we generate special code for expressions of the form:
|
|
|
|
// 'typeof <expression> == <string>'.
|
|
|
|
UnaryOperation* operation = left->AsUnaryOperation();
|
|
|
|
if ((op == Token::EQ || op == Token::EQ_STRICT) &&
|
|
|
|
(operation != NULL && operation->op() == Token::TYPEOF) &&
|
|
|
|
(right->AsLiteral() != NULL &&
|
|
|
|
right->AsLiteral()->handle()->IsString())) {
|
|
|
|
Handle<String> check(String::cast(*right->AsLiteral()->handle()));
|
|
|
|
|
|
|
|
// Load the operand, move it to register r1.
|
|
|
|
LoadTypeofExpression(operation->expression());
|
|
|
|
frame_->EmitPop(r1);
|
|
|
|
|
|
|
|
if (check->Equals(Heap::number_symbol())) {
|
|
|
|
__ tst(r1, Operand(kSmiTagMask));
|
|
|
|
true_target()->Branch(eq);
|
|
|
|
__ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset));
|
|
|
|
__ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
|
|
|
|
__ cmp(r1, ip);
|
|
|
|
cc_reg_ = eq;
|
|
|
|
|
|
|
|
} else if (check->Equals(Heap::string_symbol())) {
|
|
|
|
__ tst(r1, Operand(kSmiTagMask));
|
|
|
|
false_target()->Branch(eq);
|
|
|
|
|
|
|
|
__ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset));
|
|
|
|
|
|
|
|
// It can be an undetectable string object.
|
|
|
|
__ ldrb(r2, FieldMemOperand(r1, Map::kBitFieldOffset));
|
|
|
|
__ and_(r2, r2, Operand(1 << Map::kIsUndetectable));
|
|
|
|
__ cmp(r2, Operand(1 << Map::kIsUndetectable));
|
|
|
|
false_target()->Branch(eq);
|
|
|
|
|
|
|
|
__ ldrb(r2, FieldMemOperand(r1, Map::kInstanceTypeOffset));
|
|
|
|
__ cmp(r2, Operand(FIRST_NONSTRING_TYPE));
|
|
|
|
cc_reg_ = lt;
|
|
|
|
|
|
|
|
} else if (check->Equals(Heap::boolean_symbol())) {
|
|
|
|
__ LoadRoot(ip, Heap::kTrueValueRootIndex);
|
|
|
|
__ cmp(r1, ip);
|
|
|
|
true_target()->Branch(eq);
|
|
|
|
__ LoadRoot(ip, Heap::kFalseValueRootIndex);
|
|
|
|
__ cmp(r1, ip);
|
|
|
|
cc_reg_ = eq;
|
|
|
|
|
|
|
|
} else if (check->Equals(Heap::undefined_symbol())) {
|
|
|
|
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
|
|
|
|
__ cmp(r1, ip);
|
|
|
|
true_target()->Branch(eq);
|
|
|
|
|
|
|
|
__ tst(r1, Operand(kSmiTagMask));
|
|
|
|
false_target()->Branch(eq);
|
|
|
|
|
|
|
|
// It can be an undetectable object.
|
|
|
|
__ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset));
|
|
|
|
__ ldrb(r2, FieldMemOperand(r1, Map::kBitFieldOffset));
|
|
|
|
__ and_(r2, r2, Operand(1 << Map::kIsUndetectable));
|
|
|
|
__ cmp(r2, Operand(1 << Map::kIsUndetectable));
|
|
|
|
|
|
|
|
cc_reg_ = eq;
|
|
|
|
|
|
|
|
} else if (check->Equals(Heap::function_symbol())) {
|
|
|
|
__ tst(r1, Operand(kSmiTagMask));
|
|
|
|
false_target()->Branch(eq);
|
|
|
|
Register map_reg = r2;
|
|
|
|
__ CompareObjectType(r1, map_reg, r1, JS_FUNCTION_TYPE);
|
|
|
|
true_target()->Branch(eq);
|
|
|
|
// Regular expressions are callable so typeof == 'function'.
|
|
|
|
__ CompareInstanceType(map_reg, r1, JS_REGEXP_TYPE);
|
|
|
|
cc_reg_ = eq;
|
|
|
|
|
|
|
|
} else if (check->Equals(Heap::object_symbol())) {
|
|
|
|
__ tst(r1, Operand(kSmiTagMask));
|
|
|
|
false_target()->Branch(eq);
|
|
|
|
|
|
|
|
__ LoadRoot(ip, Heap::kNullValueRootIndex);
|
|
|
|
__ cmp(r1, ip);
|
|
|
|
true_target()->Branch(eq);
|
|
|
|
|
|
|
|
Register map_reg = r2;
|
|
|
|
__ CompareObjectType(r1, map_reg, r1, JS_REGEXP_TYPE);
|
|
|
|
false_target()->Branch(eq);
|
|
|
|
|
|
|
|
// It can be an undetectable object.
|
|
|
|
__ ldrb(r1, FieldMemOperand(map_reg, Map::kBitFieldOffset));
|
|
|
|
__ and_(r1, r1, Operand(1 << Map::kIsUndetectable));
|
|
|
|
__ cmp(r1, Operand(1 << Map::kIsUndetectable));
|
|
|
|
false_target()->Branch(eq);
|
|
|
|
|
|
|
|
__ ldrb(r1, FieldMemOperand(map_reg, Map::kInstanceTypeOffset));
|
|
|
|
__ cmp(r1, Operand(FIRST_JS_OBJECT_TYPE));
|
|
|
|
false_target()->Branch(lt);
|
|
|
|
__ cmp(r1, Operand(LAST_JS_OBJECT_TYPE));
|
|
|
|
cc_reg_ = le;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
// Uncommon case: typeof testing against a string literal that is
|
|
|
|
// never returned from the typeof operator.
|
|
|
|
false_target()->Jump();
|
|
|
|
}
|
|
|
|
ASSERT(!has_valid_frame() ||
|
|
|
|
(has_cc() && frame_->height() == original_height));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (op) {
|
|
|
|
case Token::EQ:
|
|
|
|
Comparison(eq, left, right, false);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case Token::LT:
|
|
|
|
Comparison(lt, left, right);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case Token::GT:
|
|
|
|
Comparison(gt, left, right);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case Token::LTE:
|
|
|
|
Comparison(le, left, right);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case Token::GTE:
|
|
|
|
Comparison(ge, left, right);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case Token::EQ_STRICT:
|
|
|
|
Comparison(eq, left, right, true);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case Token::IN: {
|
|
|
|
LoadAndSpill(left);
|
|
|
|
LoadAndSpill(right);
|
|
|
|
frame_->InvokeBuiltin(Builtins::IN, CALL_JS, 2);
|
|
|
|
frame_->EmitPush(r0);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case Token::INSTANCEOF: {
|
|
|
|
LoadAndSpill(left);
|
|
|
|
LoadAndSpill(right);
|
|
|
|
InstanceofStub stub;
|
|
|
|
frame_->CallStub(&stub, 2);
|
|
|
|
// At this point if instanceof succeeded then r0 == 0.
|
|
|
|
__ tst(r0, Operand(r0));
|
|
|
|
cc_reg_ = eq;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
default:
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
ASSERT((has_cc() && frame_->height() == original_height) ||
|
|
|
|
(!has_cc() && frame_->height() == original_height + 1));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
bool CodeGenerator::HasValidEntryRegisters() { return true; }
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
#undef __
|
|
|
|
#define __ ACCESS_MASM(masm)
|
|
|
|
|
|
|
|
|
|
|
|
Handle<String> Reference::GetName() {
|
|
|
|
ASSERT(type_ == NAMED);
|
|
|
|
Property* property = expression_->AsProperty();
|
|
|
|
if (property == NULL) {
|
|
|
|
// Global variable reference treated as a named property reference.
|
|
|
|
VariableProxy* proxy = expression_->AsVariableProxy();
|
|
|
|
ASSERT(proxy->AsVariable() != NULL);
|
|
|
|
ASSERT(proxy->AsVariable()->is_global());
|
|
|
|
return proxy->name();
|
|
|
|
} else {
|
|
|
|
Literal* raw_name = property->key()->AsLiteral();
|
|
|
|
ASSERT(raw_name != NULL);
|
|
|
|
return Handle<String>(String::cast(*raw_name->handle()));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Reference::GetValue() {
|
|
|
|
ASSERT(cgen_->HasValidEntryRegisters());
|
|
|
|
ASSERT(!is_illegal());
|
|
|
|
ASSERT(!cgen_->has_cc());
|
|
|
|
MacroAssembler* masm = cgen_->masm();
|
|
|
|
Property* property = expression_->AsProperty();
|
|
|
|
if (property != NULL) {
|
|
|
|
cgen_->CodeForSourcePosition(property->position());
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (type_) {
|
|
|
|
case SLOT: {
|
|
|
|
Comment cmnt(masm, "[ Load from Slot");
|
|
|
|
Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
|
|
|
|
ASSERT(slot != NULL);
|
|
|
|
cgen_->LoadFromSlot(slot, NOT_INSIDE_TYPEOF);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case NAMED: {
|
|
|
|
VirtualFrame* frame = cgen_->frame();
|
|
|
|
Comment cmnt(masm, "[ Load from named Property");
|
|
|
|
Handle<String> name(GetName());
|
|
|
|
Variable* var = expression_->AsVariableProxy()->AsVariable();
|
|
|
|
Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
|
|
|
|
// Setup the name register.
|
|
|
|
Result name_reg(r2);
|
|
|
|
__ mov(r2, Operand(name));
|
|
|
|
ASSERT(var == NULL || var->is_global());
|
|
|
|
RelocInfo::Mode rmode = (var == NULL)
|
|
|
|
? RelocInfo::CODE_TARGET
|
|
|
|
: RelocInfo::CODE_TARGET_CONTEXT;
|
|
|
|
frame->CallCodeObject(ic, rmode, &name_reg, 0);
|
|
|
|
frame->EmitPush(r0);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case KEYED: {
|
|
|
|
// TODO(181): Implement inlined version of array indexing once
|
|
|
|
// loop nesting is properly tracked on ARM.
|
|
|
|
VirtualFrame* frame = cgen_->frame();
|
|
|
|
Comment cmnt(masm, "[ Load from keyed Property");
|
|
|
|
ASSERT(property != NULL);
|
|
|
|
Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
|
|
|
|
Variable* var = expression_->AsVariableProxy()->AsVariable();
|
|
|
|
ASSERT(var == NULL || var->is_global());
|
|
|
|
RelocInfo::Mode rmode = (var == NULL)
|
|
|
|
? RelocInfo::CODE_TARGET
|
|
|
|
: RelocInfo::CODE_TARGET_CONTEXT;
|
|
|
|
frame->CallCodeObject(ic, rmode, 0);
|
|
|
|
frame->EmitPush(r0);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
default:
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Reference::SetValue(InitState init_state) {
|
|
|
|
ASSERT(!is_illegal());
|
|
|
|
ASSERT(!cgen_->has_cc());
|
|
|
|
MacroAssembler* masm = cgen_->masm();
|
|
|
|
VirtualFrame* frame = cgen_->frame();
|
|
|
|
Property* property = expression_->AsProperty();
|
|
|
|
if (property != NULL) {
|
|
|
|
cgen_->CodeForSourcePosition(property->position());
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (type_) {
|
|
|
|
case SLOT: {
|
|
|
|
Comment cmnt(masm, "[ Store to Slot");
|
|
|
|
Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
|
|
|
|
ASSERT(slot != NULL);
|
|
|
|
if (slot->type() == Slot::LOOKUP) {
|
|
|
|
ASSERT(slot->var()->is_dynamic());
|
|
|
|
|
|
|
|
// For now, just do a runtime call.
|
|
|
|
frame->EmitPush(cp);
|
|
|
|
__ mov(r0, Operand(slot->var()->name()));
|
|
|
|
frame->EmitPush(r0);
|
|
|
|
|
|
|
|
if (init_state == CONST_INIT) {
|
|
|
|
// Same as the case for a normal store, but ignores attribute
|
|
|
|
// (e.g. READ_ONLY) of context slot so that we can initialize
|
|
|
|
// const properties (introduced via eval("const foo = (some
|
|
|
|
// expr);")). Also, uses the current function context instead of
|
|
|
|
// the top context.
|
|
|
|
//
|
|
|
|
// Note that we must declare the foo upon entry of eval(), via a
|
|
|
|
// context slot declaration, but we cannot initialize it at the
|
|
|
|
// same time, because the const declaration may be at the end of
|
|
|
|
// the eval code (sigh...) and the const variable may have been
|
|
|
|
// used before (where its value is 'undefined'). Thus, we can only
|
|
|
|
// do the initialization when we actually encounter the expression
|
|
|
|
// and when the expression operands are defined and valid, and
|
|
|
|
// thus we need the split into 2 operations: declaration of the
|
|
|
|
// context slot followed by initialization.
|
|
|
|
frame->CallRuntime(Runtime::kInitializeConstContextSlot, 3);
|
|
|
|
} else {
|
|
|
|
frame->CallRuntime(Runtime::kStoreContextSlot, 3);
|
|
|
|
}
|
|
|
|
// Storing a variable must keep the (new) value on the expression
|
|
|
|
// stack. This is necessary for compiling assignment expressions.
|
|
|
|
frame->EmitPush(r0);
|
|
|
|
|
|
|
|
} else {
|
|
|
|
ASSERT(!slot->var()->is_dynamic());
|
|
|
|
|
|
|
|
JumpTarget exit;
|
|
|
|
if (init_state == CONST_INIT) {
|
|
|
|
ASSERT(slot->var()->mode() == Variable::CONST);
|
|
|
|
// Only the first const initialization must be executed (the slot
|
|
|
|
// still contains 'the hole' value). When the assignment is
|
|
|
|
// executed, the code is identical to a normal store (see below).
|
|
|
|
Comment cmnt(masm, "[ Init const");
|
|
|
|
__ ldr(r2, cgen_->SlotOperand(slot, r2));
|
|
|
|
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
|
|
|
|
__ cmp(r2, ip);
|
|
|
|
exit.Branch(ne);
|
|
|
|
}
|
|
|
|
|
|
|
|
// We must execute the store. Storing a variable must keep the
|
|
|
|
// (new) value on the stack. This is necessary for compiling
|
|
|
|
// assignment expressions.
|
|
|
|
//
|
|
|
|
// Note: We will reach here even with slot->var()->mode() ==
|
|
|
|
// Variable::CONST because of const declarations which will
|
|
|
|
// initialize consts to 'the hole' value and by doing so, end up
|
|
|
|
// calling this code. r2 may be loaded with context; used below in
|
|
|
|
// RecordWrite.
|
|
|
|
frame->EmitPop(r0);
|
|
|
|
__ str(r0, cgen_->SlotOperand(slot, r2));
|
|
|
|
frame->EmitPush(r0);
|
|
|
|
if (slot->type() == Slot::CONTEXT) {
|
|
|
|
// Skip write barrier if the written value is a smi.
|
|
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
|
|
exit.Branch(eq);
|
|
|
|
// r2 is loaded with context when calling SlotOperand above.
|
|
|
|
int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
|
|
|
|
__ mov(r3, Operand(offset));
|
|
|
|
__ RecordWrite(r2, r3, r1);
|
|
|
|
}
|
|
|
|
// If we definitely did not jump over the assignment, we do not need
|
|
|
|
// to bind the exit label. Doing so can defeat peephole
|
|
|
|
// optimization.
|
|
|
|
if (init_state == CONST_INIT || slot->type() == Slot::CONTEXT) {
|
|
|
|
exit.Bind();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case NAMED: {
|
|
|
|
Comment cmnt(masm, "[ Store to named Property");
|
|
|
|
// Call the appropriate IC code.
|
|
|
|
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
|
|
|
|
Handle<String> name(GetName());
|
|
|
|
|
|
|
|
Result value(r0);
|
|
|
|
frame->EmitPop(r0);
|
|
|
|
|
|
|
|
// Setup the name register.
|
|
|
|
Result property_name(r2);
|
|
|
|
__ mov(r2, Operand(name));
|
|
|
|
frame->CallCodeObject(ic,
|
|
|
|
RelocInfo::CODE_TARGET,
|
|
|
|
&value,
|
|
|
|
&property_name,
|
|
|
|
0);
|
|
|
|
frame->EmitPush(r0);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case KEYED: {
|
|
|
|
Comment cmnt(masm, "[ Store to keyed Property");
|
|
|
|
Property* property = expression_->AsProperty();
|
|
|
|
ASSERT(property != NULL);
|
|
|
|
cgen_->CodeForSourcePosition(property->position());
|
|
|
|
|
|
|
|
// Call IC code.
|
|
|
|
Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize));
|
|
|
|
// TODO(1222589): Make the IC grab the values from the stack.
|
|
|
|
Result value(r0);
|
|
|
|
frame->EmitPop(r0); // value
|
|
|
|
frame->CallCodeObject(ic, RelocInfo::CODE_TARGET, &value, 0);
|
|
|
|
frame->EmitPush(r0);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
default:
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Count leading zeros in a 32 bit word. On ARM5 and later it uses the clz
|
|
|
|
// instruction. On pre-ARM5 hardware this routine gives the wrong answer for 0
|
|
|
|
// (31 instead of 32).
|
|
|
|
static void CountLeadingZeros(
|
|
|
|
MacroAssembler* masm,
|
|
|
|
Register source,
|
|
|
|
Register scratch,
|
|
|
|
Register zeros) {
|
|
|
|
#ifdef CAN_USE_ARMV5_INSTRUCTIONS
|
|
|
|
__ clz(zeros, source); // This instruction is only supported after ARM5.
|
|
|
|
#else
|
|
|
|
__ mov(zeros, Operand(0));
|
|
|
|
__ mov(scratch, source);
|
|
|
|
// Top 16.
|
|
|
|
__ tst(scratch, Operand(0xffff0000));
|
|
|
|
__ add(zeros, zeros, Operand(16), LeaveCC, eq);
|
|
|
|
__ mov(scratch, Operand(scratch, LSL, 16), LeaveCC, eq);
|
|
|
|
// Top 8.
|
|
|
|
__ tst(scratch, Operand(0xff000000));
|
|
|
|
__ add(zeros, zeros, Operand(8), LeaveCC, eq);
|
|
|
|
__ mov(scratch, Operand(scratch, LSL, 8), LeaveCC, eq);
|
|
|
|
// Top 4.
|
|
|
|
__ tst(scratch, Operand(0xf0000000));
|
|
|
|
__ add(zeros, zeros, Operand(4), LeaveCC, eq);
|
|
|
|
__ mov(scratch, Operand(scratch, LSL, 4), LeaveCC, eq);
|
|
|
|
// Top 2.
|
|
|
|
__ tst(scratch, Operand(0xc0000000));
|
|
|
|
__ add(zeros, zeros, Operand(2), LeaveCC, eq);
|
|
|
|
__ mov(scratch, Operand(scratch, LSL, 2), LeaveCC, eq);
|
|
|
|
// Top bit.
|
|
|
|
__ tst(scratch, Operand(0x80000000u));
|
|
|
|
__ add(zeros, zeros, Operand(1), LeaveCC, eq);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Takes a Smi and converts to an IEEE 64 bit floating point value in two
|
|
|
|
// registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and
|
|
|
|
// 52 fraction bits (20 in the first word, 32 in the second). Zeros is a
|
|
|
|
// scratch register. Destroys the source register. No GC occurs during this
|
|
|
|
// stub so you don't have to set up the frame.
|
|
|
|
class ConvertToDoubleStub : public CodeStub {
|
|
|
|
public:
|
|
|
|
ConvertToDoubleStub(Register result_reg_1,
|
|
|
|
Register result_reg_2,
|
|
|
|
Register source_reg,
|
|
|
|
Register scratch_reg)
|
|
|
|
: result1_(result_reg_1),
|
|
|
|
result2_(result_reg_2),
|
|
|
|
source_(source_reg),
|
|
|
|
zeros_(scratch_reg) { }
|
|
|
|
|
|
|
|
private:
|
|
|
|
Register result1_;
|
|
|
|
Register result2_;
|
|
|
|
Register source_;
|
|
|
|
Register zeros_;
|
|
|
|
|
|
|
|
// Minor key encoding in 16 bits.
|
|
|
|
class ModeBits: public BitField<OverwriteMode, 0, 2> {};
|
|
|
|
class OpBits: public BitField<Token::Value, 2, 14> {};
|
|
|
|
|
|
|
|
Major MajorKey() { return ConvertToDouble; }
|
|
|
|
int MinorKey() {
|
|
|
|
// Encode the parameters in a unique 16 bit value.
|
|
|
|
return result1_.code() +
|
|
|
|
(result2_.code() << 4) +
|
|
|
|
(source_.code() << 8) +
|
|
|
|
(zeros_.code() << 12);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Generate(MacroAssembler* masm);
|
|
|
|
|
|
|
|
const char* GetName() { return "ConvertToDoubleStub"; }
|
|
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
void Print() { PrintF("ConvertToDoubleStub\n"); }
|
|
|
|
#endif
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
void ConvertToDoubleStub::Generate(MacroAssembler* masm) {
|
|
|
|
#ifndef BIG_ENDIAN_FLOATING_POINT
|
|
|
|
Register exponent = result1_;
|
|
|
|
Register mantissa = result2_;
|
|
|
|
#else
|
|
|
|
Register exponent = result2_;
|
|
|
|
Register mantissa = result1_;
|
|
|
|
#endif
|
|
|
|
Label not_special;
|
|
|
|
// Convert from Smi to integer.
|
|
|
|
__ mov(source_, Operand(source_, ASR, kSmiTagSize));
|
|
|
|
// Move sign bit from source to destination. This works because the sign bit
|
|
|
|
// in the exponent word of the double has the same position and polarity as
|
|
|
|
// the 2's complement sign bit in a Smi.
|
|
|
|
ASSERT(HeapNumber::kSignMask == 0x80000000u);
|
|
|
|
__ and_(exponent, source_, Operand(HeapNumber::kSignMask), SetCC);
|
|
|
|
// Subtract from 0 if source was negative.
|
|
|
|
__ rsb(source_, source_, Operand(0), LeaveCC, ne);
|
|
|
|
__ cmp(source_, Operand(1));
|
|
|
|
__ b(gt, ¬_special);
|
|
|
|
|
|
|
|
// We have -1, 0 or 1, which we treat specially.
|
|
|
|
__ cmp(source_, Operand(0));
|
|
|
|
// For 1 or -1 we need to or in the 0 exponent (biased to 1023).
|
|
|
|
static const uint32_t exponent_word_for_1 =
|
|
|
|
HeapNumber::kExponentBias << HeapNumber::kExponentShift;
|
|
|
|
__ orr(exponent, exponent, Operand(exponent_word_for_1), LeaveCC, ne);
|
|
|
|
// 1, 0 and -1 all have 0 for the second word.
|
|
|
|
__ mov(mantissa, Operand(0));
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
__ bind(¬_special);
|
|
|
|
// Count leading zeros. Uses result2 for a scratch register on pre-ARM5.
|
|
|
|
// Gets the wrong answer for 0, but we already checked for that case above.
|
|
|
|
CountLeadingZeros(masm, source_, mantissa, zeros_);
|
|
|
|
// Compute exponent and or it into the exponent register.
|
|
|
|
// We use result2 as a scratch register here.
|
|
|
|
__ rsb(mantissa, zeros_, Operand(31 + HeapNumber::kExponentBias));
|
|
|
|
__ orr(exponent,
|
|
|
|
exponent,
|
|
|
|
Operand(mantissa, LSL, HeapNumber::kExponentShift));
|
|
|
|
// Shift up the source chopping the top bit off.
|
|
|
|
__ add(zeros_, zeros_, Operand(1));
|
|
|
|
// This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0.
|
|
|
|
__ mov(source_, Operand(source_, LSL, zeros_));
|
|
|
|
// Compute lower part of fraction (last 12 bits).
|
|
|
|
__ mov(mantissa, Operand(source_, LSL, HeapNumber::kMantissaBitsInTopWord));
|
|
|
|
// And the top (top 20 bits).
|
|
|
|
__ orr(exponent,
|
|
|
|
exponent,
|
|
|
|
Operand(source_, LSR, 32 - HeapNumber::kMantissaBitsInTopWord));
|
|
|
|
__ Ret();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// This stub can convert a signed int32 to a heap number (double). It does
|
|
|
|
// not work for int32s that are in Smi range! No GC occurs during this stub
|
|
|
|
// so you don't have to set up the frame.
|
|
|
|
class WriteInt32ToHeapNumberStub : public CodeStub {
|
|
|
|
public:
|
|
|
|
WriteInt32ToHeapNumberStub(Register the_int,
|
|
|
|
Register the_heap_number,
|
|
|
|
Register scratch)
|
|
|
|
: the_int_(the_int),
|
|
|
|
the_heap_number_(the_heap_number),
|
|
|
|
scratch_(scratch) { }
|
|
|
|
|
|
|
|
private:
|
|
|
|
Register the_int_;
|
|
|
|
Register the_heap_number_;
|
|
|
|
Register scratch_;
|
|
|
|
|
|
|
|
// Minor key encoding in 16 bits.
|
|
|
|
class ModeBits: public BitField<OverwriteMode, 0, 2> {};
|
|
|
|
class OpBits: public BitField<Token::Value, 2, 14> {};
|
|
|
|
|
|
|
|
Major MajorKey() { return WriteInt32ToHeapNumber; }
|
|
|
|
int MinorKey() {
|
|
|
|
// Encode the parameters in a unique 16 bit value.
|
|
|
|
return the_int_.code() +
|
|
|
|
(the_heap_number_.code() << 4) +
|
|
|
|
(scratch_.code() << 8);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Generate(MacroAssembler* masm);
|
|
|
|
|
|
|
|
const char* GetName() { return "WriteInt32ToHeapNumberStub"; }
|
|
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
void Print() { PrintF("WriteInt32ToHeapNumberStub\n"); }
|
|
|
|
#endif
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// See comment for class.
|
|
|
|
void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
|
|
|
|
Label max_negative_int;
|
|
|
|
// the_int_ has the answer which is a signed int32 but not a Smi.
|
|
|
|
// We test for the special value that has a different exponent. This test
|
|
|
|
// has the neat side effect of setting the flags according to the sign.
|
|
|
|
ASSERT(HeapNumber::kSignMask == 0x80000000u);
|
|
|
|
__ cmp(the_int_, Operand(0x80000000u));
|
|
|
|
__ b(eq, &max_negative_int);
|
|
|
|
// Set up the correct exponent in scratch_. All non-Smi int32s have the same.
|
|
|
|
// A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased).
|
|
|
|
uint32_t non_smi_exponent =
|
|
|
|
(HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
|
|
|
|
__ mov(scratch_, Operand(non_smi_exponent));
|
|
|
|
// Set the sign bit in scratch_ if the value was negative.
|
|
|
|
__ orr(scratch_, scratch_, Operand(HeapNumber::kSignMask), LeaveCC, cs);
|
|
|
|
// Subtract from 0 if the value was negative.
|
|
|
|
__ rsb(the_int_, the_int_, Operand(0), LeaveCC, cs);
|
|
|
|
// We should be masking the implict first digit of the mantissa away here,
|
|
|
|
// but it just ends up combining harmlessly with the last digit of the
|
|
|
|
// exponent that happens to be 1. The sign bit is 0 so we shift 10 to get
|
|
|
|
// the most significant 1 to hit the last bit of the 12 bit sign and exponent.
|
|
|
|
ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0);
|
|
|
|
const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
|
|
|
|
__ orr(scratch_, scratch_, Operand(the_int_, LSR, shift_distance));
|
|
|
|
__ str(scratch_, FieldMemOperand(the_heap_number_,
|
|
|
|
HeapNumber::kExponentOffset));
|
|
|
|
__ mov(scratch_, Operand(the_int_, LSL, 32 - shift_distance));
|
|
|
|
__ str(scratch_, FieldMemOperand(the_heap_number_,
|
|
|
|
HeapNumber::kMantissaOffset));
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
__ bind(&max_negative_int);
|
|
|
|
// The max negative int32 is stored as a positive number in the mantissa of
|
|
|
|
// a double because it uses a sign bit instead of using two's complement.
|
|
|
|
// The actual mantissa bits stored are all 0 because the implicit most
|
|
|
|
// significant 1 bit is not stored.
|
|
|
|
non_smi_exponent += 1 << HeapNumber::kExponentShift;
|
|
|
|
__ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent));
|
|
|
|
__ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset));
|
|
|
|
__ mov(ip, Operand(0));
|
|
|
|
__ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset));
|
|
|
|
__ Ret();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Handle the case where the lhs and rhs are the same object.
|
|
|
|
// Equality is almost reflexive (everything but NaN), so this is a test
|
|
|
|
// for "identity and not NaN".
|
|
|
|
static void EmitIdenticalObjectComparison(MacroAssembler* masm,
|
|
|
|
Label* slow,
|
|
|
|
Condition cc) {
|
|
|
|
Label not_identical;
|
|
|
|
__ cmp(r0, Operand(r1));
|
|
|
|
__ b(ne, ¬_identical);
|
|
|
|
|
|
|
|
Register exp_mask_reg = r5;
|
|
|
|
__ mov(exp_mask_reg, Operand(HeapNumber::kExponentMask));
|
|
|
|
|
|
|
|
// Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
|
|
|
|
// so we do the second best thing - test it ourselves.
|
|
|
|
Label heap_number, return_equal;
|
|
|
|
// They are both equal and they are not both Smis so both of them are not
|
|
|
|
// Smis. If it's not a heap number, then return equal.
|
|
|
|
if (cc == lt || cc == gt) {
|
|
|
|
__ CompareObjectType(r0, r4, r4, FIRST_JS_OBJECT_TYPE);
|
|
|
|
__ b(ge, slow);
|
|
|
|
} else {
|
|
|
|
__ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
|
|
|
|
__ b(eq, &heap_number);
|
|
|
|
// Comparing JS objects with <=, >= is complicated.
|
|
|
|
if (cc != eq) {
|
|
|
|
__ cmp(r4, Operand(FIRST_JS_OBJECT_TYPE));
|
|
|
|
__ b(ge, slow);
|
|
|
|
// Normally here we fall through to return_equal, but undefined is
|
|
|
|
// special: (undefined == undefined) == true, but (undefined <= undefined)
|
|
|
|
// == false! See ECMAScript 11.8.5.
|
|
|
|
if (cc == le || cc == ge) {
|
|
|
|
__ cmp(r4, Operand(ODDBALL_TYPE));
|
|
|
|
__ b(ne, &return_equal);
|
|
|
|
__ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
|
|
|
|
__ cmp(r0, Operand(r2));
|
|
|
|
__ b(ne, &return_equal);
|
|
|
|
if (cc == le) {
|
|
|
|
__ mov(r0, Operand(GREATER)); // undefined <= undefined should fail.
|
|
|
|
} else {
|
|
|
|
__ mov(r0, Operand(LESS)); // undefined >= undefined should fail.
|
|
|
|
}
|
|
|
|
__ mov(pc, Operand(lr)); // Return.
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
__ bind(&return_equal);
|
|
|
|
if (cc == lt) {
|
|
|
|
__ mov(r0, Operand(GREATER)); // Things aren't less than themselves.
|
|
|
|
} else if (cc == gt) {
|
|
|
|
__ mov(r0, Operand(LESS)); // Things aren't greater than themselves.
|
|
|
|
} else {
|
|
|
|
__ mov(r0, Operand(0)); // Things are <=, >=, ==, === themselves.
|
|
|
|
}
|
|
|
|
__ mov(pc, Operand(lr)); // Return.
|
|
|
|
|
|
|
|
// For less and greater we don't have to check for NaN since the result of
|
|
|
|
// x < x is false regardless. For the others here is some code to check
|
|
|
|
// for NaN.
|
|
|
|
if (cc != lt && cc != gt) {
|
|
|
|
__ bind(&heap_number);
|
|
|
|
// It is a heap number, so return non-equal if it's NaN and equal if it's
|
|
|
|
// not NaN.
|
|
|
|
// The representation of NaN values has all exponent bits (52..62) set,
|
|
|
|
// and not all mantissa bits (0..51) clear.
|
|
|
|
// Read top bits of double representation (second word of value).
|
|
|
|
__ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
|
|
|
|
// Test that exponent bits are all set.
|
|
|
|
__ and_(r3, r2, Operand(exp_mask_reg));
|
|
|
|
__ cmp(r3, Operand(exp_mask_reg));
|
|
|
|
__ b(ne, &return_equal);
|
|
|
|
|
|
|
|
// Shift out flag and all exponent bits, retaining only mantissa.
|
|
|
|
__ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord));
|
|
|
|
// Or with all low-bits of mantissa.
|
|
|
|
__ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
|
|
|
|
__ orr(r0, r3, Operand(r2), SetCC);
|
|
|
|
// For equal we already have the right value in r0: Return zero (equal)
|
|
|
|
// if all bits in mantissa are zero (it's an Infinity) and non-zero if not
|
|
|
|
// (it's a NaN). For <= and >= we need to load r0 with the failing value
|
|
|
|
// if it's a NaN.
|
|
|
|
if (cc != eq) {
|
|
|
|
// All-zero means Infinity means equal.
|
|
|
|
__ mov(pc, Operand(lr), LeaveCC, eq); // Return equal
|
|
|
|
if (cc == le) {
|
|
|
|
__ mov(r0, Operand(GREATER)); // NaN <= NaN should fail.
|
|
|
|
} else {
|
|
|
|
__ mov(r0, Operand(LESS)); // NaN >= NaN should fail.
|
|
|
|
}
|
|
|
|
}
|
|
|
|
__ mov(pc, Operand(lr)); // Return.
|
|
|
|
}
|
|
|
|
// No fall through here.
|
|
|
|
|
|
|
|
__ bind(¬_identical);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// See comment at call site.
|
|
|
|
static void EmitSmiNonsmiComparison(MacroAssembler* masm,
|
|
|
|
Label* rhs_not_nan,
|
|
|
|
Label* slow,
|
|
|
|
bool strict) {
|
|
|
|
Label lhs_is_smi;
|
|
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
|
|
__ b(eq, &lhs_is_smi);
|
|
|
|
|
|
|
|
// Rhs is a Smi. Check whether the non-smi is a heap number.
|
|
|
|
__ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
|
|
|
|
if (strict) {
|
|
|
|
// If lhs was not a number and rhs was a Smi then strict equality cannot
|
|
|
|
// succeed. Return non-equal (r0 is already not zero)
|
|
|
|
__ mov(pc, Operand(lr), LeaveCC, ne); // Return.
|
|
|
|
} else {
|
|
|
|
// Smi compared non-strictly with a non-Smi non-heap-number. Call
|
|
|
|
// the runtime.
|
|
|
|
__ b(ne, slow);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Rhs is a smi, lhs is a number.
|
|
|
|
__ push(lr);
|
|
|
|
|
|
|
|
if (CpuFeatures::IsSupported(VFP3)) {
|
|
|
|
CpuFeatures::Scope scope(VFP3);
|
|
|
|
__ IntegerToDoubleConversionWithVFP3(r1, r3, r2);
|
|
|
|
} else {
|
|
|
|
__ mov(r7, Operand(r1));
|
|
|
|
ConvertToDoubleStub stub1(r3, r2, r7, r6);
|
|
|
|
__ Call(stub1.GetCode(), RelocInfo::CODE_TARGET);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// r3 and r2 are rhs as double.
|
|
|
|
__ ldr(r1, FieldMemOperand(r0, HeapNumber::kValueOffset + kPointerSize));
|
|
|
|
__ ldr(r0, FieldMemOperand(r0, HeapNumber::kValueOffset));
|
|
|
|
// We now have both loaded as doubles but we can skip the lhs nan check
|
|
|
|
// since it's a Smi.
|
|
|
|
__ pop(lr);
|
|
|
|
__ jmp(rhs_not_nan);
|
|
|
|
|
|
|
|
__ bind(&lhs_is_smi);
|
|
|
|
// Lhs is a Smi. Check whether the non-smi is a heap number.
|
|
|
|
__ CompareObjectType(r1, r4, r4, HEAP_NUMBER_TYPE);
|
|
|
|
if (strict) {
|
|
|
|
// If lhs was not a number and rhs was a Smi then strict equality cannot
|
|
|
|
// succeed. Return non-equal.
|
|
|
|
__ mov(r0, Operand(1), LeaveCC, ne); // Non-zero indicates not equal.
|
|
|
|
__ mov(pc, Operand(lr), LeaveCC, ne); // Return.
|
|
|
|
} else {
|
|
|
|
// Smi compared non-strictly with a non-Smi non-heap-number. Call
|
|
|
|
// the runtime.
|
|
|
|
__ b(ne, slow);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Lhs is a smi, rhs is a number.
|
|
|
|
// r0 is Smi and r1 is heap number.
|
|
|
|
__ push(lr);
|
|
|
|
__ ldr(r2, FieldMemOperand(r1, HeapNumber::kValueOffset));
|
|
|
|
__ ldr(r3, FieldMemOperand(r1, HeapNumber::kValueOffset + kPointerSize));
|
|
|
|
|
|
|
|
if (CpuFeatures::IsSupported(VFP3)) {
|
|
|
|
CpuFeatures::Scope scope(VFP3);
|
|
|
|
__ IntegerToDoubleConversionWithVFP3(r0, r1, r0);
|
|
|
|
} else {
|
|
|
|
__ mov(r7, Operand(r0));
|
|
|
|
ConvertToDoubleStub stub2(r1, r0, r7, r6);
|
|
|
|
__ Call(stub2.GetCode(), RelocInfo::CODE_TARGET);
|
|
|
|
}
|
|
|
|
|
|
|
|
__ pop(lr);
|
|
|
|
// Fall through to both_loaded_as_doubles.
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void EmitNanCheck(MacroAssembler* masm, Label* rhs_not_nan, Condition cc) {
|
|
|
|
bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
|
|
|
|
Register lhs_exponent = exp_first ? r0 : r1;
|
|
|
|
Register rhs_exponent = exp_first ? r2 : r3;
|
|
|
|
Register lhs_mantissa = exp_first ? r1 : r0;
|
|
|
|
Register rhs_mantissa = exp_first ? r3 : r2;
|
|
|
|
Label one_is_nan, neither_is_nan;
|
|
|
|
|
|
|
|
Register exp_mask_reg = r5;
|
|
|
|
|
|
|
|
__ mov(exp_mask_reg, Operand(HeapNumber::kExponentMask));
|
|
|
|
__ and_(r4, rhs_exponent, Operand(exp_mask_reg));
|
|
|
|
__ cmp(r4, Operand(exp_mask_reg));
|
|
|
|
__ b(ne, rhs_not_nan);
|
|
|
|
__ mov(r4,
|
|
|
|
Operand(rhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord),
|
|
|
|
SetCC);
|
|
|
|
__ b(ne, &one_is_nan);
|
|
|
|
__ cmp(rhs_mantissa, Operand(0));
|
|
|
|
__ b(ne, &one_is_nan);
|
|
|
|
|
|
|
|
__ bind(rhs_not_nan);
|
|
|
|
__ mov(exp_mask_reg, Operand(HeapNumber::kExponentMask));
|
|
|
|
__ and_(r4, lhs_exponent, Operand(exp_mask_reg));
|
|
|
|
__ cmp(r4, Operand(exp_mask_reg));
|
|
|
|
__ b(ne, &neither_is_nan);
|
|
|
|
__ mov(r4,
|
|
|
|
Operand(lhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord),
|
|
|
|
SetCC);
|
|
|
|
__ b(ne, &one_is_nan);
|
|
|
|
__ cmp(lhs_mantissa, Operand(0));
|
|
|
|
__ b(eq, &neither_is_nan);
|
|
|
|
|
|
|
|
__ bind(&one_is_nan);
|
|
|
|
// NaN comparisons always fail.
|
|
|
|
// Load whatever we need in r0 to make the comparison fail.
|
|
|
|
if (cc == lt || cc == le) {
|
|
|
|
__ mov(r0, Operand(GREATER));
|
|
|
|
} else {
|
|
|
|
__ mov(r0, Operand(LESS));
|
|
|
|
}
|
|
|
|
__ mov(pc, Operand(lr)); // Return.
|
|
|
|
|
|
|
|
__ bind(&neither_is_nan);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// See comment at call site.
|
|
|
|
static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc) {
|
|
|
|
bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
|
|
|
|
Register lhs_exponent = exp_first ? r0 : r1;
|
|
|
|
Register rhs_exponent = exp_first ? r2 : r3;
|
|
|
|
Register lhs_mantissa = exp_first ? r1 : r0;
|
|
|
|
Register rhs_mantissa = exp_first ? r3 : r2;
|
|
|
|
|
|
|
|
// r0, r1, r2, r3 have the two doubles. Neither is a NaN.
|
|
|
|
if (cc == eq) {
|
|
|
|
// Doubles are not equal unless they have the same bit pattern.
|
|
|
|
// Exception: 0 and -0.
|
|
|
|
__ cmp(lhs_mantissa, Operand(rhs_mantissa));
|
|
|
|
__ orr(r0, lhs_mantissa, Operand(rhs_mantissa), LeaveCC, ne);
|
|
|
|
// Return non-zero if the numbers are unequal.
|
|
|
|
__ mov(pc, Operand(lr), LeaveCC, ne);
|
|
|
|
|
|
|
|
__ sub(r0, lhs_exponent, Operand(rhs_exponent), SetCC);
|
|
|
|
// If exponents are equal then return 0.
|
|
|
|
__ mov(pc, Operand(lr), LeaveCC, eq);
|
|
|
|
|
|
|
|
// Exponents are unequal. The only way we can return that the numbers
|
|
|
|
// are equal is if one is -0 and the other is 0. We already dealt
|
|
|
|
// with the case where both are -0 or both are 0.
|
|
|
|
// We start by seeing if the mantissas (that are equal) or the bottom
|
|
|
|
// 31 bits of the rhs exponent are non-zero. If so we return not
|
|
|
|
// equal.
|
|
|
|
__ orr(r4, rhs_mantissa, Operand(rhs_exponent, LSL, kSmiTagSize), SetCC);
|
|
|
|
__ mov(r0, Operand(r4), LeaveCC, ne);
|
|
|
|
__ mov(pc, Operand(lr), LeaveCC, ne); // Return conditionally.
|
|
|
|
// Now they are equal if and only if the lhs exponent is zero in its
|
|
|
|
// low 31 bits.
|
|
|
|
__ mov(r0, Operand(lhs_exponent, LSL, kSmiTagSize));
|
|
|
|
__ mov(pc, Operand(lr));
|
|
|
|
} else {
|
|
|
|
// Call a native function to do a comparison between two non-NaNs.
|
|
|
|
// Call C routine that may not cause GC or other trouble.
|
|
|
|
__ mov(r5, Operand(ExternalReference::compare_doubles()));
|
|
|
|
__ Jump(r5); // Tail call.
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// See comment at call site.
|
|
|
|
static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm) {
|
|
|
|
// If either operand is a JSObject or an oddball value, then they are
|
|
|
|
// not equal since their pointers are different.
|
|
|
|
// There is no test for undetectability in strict equality.
|
|
|
|
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
|
|
|
|
Label first_non_object;
|
|
|
|
// Get the type of the first operand into r2 and compare it with
|
|
|
|
// FIRST_JS_OBJECT_TYPE.
|
|
|
|
__ CompareObjectType(r0, r2, r2, FIRST_JS_OBJECT_TYPE);
|
|
|
|
__ b(lt, &first_non_object);
|
|
|
|
|
|
|
|
// Return non-zero (r0 is not zero)
|
|
|
|
Label return_not_equal;
|
|
|
|
__ bind(&return_not_equal);
|
|
|
|
__ mov(pc, Operand(lr)); // Return.
|
|
|
|
|
|
|
|
__ bind(&first_non_object);
|
|
|
|
// Check for oddballs: true, false, null, undefined.
|
|
|
|
__ cmp(r2, Operand(ODDBALL_TYPE));
|
|
|
|
__ b(eq, &return_not_equal);
|
|
|
|
|
|
|
|
__ CompareObjectType(r1, r3, r3, FIRST_JS_OBJECT_TYPE);
|
|
|
|
__ b(ge, &return_not_equal);
|
|
|
|
|
|
|
|
// Check for oddballs: true, false, null, undefined.
|
|
|
|
__ cmp(r3, Operand(ODDBALL_TYPE));
|
|
|
|
__ b(eq, &return_not_equal);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// See comment at call site.
|
|
|
|
static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
|
|
|
|
Label* both_loaded_as_doubles,
|
|
|
|
Label* not_heap_numbers,
|
|
|
|
Label* slow) {
|
|
|
|
__ CompareObjectType(r0, r2, r2, HEAP_NUMBER_TYPE);
|
|
|
|
__ b(ne, not_heap_numbers);
|
|
|
|
__ CompareObjectType(r1, r3, r3, HEAP_NUMBER_TYPE);
|
|
|
|
__ b(ne, slow); // First was a heap number, second wasn't. Go slow case.
|
|
|
|
|
|
|
|
// Both are heap numbers. Load them up then jump to the code we have
|
|
|
|
// for that.
|
|
|
|
__ ldr(r2, FieldMemOperand(r1, HeapNumber::kValueOffset));
|
|
|
|
__ ldr(r3, FieldMemOperand(r1, HeapNumber::kValueOffset + kPointerSize));
|
|
|
|
__ ldr(r1, FieldMemOperand(r0, HeapNumber::kValueOffset + kPointerSize));
|
|
|
|
__ ldr(r0, FieldMemOperand(r0, HeapNumber::kValueOffset));
|
|
|
|
__ jmp(both_loaded_as_doubles);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Fast negative check for symbol-to-symbol equality.
|
|
|
|
static void EmitCheckForSymbols(MacroAssembler* masm, Label* slow) {
|
|
|
|
// r2 is object type of r0.
|
|
|
|
__ tst(r2, Operand(kIsNotStringMask));
|
|
|
|
__ b(ne, slow);
|
|
|
|
__ tst(r2, Operand(kIsSymbolMask));
|
|
|
|
__ b(eq, slow);
|
|
|
|
__ CompareObjectType(r1, r3, r3, FIRST_NONSTRING_TYPE);
|
|
|
|
__ b(ge, slow);
|
|
|
|
__ tst(r3, Operand(kIsSymbolMask));
|
|
|
|
__ b(eq, slow);
|
|
|
|
|
|
|
|
// Both are symbols. We already checked they weren't the same pointer
|
|
|
|
// so they are not equal.
|
|
|
|
__ mov(r0, Operand(1)); // Non-zero indicates not equal.
|
|
|
|
__ mov(pc, Operand(lr)); // Return.
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// On entry r0 and r1 are the things to be compared. On exit r0 is 0,
|
|
|
|
// positive or negative to indicate the result of the comparison.
|
|
|
|
void CompareStub::Generate(MacroAssembler* masm) {
|
|
|
|
Label slow; // Call builtin.
|
|
|
|
Label not_smis, both_loaded_as_doubles, rhs_not_nan;
|
|
|
|
|
|
|
|
// NOTICE! This code is only reached after a smi-fast-case check, so
|
|
|
|
// it is certain that at least one operand isn't a smi.
|
|
|
|
|
|
|
|
// Handle the case where the objects are identical. Either returns the answer
|
|
|
|
// or goes to slow. Only falls through if the objects were not identical.
|
|
|
|
EmitIdenticalObjectComparison(masm, &slow, cc_);
|
|
|
|
|
|
|
|
// If either is a Smi (we know that not both are), then they can only
|
|
|
|
// be strictly equal if the other is a HeapNumber.
|
|
|
|
ASSERT_EQ(0, kSmiTag);
|
|
|
|
ASSERT_EQ(0, Smi::FromInt(0));
|
|
|
|
__ and_(r2, r0, Operand(r1));
|
|
|
|
__ tst(r2, Operand(kSmiTagMask));
|
|
|
|
__ b(ne, ¬_smis);
|
|
|
|
// One operand is a smi. EmitSmiNonsmiComparison generates code that can:
|
|
|
|
// 1) Return the answer.
|
|
|
|
// 2) Go to slow.
|
|
|
|
// 3) Fall through to both_loaded_as_doubles.
|
|
|
|
// 4) Jump to rhs_not_nan.
|
|
|
|
// In cases 3 and 4 we have found out we were dealing with a number-number
|
|
|
|
// comparison and the numbers have been loaded into r0, r1, r2, r3 as doubles.
|
|
|
|
EmitSmiNonsmiComparison(masm, &rhs_not_nan, &slow, strict_);
|
|
|
|
|
|
|
|
__ bind(&both_loaded_as_doubles);
|
|
|
|
// r0, r1, r2, r3 are the double representations of the left hand side
|
|
|
|
// and the right hand side.
|
|
|
|
|
|
|
|
// Checks for NaN in the doubles we have loaded. Can return the answer or
|
|
|
|
// fall through if neither is a NaN. Also binds rhs_not_nan.
|
|
|
|
EmitNanCheck(masm, &rhs_not_nan, cc_);
|
|
|
|
|
|
|
|
if (CpuFeatures::IsSupported(VFP3)) {
|
|
|
|
CpuFeatures::Scope scope(VFP3);
|
|
|
|
// ARMv7 VFP3 instructions to implement double precision comparison.
|
|
|
|
__ vmov(d6, r0, r1);
|
|
|
|
__ vmov(d7, r2, r3);
|
|
|
|
|
|
|
|
__ vcmp(d6, d7);
|
|
|
|
__ vmrs(pc);
|
|
|
|
__ mov(r0, Operand(0), LeaveCC, eq);
|
|
|
|
__ mov(r0, Operand(1), LeaveCC, lt);
|
|
|
|
__ mvn(r0, Operand(0), LeaveCC, gt);
|
|
|
|
__ mov(pc, Operand(lr));
|
|
|
|
} else {
|
|
|
|
// Compares two doubles in r0, r1, r2, r3 that are not NaNs. Returns the
|
|
|
|
// answer. Never falls through.
|
|
|
|
EmitTwoNonNanDoubleComparison(masm, cc_);
|
|
|
|
}
|
|
|
|
|
|
|
|
__ bind(¬_smis);
|
|
|
|
// At this point we know we are dealing with two different objects,
|
|
|
|
// and neither of them is a Smi. The objects are in r0 and r1.
|
|
|
|
if (strict_) {
|
|
|
|
// This returns non-equal for some object types, or falls through if it
|
|
|
|
// was not lucky.
|
|
|
|
EmitStrictTwoHeapObjectCompare(masm);
|
|
|
|
}
|
|
|
|
|
|
|
|
Label check_for_symbols;
|
|
|
|
// Check for heap-number-heap-number comparison. Can jump to slow case,
|
|
|
|
// or load both doubles into r0, r1, r2, r3 and jump to the code that handles
|
|
|
|
// that case. If the inputs are not doubles then jumps to check_for_symbols.
|
|
|
|
// In this case r2 will contain the type of r0.
|
|
|
|
EmitCheckForTwoHeapNumbers(masm,
|
|
|
|
&both_loaded_as_doubles,
|
|
|
|
&check_for_symbols,
|
|
|
|
&slow);
|
|
|
|
|
|
|
|
__ bind(&check_for_symbols);
|
|
|
|
if (cc_ == eq) {
|
|
|
|
// Either jumps to slow or returns the answer. Assumes that r2 is the type
|
|
|
|
// of r0 on entry.
|
|
|
|
EmitCheckForSymbols(masm, &slow);
|
|
|
|
}
|
|
|
|
|
|
|
|
__ bind(&slow);
|
|
|
|
__ push(lr);
|
|
|
|
__ push(r1);
|
|
|
|
__ push(r0);
|
|
|
|
// Figure out which native to call and setup the arguments.
|
|
|
|
Builtins::JavaScript native;
|
|
|
|
int arg_count = 1; // Not counting receiver.
|
|
|
|
if (cc_ == eq) {
|
|
|
|
native = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
|
|
|
|
} else {
|
|
|
|
native = Builtins::COMPARE;
|
|
|
|
int ncr; // NaN compare result
|
|
|
|
if (cc_ == lt || cc_ == le) {
|
|
|
|
ncr = GREATER;
|
|
|
|
} else {
|
|
|
|
ASSERT(cc_ == gt || cc_ == ge); // remaining cases
|
|
|
|
ncr = LESS;
|
|
|
|
}
|
|
|
|
arg_count++;
|
|
|
|
__ mov(r0, Operand(Smi::FromInt(ncr)));
|
|
|
|
__ push(r0);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
|
|
|
|
// tagged as a small integer.
|
|
|
|
__ InvokeBuiltin(native, CALL_JS);
|
|
|
|
__ cmp(r0, Operand(0));
|
|
|
|
__ pop(pc);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Allocates a heap number or jumps to the label if the young space is full and
|
|
|
|
// a scavenge is needed.
|
|
|
|
static void AllocateHeapNumber(
|
|
|
|
MacroAssembler* masm,
|
|
|
|
Label* need_gc, // Jump here if young space is full.
|
|
|
|
Register result, // The tagged address of the new heap number.
|
|
|
|
Register scratch1, // A scratch register.
|
|
|
|
Register scratch2) { // Another scratch register.
|
|
|
|
// Allocate an object in the heap for the heap number and tag it as a heap
|
|
|
|
// object.
|
|
|
|
__ AllocateInNewSpace(HeapNumber::kSize / kPointerSize,
|
|
|
|
result,
|
|
|
|
scratch1,
|
|
|
|
scratch2,
|
|
|
|
need_gc,
|
|
|
|
TAG_OBJECT);
|
|
|
|
|
|
|
|
// Get heap number map and store it in the allocated object.
|
|
|
|
__ LoadRoot(scratch1, Heap::kHeapNumberMapRootIndex);
|
|
|
|
__ str(scratch1, FieldMemOperand(result, HeapObject::kMapOffset));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// We fall into this code if the operands were Smis, but the result was
|
|
|
|
// not (eg. overflow). We branch into this code (to the not_smi label) if
|
|
|
|
// the operands were not both Smi. The operands are in r0 and r1. In order
|
|
|
|
// to call the C-implemented binary fp operation routines we need to end up
|
|
|
|
// with the double precision floating point operands in r0 and r1 (for the
|
|
|
|
// value in r1) and r2 and r3 (for the value in r0).
|
|
|
|
static void HandleBinaryOpSlowCases(MacroAssembler* masm,
|
|
|
|
Label* not_smi,
|
|
|
|
const Builtins::JavaScript& builtin,
|
|
|
|
Token::Value operation,
|
|
|
|
OverwriteMode mode) {
|
|
|
|
Label slow, slow_pop_2_first, do_the_call;
|
|
|
|
Label r0_is_smi, r1_is_smi, finished_loading_r0, finished_loading_r1;
|
|
|
|
// Smi-smi case (overflow).
|
|
|
|
// Since both are Smis there is no heap number to overwrite, so allocate.
|
|
|
|
// The new heap number is in r5. r6 and r7 are scratch.
|
|
|
|
AllocateHeapNumber(masm, &slow, r5, r6, r7);
|
|
|
|
|
|
|
|
if (CpuFeatures::IsSupported(VFP3)) {
|
|
|
|
CpuFeatures::Scope scope(VFP3);
|
|
|
|
__ IntegerToDoubleConversionWithVFP3(r0, r3, r2);
|
|
|
|
__ IntegerToDoubleConversionWithVFP3(r1, r1, r0);
|
|
|
|
} else {
|
|
|
|
// Write Smi from r0 to r3 and r2 in double format. r6 is scratch.
|
|
|
|
__ mov(r7, Operand(r0));
|
|
|
|
ConvertToDoubleStub stub1(r3, r2, r7, r6);
|
|
|
|
__ push(lr);
|
|
|
|
__ Call(stub1.GetCode(), RelocInfo::CODE_TARGET);
|
|
|
|
// Write Smi from r1 to r1 and r0 in double format. r6 is scratch.
|
|
|
|
__ mov(r7, Operand(r1));
|
|
|
|
ConvertToDoubleStub stub2(r1, r0, r7, r6);
|
|
|
|
__ Call(stub2.GetCode(), RelocInfo::CODE_TARGET);
|
|
|
|
__ pop(lr);
|
|
|
|
}
|
|
|
|
|
|
|
|
__ jmp(&do_the_call); // Tail call. No return.
|
|
|
|
|
|
|
|
// We jump to here if something goes wrong (one param is not a number of any
|
|
|
|
// sort or new-space allocation fails).
|
|
|
|
__ bind(&slow);
|
|
|
|
|
|
|
|
// Push arguments to the stack
|
|
|
|
__ push(r1);
|
|
|
|
__ push(r0);
|
|
|
|
|
|
|
|
if (Token::ADD == operation) {
|
|
|
|
// Test for string arguments before calling runtime.
|
|
|
|
// r1 : first argument
|
|
|
|
// r0 : second argument
|
|
|
|
// sp[0] : second argument
|
|
|
|
// sp[1] : first argument
|
|
|
|
|
|
|
|
Label not_strings, not_string1, string1;
|
|
|
|
__ tst(r1, Operand(kSmiTagMask));
|
|
|
|
__ b(eq, ¬_string1);
|
|
|
|
__ CompareObjectType(r1, r2, r2, FIRST_NONSTRING_TYPE);
|
|
|
|
__ b(ge, ¬_string1);
|
|
|
|
|
|
|
|
// First argument is a a string, test second.
|
|
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
|
|
__ b(eq, &string1);
|
|
|
|
__ CompareObjectType(r0, r2, r2, FIRST_NONSTRING_TYPE);
|
|
|
|
__ b(ge, &string1);
|
|
|
|
|
|
|
|
// First and second argument are strings.
|
|
|
|
__ TailCallRuntime(ExternalReference(Runtime::kStringAdd), 2, 1);
|
|
|
|
|
|
|
|
// Only first argument is a string.
|
|
|
|
__ bind(&string1);
|
|
|
|
__ InvokeBuiltin(Builtins::STRING_ADD_LEFT, JUMP_JS);
|
|
|
|
|
|
|
|
// First argument was not a string, test second.
|
|
|
|
__ bind(¬_string1);
|
|
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
|
|
__ b(eq, ¬_strings);
|
|
|
|
__ CompareObjectType(r0, r2, r2, FIRST_NONSTRING_TYPE);
|
|
|
|
__ b(ge, ¬_strings);
|
|
|
|
|
|
|
|
// Only second argument is a string.
|
|
|
|
__ b(¬_strings);
|
|
|
|
__ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_JS);
|
|
|
|
|
|
|
|
__ bind(¬_strings);
|
|
|
|
}
|
|
|
|
|
|
|
|
__ InvokeBuiltin(builtin, JUMP_JS); // Tail call. No return.
|
|
|
|
|
|
|
|
// We branch here if at least one of r0 and r1 is not a Smi.
|
|
|
|
__ bind(not_smi);
|
|
|
|
if (mode == NO_OVERWRITE) {
|
|
|
|
// In the case where there is no chance of an overwritable float we may as
|
|
|
|
// well do the allocation immediately while r0 and r1 are untouched.
|
|
|
|
AllocateHeapNumber(masm, &slow, r5, r6, r7);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Move r0 to a double in r2-r3.
|
|
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
|
|
__ b(eq, &r0_is_smi); // It's a Smi so don't check it's a heap number.
|
|
|
|
__ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
|
|
|
|
__ b(ne, &slow);
|
|
|
|
if (mode == OVERWRITE_RIGHT) {
|
|
|
|
__ mov(r5, Operand(r0)); // Overwrite this heap number.
|
|
|
|
}
|
|
|
|
// Calling convention says that second double is in r2 and r3.
|
|
|
|
__ ldr(r2, FieldMemOperand(r0, HeapNumber::kValueOffset));
|
|
|
|
__ ldr(r3, FieldMemOperand(r0, HeapNumber::kValueOffset + 4));
|
|
|
|
__ jmp(&finished_loading_r0);
|
|
|
|
__ bind(&r0_is_smi);
|
|
|
|
if (mode == OVERWRITE_RIGHT) {
|
|
|
|
// We can't overwrite a Smi so get address of new heap number into r5.
|
|
|
|
AllocateHeapNumber(masm, &slow, r5, r6, r7);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
if (CpuFeatures::IsSupported(VFP3)) {
|
|
|
|
CpuFeatures::Scope scope(VFP3);
|
|
|
|
__ IntegerToDoubleConversionWithVFP3(r0, r3, r2);
|
|
|
|
} else {
|
|
|
|
// Write Smi from r0 to r3 and r2 in double format.
|
|
|
|
__ mov(r7, Operand(r0));
|
|
|
|
ConvertToDoubleStub stub3(r3, r2, r7, r6);
|
|
|
|
__ push(lr);
|
|
|
|
__ Call(stub3.GetCode(), RelocInfo::CODE_TARGET);
|
|
|
|
__ pop(lr);
|
|
|
|
}
|
|
|
|
|
|
|
|
__ bind(&finished_loading_r0);
|
|
|
|
|
|
|
|
// Move r1 to a double in r0-r1.
|
|
|
|
__ tst(r1, Operand(kSmiTagMask));
|
|
|
|
__ b(eq, &r1_is_smi); // It's a Smi so don't check it's a heap number.
|
|
|
|
__ CompareObjectType(r1, r4, r4, HEAP_NUMBER_TYPE);
|
|
|
|
__ b(ne, &slow);
|
|
|
|
if (mode == OVERWRITE_LEFT) {
|
|
|
|
__ mov(r5, Operand(r1)); // Overwrite this heap number.
|
|
|
|
}
|
|
|
|
// Calling convention says that first double is in r0 and r1.
|
|
|
|
__ ldr(r0, FieldMemOperand(r1, HeapNumber::kValueOffset));
|
|
|
|
__ ldr(r1, FieldMemOperand(r1, HeapNumber::kValueOffset + 4));
|
|
|
|
__ jmp(&finished_loading_r1);
|
|
|
|
__ bind(&r1_is_smi);
|
|
|
|
if (mode == OVERWRITE_LEFT) {
|
|
|
|
// We can't overwrite a Smi so get address of new heap number into r5.
|
|
|
|
AllocateHeapNumber(masm, &slow, r5, r6, r7);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (CpuFeatures::IsSupported(VFP3)) {
|
|
|
|
CpuFeatures::Scope scope(VFP3);
|
|
|
|
__ IntegerToDoubleConversionWithVFP3(r1, r1, r0);
|
|
|
|
} else {
|
|
|
|
// Write Smi from r1 to r1 and r0 in double format.
|
|
|
|
__ mov(r7, Operand(r1));
|
|
|
|
ConvertToDoubleStub stub4(r1, r0, r7, r6);
|
|
|
|
__ push(lr);
|
|
|
|
__ Call(stub4.GetCode(), RelocInfo::CODE_TARGET);
|
|
|
|
__ pop(lr);
|
|
|
|
}
|
|
|
|
|
|
|
|
__ bind(&finished_loading_r1);
|
|
|
|
|
|
|
|
__ bind(&do_the_call);
|
|
|
|
// r0: Left value (least significant part of mantissa).
|
|
|
|
// r1: Left value (sign, exponent, top of mantissa).
|
|
|
|
// r2: Right value (least significant part of mantissa).
|
|
|
|
// r3: Right value (sign, exponent, top of mantissa).
|
|
|
|
// r5: Address of heap number for result.
|
|
|
|
|
|
|
|
if (CpuFeatures::IsSupported(VFP3) &&
|
|
|
|
((Token::MUL == operation) ||
|
|
|
|
(Token::DIV == operation) ||
|
|
|
|
(Token::ADD == operation) ||
|
|
|
|
(Token::SUB == operation))) {
|
|
|
|
CpuFeatures::Scope scope(VFP3);
|
|
|
|
// ARMv7 VFP3 instructions to implement
|
|
|
|
// double precision, add, subtract, multiply, divide.
|
|
|
|
__ vmov(d6, r0, r1);
|
|
|
|
__ vmov(d7, r2, r3);
|
|
|
|
|
|
|
|
if (Token::MUL == operation) {
|
|
|
|
__ vmul(d5, d6, d7);
|
|
|
|
} else if (Token::DIV == operation) {
|
|
|
|
__ vdiv(d5, d6, d7);
|
|
|
|
} else if (Token::ADD == operation) {
|
|
|
|
__ vadd(d5, d6, d7);
|
|
|
|
} else if (Token::SUB == operation) {
|
|
|
|
__ vsub(d5, d6, d7);
|
|
|
|
} else {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
__ vmov(r0, r1, d5);
|
|
|
|
|
|
|
|
__ str(r0, FieldMemOperand(r5, HeapNumber::kValueOffset));
|
|
|
|
__ str(r1, FieldMemOperand(r5, HeapNumber::kValueOffset + 4));
|
|
|
|
__ mov(r0, Operand(r5));
|
|
|
|
__ mov(pc, lr);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
__ push(lr); // For later.
|
|
|
|
__ push(r5); // Address of heap number that is answer.
|
|
|
|
__ AlignStack(0);
|
|
|
|
// Call C routine that may not cause GC or other trouble.
|
|
|
|
__ mov(r5, Operand(ExternalReference::double_fp_operation(operation)));
|
|
|
|
__ Call(r5);
|
|
|
|
__ pop(r4); // Address of heap number.
|
|
|
|
__ cmp(r4, Operand(Smi::FromInt(0)));
|
|
|
|
__ pop(r4, eq); // Conditional pop instruction to get rid of alignment push.
|
|
|
|
// Store answer in the overwritable heap number.
|
|
|
|
#if !defined(USE_ARM_EABI)
|
|
|
|
// Double returned in fp coprocessor register 0 and 1, encoded as register
|
|
|
|
// cr8. Offsets must be divisible by 4 for coprocessor so we need to
|
|
|
|
// substract the tag from r4.
|
|
|
|
__ sub(r5, r4, Operand(kHeapObjectTag));
|
|
|
|
__ stc(p1, cr8, MemOperand(r5, HeapNumber::kValueOffset));
|
|
|
|
#else
|
|
|
|
// Double returned in registers 0 and 1.
|
|
|
|
__ str(r0, FieldMemOperand(r4, HeapNumber::kValueOffset));
|
|
|
|
__ str(r1, FieldMemOperand(r4, HeapNumber::kValueOffset + 4));
|
|
|
|
#endif
|
|
|
|
__ mov(r0, Operand(r4));
|
|
|
|
// And we are done.
|
|
|
|
__ pop(pc);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Tries to get a signed int32 out of a double precision floating point heap
|
|
|
|
// number. Rounds towards 0. Fastest for doubles that are in the ranges
|
|
|
|
// -0x7fffffff to -0x40000000 or 0x40000000 to 0x7fffffff. This corresponds
|
|
|
|
// almost to the range of signed int32 values that are not Smis. Jumps to the
|
|
|
|
// label 'slow' if the double isn't in the range -0x80000000.0 to 0x80000000.0
|
|
|
|
// (excluding the endpoints).
|
|
|
|
static void GetInt32(MacroAssembler* masm,
|
|
|
|
Register source,
|
|
|
|
Register dest,
|
|
|
|
Register scratch,
|
|
|
|
Register scratch2,
|
|
|
|
Label* slow) {
|
|
|
|
Label right_exponent, done;
|
|
|
|
// Get exponent word.
|
|
|
|
__ ldr(scratch, FieldMemOperand(source, HeapNumber::kExponentOffset));
|
|
|
|
// Get exponent alone in scratch2.
|
|
|
|
__ and_(scratch2, scratch, Operand(HeapNumber::kExponentMask));
|
|
|
|
// Load dest with zero. We use this either for the final shift or
|
|
|
|
// for the answer.
|
|
|
|
__ mov(dest, Operand(0));
|
|
|
|
// Check whether the exponent matches a 32 bit signed int that is not a Smi.
|
|
|
|
// A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). This is
|
|
|
|
// the exponent that we are fastest at and also the highest exponent we can
|
|
|
|
// handle here.
|
|
|
|
const uint32_t non_smi_exponent =
|
|
|
|
(HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
|
|
|
|
__ cmp(scratch2, Operand(non_smi_exponent));
|
|
|
|
// If we have a match of the int32-but-not-Smi exponent then skip some logic.
|
|
|
|
__ b(eq, &right_exponent);
|
|
|
|
// If the exponent is higher than that then go to slow case. This catches
|
|
|
|
// numbers that don't fit in a signed int32, infinities and NaNs.
|
|
|
|
__ b(gt, slow);
|
|
|
|
|
|
|
|
// We know the exponent is smaller than 30 (biased). If it is less than
|
|
|
|
// 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, ie
|
|
|
|
// it rounds to zero.
|
|
|
|
const uint32_t zero_exponent =
|
|
|
|
(HeapNumber::kExponentBias + 0) << HeapNumber::kExponentShift;
|
|
|
|
__ sub(scratch2, scratch2, Operand(zero_exponent), SetCC);
|
|
|
|
// Dest already has a Smi zero.
|
|
|
|
__ b(lt, &done);
|
|
|
|
if (!CpuFeatures::IsSupported(VFP3)) {
|
|
|
|
// We have a shifted exponent between 0 and 30 in scratch2.
|
|
|
|
__ mov(dest, Operand(scratch2, LSR, HeapNumber::kExponentShift));
|
|
|
|
// We now have the exponent in dest. Subtract from 30 to get
|
|
|
|
// how much to shift down.
|
|
|
|
__ rsb(dest, dest, Operand(30));
|
|
|
|
}
|
|
|
|
__ bind(&right_exponent);
|
|
|
|
if (CpuFeatures::IsSupported(VFP3)) {
|
|
|
|
CpuFeatures::Scope scope(VFP3);
|
|
|
|
// ARMv7 VFP3 instructions implementing double precision to integer
|
|
|
|
// conversion using round to zero.
|
|
|
|
__ ldr(scratch2, FieldMemOperand(source, HeapNumber::kMantissaOffset));
|
|
|
|
__ vmov(d7, scratch2, scratch);
|
|
|
|
__ vcvt(s15, d7);
|
|
|
|
__ vmov(dest, s15);
|
|
|
|
} else {
|
|
|
|
// Get the top bits of the mantissa.
|
|
|
|
__ and_(scratch2, scratch, Operand(HeapNumber::kMantissaMask));
|
|
|
|
// Put back the implicit 1.
|
|
|
|
__ orr(scratch2, scratch2, Operand(1 << HeapNumber::kExponentShift));
|
|
|
|
// Shift up the mantissa bits to take up the space the exponent used to
|
|
|
|
// take. We just orred in the implicit bit so that took care of one and
|
|
|
|
// we want to leave the sign bit 0 so we subtract 2 bits from the shift
|
|
|
|
// distance.
|
|
|
|
const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
|
|
|
|
__ mov(scratch2, Operand(scratch2, LSL, shift_distance));
|
|
|
|
// Put sign in zero flag.
|
|
|
|
__ tst(scratch, Operand(HeapNumber::kSignMask));
|
|
|
|
// Get the second half of the double. For some exponents we don't
|
|
|
|
// actually need this because the bits get shifted out again, but
|
|
|
|
// it's probably slower to test than just to do it.
|
|
|
|
__ ldr(scratch, FieldMemOperand(source, HeapNumber::kMantissaOffset));
|
|
|
|
// Shift down 22 bits to get the last 10 bits.
|
|
|
|
__ orr(scratch, scratch2, Operand(scratch, LSR, 32 - shift_distance));
|
|
|
|
// Move down according to the exponent.
|
|
|
|
__ mov(dest, Operand(scratch, LSR, dest));
|
|
|
|
// Fix sign if sign bit was set.
|
|
|
|
__ rsb(dest, dest, Operand(0), LeaveCC, ne);
|
|
|
|
}
|
|
|
|
__ bind(&done);
|
|
|
|
}
|
|
|
|
|
|
|
|
// For bitwise ops where the inputs are not both Smis we here try to determine
|
|
|
|
// whether both inputs are either Smis or at least heap numbers that can be
|
|
|
|
// represented by a 32 bit signed value. We truncate towards zero as required
|
|
|
|
// by the ES spec. If this is the case we do the bitwise op and see if the
|
|
|
|
// result is a Smi. If so, great, otherwise we try to find a heap number to
|
|
|
|
// write the answer into (either by allocating or by overwriting).
|
|
|
|
// On entry the operands are in r0 and r1. On exit the answer is in r0.
|
|
|
|
void GenericBinaryOpStub::HandleNonSmiBitwiseOp(MacroAssembler* masm) {
|
|
|
|
Label slow, result_not_a_smi;
|
|
|
|
Label r0_is_smi, r1_is_smi;
|
|
|
|
Label done_checking_r0, done_checking_r1;
|
|
|
|
|
|
|
|
__ tst(r1, Operand(kSmiTagMask));
|
|
|
|
__ b(eq, &r1_is_smi); // It's a Smi so don't check it's a heap number.
|
|
|
|
__ CompareObjectType(r1, r4, r4, HEAP_NUMBER_TYPE);
|
|
|
|
__ b(ne, &slow);
|
|
|
|
GetInt32(masm, r1, r3, r5, r4, &slow);
|
|
|
|
__ jmp(&done_checking_r1);
|
|
|
|
__ bind(&r1_is_smi);
|
|
|
|
__ mov(r3, Operand(r1, ASR, 1));
|
|
|
|
__ bind(&done_checking_r1);
|
|
|
|
|
|
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
|
|
__ b(eq, &r0_is_smi); // It's a Smi so don't check it's a heap number.
|
|
|
|
__ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
|
|
|
|
__ b(ne, &slow);
|
|
|
|
GetInt32(masm, r0, r2, r5, r4, &slow);
|
|
|
|
__ jmp(&done_checking_r0);
|
|
|
|
__ bind(&r0_is_smi);
|
|
|
|
__ mov(r2, Operand(r0, ASR, 1));
|
|
|
|
__ bind(&done_checking_r0);
|
|
|
|
|
|
|
|
// r0 and r1: Original operands (Smi or heap numbers).
|
|
|
|
// r2 and r3: Signed int32 operands.
|
|
|
|
switch (op_) {
|
|
|
|
case Token::BIT_OR: __ orr(r2, r2, Operand(r3)); break;
|
|
|
|
case Token::BIT_XOR: __ eor(r2, r2, Operand(r3)); break;
|
|
|
|
case Token::BIT_AND: __ and_(r2, r2, Operand(r3)); break;
|
|
|
|
case Token::SAR:
|
|
|
|
// Use only the 5 least significant bits of the shift count.
|
|
|
|
__ and_(r2, r2, Operand(0x1f));
|
|
|
|
__ mov(r2, Operand(r3, ASR, r2));
|
|
|
|
break;
|
|
|
|
case Token::SHR:
|
|
|
|
// Use only the 5 least significant bits of the shift count.
|
|
|
|
__ and_(r2, r2, Operand(0x1f));
|
|
|
|
__ mov(r2, Operand(r3, LSR, r2), SetCC);
|
|
|
|
// SHR is special because it is required to produce a positive answer.
|
|
|
|
// The code below for writing into heap numbers isn't capable of writing
|
|
|
|
// the register as an unsigned int so we go to slow case if we hit this
|
|
|
|
// case.
|
|
|
|
__ b(mi, &slow);
|
|
|
|
break;
|
|
|
|
case Token::SHL:
|
|
|
|
// Use only the 5 least significant bits of the shift count.
|
|
|
|
__ and_(r2, r2, Operand(0x1f));
|
|
|
|
__ mov(r2, Operand(r3, LSL, r2));
|
|
|
|
break;
|
|
|
|
default: UNREACHABLE();
|
|
|
|
}
|
|
|
|
// check that the *signed* result fits in a smi
|
|
|
|
__ add(r3, r2, Operand(0x40000000), SetCC);
|
|
|
|
__ b(mi, &result_not_a_smi);
|
|
|
|
__ mov(r0, Operand(r2, LSL, kSmiTagSize));
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
Label have_to_allocate, got_a_heap_number;
|
|
|
|
__ bind(&result_not_a_smi);
|
|
|
|
switch (mode_) {
|
|
|
|
case OVERWRITE_RIGHT: {
|
|
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
|
|
__ b(eq, &have_to_allocate);
|
|
|
|
__ mov(r5, Operand(r0));
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case OVERWRITE_LEFT: {
|
|
|
|
__ tst(r1, Operand(kSmiTagMask));
|
|
|
|
__ b(eq, &have_to_allocate);
|
|
|
|
__ mov(r5, Operand(r1));
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case NO_OVERWRITE: {
|
|
|
|
// Get a new heap number in r5. r6 and r7 are scratch.
|
|
|
|
AllocateHeapNumber(masm, &slow, r5, r6, r7);
|
|
|
|
}
|
|
|
|
default: break;
|
|
|
|
}
|
|
|
|
__ bind(&got_a_heap_number);
|
|
|
|
// r2: Answer as signed int32.
|
|
|
|
// r5: Heap number to write answer into.
|
|
|
|
|
|
|
|
// Nothing can go wrong now, so move the heap number to r0, which is the
|
|
|
|
// result.
|
|
|
|
__ mov(r0, Operand(r5));
|
|
|
|
|
|
|
|
// Tail call that writes the int32 in r2 to the heap number in r0, using
|
|
|
|
// r3 as scratch. r0 is preserved and returned.
|
|
|
|
WriteInt32ToHeapNumberStub stub(r2, r0, r3);
|
|
|
|
__ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
|
|
|
|
|
|
|
|
if (mode_ != NO_OVERWRITE) {
|
|
|
|
__ bind(&have_to_allocate);
|
|
|
|
// Get a new heap number in r5. r6 and r7 are scratch.
|
|
|
|
AllocateHeapNumber(masm, &slow, r5, r6, r7);
|
|
|
|
__ jmp(&got_a_heap_number);
|
|
|
|
}
|
|
|
|
|
|
|
|
// If all else failed then we go to the runtime system.
|
|
|
|
__ bind(&slow);
|
|
|
|
__ push(r1); // restore stack
|
|
|
|
__ push(r0);
|
|
|
|
switch (op_) {
|
|
|
|
case Token::BIT_OR:
|
|
|
|
__ InvokeBuiltin(Builtins::BIT_OR, JUMP_JS);
|
|
|
|
break;
|
|
|
|
case Token::BIT_AND:
|
|
|
|
__ InvokeBuiltin(Builtins::BIT_AND, JUMP_JS);
|
|
|
|
break;
|
|
|
|
case Token::BIT_XOR:
|
|
|
|
__ InvokeBuiltin(Builtins::BIT_XOR, JUMP_JS);
|
|
|
|
break;
|
|
|
|
case Token::SAR:
|
|
|
|
__ InvokeBuiltin(Builtins::SAR, JUMP_JS);
|
|
|
|
break;
|
|
|
|
case Token::SHR:
|
|
|
|
__ InvokeBuiltin(Builtins::SHR, JUMP_JS);
|
|
|
|
break;
|
|
|
|
case Token::SHL:
|
|
|
|
__ InvokeBuiltin(Builtins::SHL, JUMP_JS);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Can we multiply by x with max two shifts and an add.
|
|
|
|
// This answers yes to all integers from 2 to 10.
|
|
|
|
static bool IsEasyToMultiplyBy(int x) {
|
|
|
|
if (x < 2) return false; // Avoid special cases.
|
|
|
|
if (x > (Smi::kMaxValue + 1) >> 2) return false; // Almost always overflows.
|
|
|
|
if (IsPowerOf2(x)) return true; // Simple shift.
|
|
|
|
if (PopCountLessThanEqual2(x)) return true; // Shift and add and shift.
|
|
|
|
if (IsPowerOf2(x + 1)) return true; // Patterns like 11111.
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Can multiply by anything that IsEasyToMultiplyBy returns true for.
|
|
|
|
// Source and destination may be the same register. This routine does
|
|
|
|
// not set carry and overflow the way a mul instruction would.
|
|
|
|
static void MultiplyByKnownInt(MacroAssembler* masm,
|
|
|
|
Register source,
|
|
|
|
Register destination,
|
|
|
|
int known_int) {
|
|
|
|
if (IsPowerOf2(known_int)) {
|
|
|
|
__ mov(destination, Operand(source, LSL, BitPosition(known_int)));
|
|
|
|
} else if (PopCountLessThanEqual2(known_int)) {
|
|
|
|
int first_bit = BitPosition(known_int);
|
|
|
|
int second_bit = BitPosition(known_int ^ (1 << first_bit));
|
|
|
|
__ add(destination, source, Operand(source, LSL, second_bit - first_bit));
|
|
|
|
if (first_bit != 0) {
|
|
|
|
__ mov(destination, Operand(destination, LSL, first_bit));
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
ASSERT(IsPowerOf2(known_int + 1)); // Patterns like 1111.
|
|
|
|
int the_bit = BitPosition(known_int + 1);
|
|
|
|
__ rsb(destination, source, Operand(source, LSL, the_bit));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// This function (as opposed to MultiplyByKnownInt) takes the known int in a
|
|
|
|
// a register for the cases where it doesn't know a good trick, and may deliver
|
|
|
|
// a result that needs shifting.
|
|
|
|
static void MultiplyByKnownInt2(
|
|
|
|
MacroAssembler* masm,
|
|
|
|
Register result,
|
|
|
|
Register source,
|
|
|
|
Register known_int_register, // Smi tagged.
|
|
|
|
int known_int,
|
|
|
|
int* required_shift) { // Including Smi tag shift
|
|
|
|
switch (known_int) {
|
|
|
|
case 3:
|
|
|
|
__ add(result, source, Operand(source, LSL, 1));
|
|
|
|
*required_shift = 1;
|
|
|
|
break;
|
|
|
|
case 5:
|
|
|
|
__ add(result, source, Operand(source, LSL, 2));
|
|
|
|
*required_shift = 1;
|
|
|
|
break;
|
|
|
|
case 6:
|
|
|
|
__ add(result, source, Operand(source, LSL, 1));
|
|
|
|
*required_shift = 2;
|
|
|
|
break;
|
|
|
|
case 7:
|
|
|
|
__ rsb(result, source, Operand(source, LSL, 3));
|
|
|
|
*required_shift = 1;
|
|
|
|
break;
|
|
|
|
case 9:
|
|
|
|
__ add(result, source, Operand(source, LSL, 3));
|
|
|
|
*required_shift = 1;
|
|
|
|
break;
|
|
|
|
case 10:
|
|
|
|
__ add(result, source, Operand(source, LSL, 2));
|
|
|
|
*required_shift = 2;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
ASSERT(!IsPowerOf2(known_int)); // That would be very inefficient.
|
|
|
|
__ mul(result, source, known_int_register);
|
|
|
|
*required_shift = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
const char* GenericBinaryOpStub::GetName() {
|
|
|
|
if (name_ != NULL) return name_;
|
|
|
|
const int len = 100;
|
|
|
|
name_ = Bootstrapper::AllocateAutoDeletedArray(len);
|
|
|
|
if (name_ == NULL) return "OOM";
|
|
|
|
const char* op_name = Token::Name(op_);
|
|
|
|
const char* overwrite_name;
|
|
|
|
switch (mode_) {
|
|
|
|
case NO_OVERWRITE: overwrite_name = "Alloc"; break;
|
|
|
|
case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
|
|
|
|
case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
|
|
|
|
default: overwrite_name = "UnknownOverwrite"; break;
|
|
|
|
}
|
|
|
|
|
|
|
|
OS::SNPrintF(Vector<char>(name_, len),
|
|
|
|
"GenericBinaryOpStub_%s_%s%s",
|
|
|
|
op_name,
|
|
|
|
overwrite_name,
|
|
|
|
specialized_on_rhs_ ? "_ConstantRhs" : 0);
|
|
|
|
return name_;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
|
|
|
|
// r1 : x
|
|
|
|
// r0 : y
|
|
|
|
// result : r0
|
|
|
|
|
|
|
|
// All ops need to know whether we are dealing with two Smis. Set up r2 to
|
|
|
|
// tell us that.
|
|
|
|
__ orr(r2, r1, Operand(r0)); // r2 = x | y;
|
|
|
|
|
|
|
|
switch (op_) {
|
|
|
|
case Token::ADD: {
|
|
|
|
Label not_smi;
|
|
|
|
// Fast path.
|
|
|
|
ASSERT(kSmiTag == 0); // Adjust code below.
|
|
|
|
__ tst(r2, Operand(kSmiTagMask));
|
|
|
|
__ b(ne, ¬_smi);
|
|
|
|
__ add(r0, r1, Operand(r0), SetCC); // Add y optimistically.
|
|
|
|
// Return if no overflow.
|
|
|
|
__ Ret(vc);
|
|
|
|
__ sub(r0, r0, Operand(r1)); // Revert optimistic add.
|
|
|
|
|
|
|
|
HandleBinaryOpSlowCases(masm,
|
|
|
|
¬_smi,
|
|
|
|
Builtins::ADD,
|
|
|
|
Token::ADD,
|
|
|
|
mode_);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case Token::SUB: {
|
|
|
|
Label not_smi;
|
|
|
|
// Fast path.
|
|
|
|
ASSERT(kSmiTag == 0); // Adjust code below.
|
|
|
|
__ tst(r2, Operand(kSmiTagMask));
|
|
|
|
__ b(ne, ¬_smi);
|
|
|
|
__ sub(r0, r1, Operand(r0), SetCC); // Subtract y optimistically.
|
|
|
|
// Return if no overflow.
|
|
|
|
__ Ret(vc);
|
|
|
|
__ sub(r0, r1, Operand(r0)); // Revert optimistic subtract.
|
|
|
|
|
|
|
|
HandleBinaryOpSlowCases(masm,
|
|
|
|
¬_smi,
|
|
|
|
Builtins::SUB,
|
|
|
|
Token::SUB,
|
|
|
|
mode_);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case Token::MUL: {
|
|
|
|
Label not_smi, slow;
|
|
|
|
ASSERT(kSmiTag == 0); // adjust code below
|
|
|
|
__ tst(r2, Operand(kSmiTagMask));
|
|
|
|
__ b(ne, ¬_smi);
|
|
|
|
// Remove tag from one operand (but keep sign), so that result is Smi.
|
|
|
|
__ mov(ip, Operand(r0, ASR, kSmiTagSize));
|
|
|
|
// Do multiplication
|
|
|
|
__ smull(r3, r2, r1, ip); // r3 = lower 32 bits of ip*r1.
|
|
|
|
// Go slow on overflows (overflow bit is not set).
|
|
|
|
__ mov(ip, Operand(r3, ASR, 31));
|
|
|
|
__ cmp(ip, Operand(r2)); // no overflow if higher 33 bits are identical
|
|
|
|
__ b(ne, &slow);
|
|
|
|
// Go slow on zero result to handle -0.
|
|
|
|
__ tst(r3, Operand(r3));
|
|
|
|
__ mov(r0, Operand(r3), LeaveCC, ne);
|
|
|
|
__ Ret(ne);
|
|
|
|
// We need -0 if we were multiplying a negative number with 0 to get 0.
|
|
|
|
// We know one of them was zero.
|
|
|
|
__ add(r2, r0, Operand(r1), SetCC);
|
|
|
|
__ mov(r0, Operand(Smi::FromInt(0)), LeaveCC, pl);
|
|
|
|
__ Ret(pl); // Return Smi 0 if the non-zero one was positive.
|
|
|
|
// Slow case. We fall through here if we multiplied a negative number
|
|
|
|
// with 0, because that would mean we should produce -0.
|
|
|
|
__ bind(&slow);
|
|
|
|
|
|
|
|
HandleBinaryOpSlowCases(masm,
|
|
|
|
¬_smi,
|
|
|
|
Builtins::MUL,
|
|
|
|
Token::MUL,
|
|
|
|
mode_);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case Token::DIV:
|
|
|
|
case Token::MOD: {
|
|
|
|
Label not_smi;
|
|
|
|
if (specialized_on_rhs_) {
|
|
|
|
Label smi_is_unsuitable;
|
|
|
|
__ BranchOnNotSmi(r1, ¬_smi);
|
|
|
|
if (IsPowerOf2(constant_rhs_)) {
|
|
|
|
if (op_ == Token::MOD) {
|
|
|
|
__ and_(r0,
|
|
|
|
r1,
|
|
|
|
Operand(0x80000000u | ((constant_rhs_ << kSmiTagSize) - 1)),
|
|
|
|
SetCC);
|
|
|
|
// We now have the answer, but if the input was negative we also
|
|
|
|
// have the sign bit. Our work is done if the result is
|
|
|
|
// positive or zero:
|
|
|
|
__ Ret(pl);
|
|
|
|
// A mod of a negative left hand side must return a negative number.
|
|
|
|
// Unfortunately if the answer is 0 then we must return -0. And we
|
|
|
|
// already optimistically trashed r0 so we may need to restore it.
|
|
|
|
__ eor(r0, r0, Operand(0x80000000u), SetCC);
|
|
|
|
// Next two instructions are conditional on the answer being -0.
|
|
|
|
__ mov(r0, Operand(Smi::FromInt(constant_rhs_)), LeaveCC, eq);
|
|
|
|
__ b(eq, &smi_is_unsuitable);
|
|
|
|
// We need to subtract the dividend. Eg. -3 % 4 == -3.
|
|
|
|
__ sub(r0, r0, Operand(Smi::FromInt(constant_rhs_)));
|
|
|
|
} else {
|
|
|
|
ASSERT(op_ == Token::DIV);
|
|
|
|
__ tst(r1,
|
|
|
|
Operand(0x80000000u | ((constant_rhs_ << kSmiTagSize) - 1)));
|
|
|
|
__ b(ne, &smi_is_unsuitable); // Go slow on negative or remainder.
|
|
|
|
int shift = 0;
|
|
|
|
int d = constant_rhs_;
|
|
|
|
while ((d & 1) == 0) {
|
|
|
|
d >>= 1;
|
|
|
|
shift++;
|
|
|
|
}
|
|
|
|
__ mov(r0, Operand(r1, LSR, shift));
|
|
|
|
__ bic(r0, r0, Operand(kSmiTagMask));
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// Not a power of 2.
|
|
|
|
__ tst(r1, Operand(0x80000000u));
|
|
|
|
__ b(ne, &smi_is_unsuitable);
|
|
|
|
// Find a fixed point reciprocal of the divisor so we can divide by
|
|
|
|
// multiplying.
|
|
|
|
double divisor = 1.0 / constant_rhs_;
|
|
|
|
int shift = 32;
|
|
|
|
double scale = 4294967296.0; // 1 << 32.
|
|
|
|
uint32_t mul;
|
|
|
|
// Maximise the precision of the fixed point reciprocal.
|
|
|
|
while (true) {
|
|
|
|
mul = static_cast<uint32_t>(scale * divisor);
|
|
|
|
if (mul >= 0x7fffffff) break;
|
|
|
|
scale *= 2.0;
|
|
|
|
shift++;
|
|
|
|
}
|
|
|
|
mul++;
|
|
|
|
__ mov(r2, Operand(mul));
|
|
|
|
__ umull(r3, r2, r2, r1);
|
|
|
|
__ mov(r2, Operand(r2, LSR, shift - 31));
|
|
|
|
// r2 is r1 / rhs. r2 is not Smi tagged.
|
|
|
|
// r0 is still the known rhs. r0 is Smi tagged.
|
|
|
|
// r1 is still the unkown lhs. r1 is Smi tagged.
|
|
|
|
int required_r4_shift = 0; // Including the Smi tag shift of 1.
|
|
|
|
// r4 = r2 * r0.
|
|
|
|
MultiplyByKnownInt2(masm,
|
|
|
|
r4,
|
|
|
|
r2,
|
|
|
|
r0,
|
|
|
|
constant_rhs_,
|
|
|
|
&required_r4_shift);
|
|
|
|
// r4 << required_r4_shift is now the Smi tagged rhs * (r1 / rhs).
|
|
|
|
if (op_ == Token::DIV) {
|
|
|
|
__ sub(r3, r1, Operand(r4, LSL, required_r4_shift), SetCC);
|
|
|
|
__ b(ne, &smi_is_unsuitable); // There was a remainder.
|
|
|
|
__ mov(r0, Operand(r2, LSL, kSmiTagSize));
|
|
|
|
} else {
|
|
|
|
ASSERT(op_ == Token::MOD);
|
|
|
|
__ sub(r0, r1, Operand(r4, LSL, required_r4_shift));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
__ Ret();
|
|
|
|
__ bind(&smi_is_unsuitable);
|
|
|
|
} else {
|
|
|
|
__ jmp(¬_smi);
|
|
|
|
}
|
|
|
|
HandleBinaryOpSlowCases(masm,
|
|
|
|
¬_smi,
|
|
|
|
op_ == Token::MOD ? Builtins::MOD : Builtins::DIV,
|
|
|
|
op_,
|
|
|
|
mode_);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case Token::BIT_OR:
|
|
|
|
case Token::BIT_AND:
|
|
|
|
case Token::BIT_XOR:
|
|
|
|
case Token::SAR:
|
|
|
|
case Token::SHR:
|
|
|
|
case Token::SHL: {
|
|
|
|
Label slow;
|
|
|
|
ASSERT(kSmiTag == 0); // adjust code below
|
|
|
|
__ tst(r2, Operand(kSmiTagMask));
|
|
|
|
__ b(ne, &slow);
|
|
|
|
switch (op_) {
|
|
|
|
case Token::BIT_OR: __ orr(r0, r0, Operand(r1)); break;
|
|
|
|
case Token::BIT_AND: __ and_(r0, r0, Operand(r1)); break;
|
|
|
|
case Token::BIT_XOR: __ eor(r0, r0, Operand(r1)); break;
|
|
|
|
case Token::SAR:
|
|
|
|
// Remove tags from right operand.
|
|
|
|
__ mov(r2, Operand(r0, ASR, kSmiTagSize)); // y
|
|
|
|
// Use only the 5 least significant bits of the shift count.
|
|
|
|
__ and_(r2, r2, Operand(0x1f));
|
|
|
|
__ mov(r0, Operand(r1, ASR, r2));
|
|
|
|
// Smi tag result.
|
|
|
|
__ bic(r0, r0, Operand(kSmiTagMask));
|
|
|
|
break;
|
|
|
|
case Token::SHR:
|
|
|
|
// Remove tags from operands. We can't do this on a 31 bit number
|
|
|
|
// because then the 0s get shifted into bit 30 instead of bit 31.
|
|
|
|
__ mov(r3, Operand(r1, ASR, kSmiTagSize)); // x
|
|
|
|
__ mov(r2, Operand(r0, ASR, kSmiTagSize)); // y
|
|
|
|
// Use only the 5 least significant bits of the shift count.
|
|
|
|
__ and_(r2, r2, Operand(0x1f));
|
|
|
|
__ mov(r3, Operand(r3, LSR, r2));
|
|
|
|
// Unsigned shift is not allowed to produce a negative number, so
|
|
|
|
// check the sign bit and the sign bit after Smi tagging.
|
|
|
|
__ tst(r3, Operand(0xc0000000));
|
|
|
|
__ b(ne, &slow);
|
|
|
|
// Smi tag result.
|
|
|
|
__ mov(r0, Operand(r3, LSL, kSmiTagSize));
|
|
|
|
break;
|
|
|
|
case Token::SHL:
|
|
|
|
// Remove tags from operands.
|
|
|
|
__ mov(r3, Operand(r1, ASR, kSmiTagSize)); // x
|
|
|
|
__ mov(r2, Operand(r0, ASR, kSmiTagSize)); // y
|
|
|
|
// Use only the 5 least significant bits of the shift count.
|
|
|
|
__ and_(r2, r2, Operand(0x1f));
|
|
|
|
__ mov(r3, Operand(r3, LSL, r2));
|
|
|
|
// Check that the signed result fits in a Smi.
|
|
|
|
__ add(r2, r3, Operand(0x40000000), SetCC);
|
|
|
|
__ b(mi, &slow);
|
|
|
|
__ mov(r0, Operand(r3, LSL, kSmiTagSize));
|
|
|
|
break;
|
|
|
|
default: UNREACHABLE();
|
|
|
|
}
|
|
|
|
__ Ret();
|
|
|
|
__ bind(&slow);
|
|
|
|
HandleNonSmiBitwiseOp(masm);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
default: UNREACHABLE();
|
|
|
|
}
|
|
|
|
// This code should be unreachable.
|
|
|
|
__ stop("Unreachable");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void StackCheckStub::Generate(MacroAssembler* masm) {
|
|
|
|
// Do tail-call to runtime routine. Runtime routines expect at least one
|
|
|
|
// argument, so give it a Smi.
|
|
|
|
__ mov(r0, Operand(Smi::FromInt(0)));
|
|
|
|
__ push(r0);
|
|
|
|
__ TailCallRuntime(ExternalReference(Runtime::kStackGuard), 1, 1);
|
|
|
|
|
|
|
|
__ StubReturn(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void UnarySubStub::Generate(MacroAssembler* masm) {
|
|
|
|
Label undo;
|
|
|
|
Label slow;
|
|
|
|
Label not_smi;
|
|
|
|
|
|
|
|
// Enter runtime system if the value is not a smi.
|
|
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
|
|
__ b(ne, ¬_smi);
|
|
|
|
|
|
|
|
// Enter runtime system if the value of the expression is zero
|
|
|
|
// to make sure that we switch between 0 and -0.
|
|
|
|
__ cmp(r0, Operand(0));
|
|
|
|
__ b(eq, &slow);
|
|
|
|
|
|
|
|
// The value of the expression is a smi that is not zero. Try
|
|
|
|
// optimistic subtraction '0 - value'.
|
|
|
|
__ rsb(r1, r0, Operand(0), SetCC);
|
|
|
|
__ b(vs, &slow);
|
|
|
|
|
|
|
|
__ mov(r0, Operand(r1)); // Set r0 to result.
|
|
|
|
__ StubReturn(1);
|
|
|
|
|
|
|
|
// Enter runtime system.
|
|
|
|
__ bind(&slow);
|
|
|
|
__ push(r0);
|
|
|
|
__ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_JS);
|
|
|
|
|
|
|
|
__ bind(¬_smi);
|
|
|
|
__ CompareObjectType(r0, r1, r1, HEAP_NUMBER_TYPE);
|
|
|
|
__ b(ne, &slow);
|
|
|
|
// r0 is a heap number. Get a new heap number in r1.
|
|
|
|
if (overwrite_) {
|
|
|
|
__ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
|
|
|
|
__ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign.
|
|
|
|
__ str(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
|
|
|
|
} else {
|
|
|
|
AllocateHeapNumber(masm, &slow, r1, r2, r3);
|
|
|
|
__ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
|
|
|
|
__ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
|
|
|
|
__ str(r3, FieldMemOperand(r1, HeapNumber::kMantissaOffset));
|
|
|
|
__ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign.
|
|
|
|
__ str(r2, FieldMemOperand(r1, HeapNumber::kExponentOffset));
|
|
|
|
__ mov(r0, Operand(r1));
|
|
|
|
}
|
|
|
|
__ StubReturn(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CEntryStub::MinorKey() {
|
|
|
|
ASSERT(result_size_ <= 2);
|
|
|
|
// Result returned in r0 or r0+r1 by default.
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
|
|
|
|
// r0 holds the exception.
|
|
|
|
|
|
|
|
// Adjust this code if not the case.
|
|
|
|
ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
|
|
|
|
|
|
|
|
// Drop the sp to the top of the handler.
|
|
|
|
__ mov(r3, Operand(ExternalReference(Top::k_handler_address)));
|
|
|
|
__ ldr(sp, MemOperand(r3));
|
|
|
|
|
|
|
|
// Restore the next handler and frame pointer, discard handler state.
|
|
|
|
ASSERT(StackHandlerConstants::kNextOffset == 0);
|
|
|
|
__ pop(r2);
|
|
|
|
__ str(r2, MemOperand(r3));
|
|
|
|
ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize);
|
|
|
|
__ ldm(ia_w, sp, r3.bit() | fp.bit()); // r3: discarded state.
|
|
|
|
|
|
|
|
// Before returning we restore the context from the frame pointer if
|
|
|
|
// not NULL. The frame pointer is NULL in the exception handler of a
|
|
|
|
// JS entry frame.
|
|
|
|
__ cmp(fp, Operand(0));
|
|
|
|
// Set cp to NULL if fp is NULL.
|
|
|
|
__ mov(cp, Operand(0), LeaveCC, eq);
|
|
|
|
// Restore cp otherwise.
|
|
|
|
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
|
|
|
|
#ifdef DEBUG
|
|
|
|
if (FLAG_debug_code) {
|
|
|
|
__ mov(lr, Operand(pc));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize);
|
|
|
|
__ pop(pc);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
|
|
|
|
UncatchableExceptionType type) {
|
|
|
|
// Adjust this code if not the case.
|
|
|
|
ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
|
|
|
|
|
|
|
|
// Drop sp to the top stack handler.
|
|
|
|
__ mov(r3, Operand(ExternalReference(Top::k_handler_address)));
|
|
|
|
__ ldr(sp, MemOperand(r3));
|
|
|
|
|
|
|
|
// Unwind the handlers until the ENTRY handler is found.
|
|
|
|
Label loop, done;
|
|
|
|
__ bind(&loop);
|
|
|
|
// Load the type of the current stack handler.
|
|
|
|
const int kStateOffset = StackHandlerConstants::kStateOffset;
|
|
|
|
__ ldr(r2, MemOperand(sp, kStateOffset));
|
|
|
|
__ cmp(r2, Operand(StackHandler::ENTRY));
|
|
|
|
__ b(eq, &done);
|
|
|
|
// Fetch the next handler in the list.
|
|
|
|
const int kNextOffset = StackHandlerConstants::kNextOffset;
|
|
|
|
__ ldr(sp, MemOperand(sp, kNextOffset));
|
|
|
|
__ jmp(&loop);
|
|
|
|
__ bind(&done);
|
|
|
|
|
|
|
|
// Set the top handler address to next handler past the current ENTRY handler.
|
|
|
|
ASSERT(StackHandlerConstants::kNextOffset == 0);
|
|
|
|
__ pop(r2);
|
|
|
|
__ str(r2, MemOperand(r3));
|
|
|
|
|
|
|
|
if (type == OUT_OF_MEMORY) {
|
|
|
|
// Set external caught exception to false.
|
|
|
|
ExternalReference external_caught(Top::k_external_caught_exception_address);
|
|
|
|
__ mov(r0, Operand(false));
|
|
|
|
__ mov(r2, Operand(external_caught));
|
|
|
|
__ str(r0, MemOperand(r2));
|
|
|
|
|
|
|
|
// Set pending exception and r0 to out of memory exception.
|
|
|
|
Failure* out_of_memory = Failure::OutOfMemoryException();
|
|
|
|
__ mov(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
|
|
|
|
__ mov(r2, Operand(ExternalReference(Top::k_pending_exception_address)));
|
|
|
|
__ str(r0, MemOperand(r2));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Stack layout at this point. See also StackHandlerConstants.
|
|
|
|
// sp -> state (ENTRY)
|
|
|
|
// fp
|
|
|
|
// lr
|
|
|
|
|
|
|
|
// Discard handler state (r2 is not used) and restore frame pointer.
|
|
|
|
ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize);
|
|
|
|
__ ldm(ia_w, sp, r2.bit() | fp.bit()); // r2: discarded state.
|
|
|
|
// Before returning we restore the context from the frame pointer if
|
|
|
|
// not NULL. The frame pointer is NULL in the exception handler of a
|
|
|
|
// JS entry frame.
|
|
|
|
__ cmp(fp, Operand(0));
|
|
|
|
// Set cp to NULL if fp is NULL.
|
|
|
|
__ mov(cp, Operand(0), LeaveCC, eq);
|
|
|
|
// Restore cp otherwise.
|
|
|
|
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
|
|
|
|
#ifdef DEBUG
|
|
|
|
if (FLAG_debug_code) {
|
|
|
|
__ mov(lr, Operand(pc));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize);
|
|
|
|
__ pop(pc);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CEntryStub::GenerateCore(MacroAssembler* masm,
|
|
|
|
Label* throw_normal_exception,
|
|
|
|
Label* throw_termination_exception,
|
|
|
|
Label* throw_out_of_memory_exception,
|
|
|
|
ExitFrame::Mode mode,
|
|
|
|
bool do_gc,
|
|
|
|
bool always_allocate) {
|
|
|
|
// r0: result parameter for PerformGC, if any
|
|
|
|
// r4: number of arguments including receiver (C callee-saved)
|
|
|
|
// r5: pointer to builtin function (C callee-saved)
|
|
|
|
// r6: pointer to the first argument (C callee-saved)
|
|
|
|
|
|
|
|
if (do_gc) {
|
|
|
|
// Passing r0.
|
|
|
|
ExternalReference gc_reference = ExternalReference::perform_gc_function();
|
|
|
|
__ Call(gc_reference.address(), RelocInfo::RUNTIME_ENTRY);
|
|
|
|
}
|
|
|
|
|
|
|
|
ExternalReference scope_depth =
|
|
|
|
ExternalReference::heap_always_allocate_scope_depth();
|
|
|
|
if (always_allocate) {
|
|
|
|
__ mov(r0, Operand(scope_depth));
|
|
|
|
__ ldr(r1, MemOperand(r0));
|
|
|
|
__ add(r1, r1, Operand(1));
|
|
|
|
__ str(r1, MemOperand(r0));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Call C built-in.
|
|
|
|
// r0 = argc, r1 = argv
|
|
|
|
__ mov(r0, Operand(r4));
|
|
|
|
__ mov(r1, Operand(r6));
|
|
|
|
|
|
|
|
// TODO(1242173): To let the GC traverse the return address of the exit
|
|
|
|
// frames, we need to know where the return address is. Right now,
|
|
|
|
// we push it on the stack to be able to find it again, but we never
|
|
|
|
// restore from it in case of changes, which makes it impossible to
|
|
|
|
// support moving the C entry code stub. This should be fixed, but currently
|
|
|
|
// this is OK because the CEntryStub gets generated so early in the V8 boot
|
|
|
|
// sequence that it is not moving ever.
|
|
|
|
masm->add(lr, pc, Operand(4)); // compute return address: (pc + 8) + 4
|
|
|
|
masm->push(lr);
|
|
|
|
masm->Jump(r5);
|
|
|
|
|
|
|
|
if (always_allocate) {
|
|
|
|
// It's okay to clobber r2 and r3 here. Don't mess with r0 and r1
|
|
|
|
// though (contain the result).
|
|
|
|
__ mov(r2, Operand(scope_depth));
|
|
|
|
__ ldr(r3, MemOperand(r2));
|
|
|
|
__ sub(r3, r3, Operand(1));
|
|
|
|
__ str(r3, MemOperand(r2));
|
|
|
|
}
|
|
|
|
|
|
|
|
// check for failure result
|
|
|
|
Label failure_returned;
|
|
|
|
ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
|
|
|
|
// Lower 2 bits of r2 are 0 iff r0 has failure tag.
|
|
|
|
__ add(r2, r0, Operand(1));
|
|
|
|
__ tst(r2, Operand(kFailureTagMask));
|
|
|
|
__ b(eq, &failure_returned);
|
|
|
|
|
|
|
|
// Exit C frame and return.
|
|
|
|
// r0:r1: result
|
|
|
|
// sp: stack pointer
|
|
|
|
// fp: frame pointer
|
|
|
|
__ LeaveExitFrame(mode);
|
|
|
|
|
|
|
|
// check if we should retry or throw exception
|
|
|
|
Label retry;
|
|
|
|
__ bind(&failure_returned);
|
|
|
|
ASSERT(Failure::RETRY_AFTER_GC == 0);
|
|
|
|
__ tst(r0, Operand(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
|
|
|
|
__ b(eq, &retry);
|
|
|
|
|
|
|
|
// Special handling of out of memory exceptions.
|
|
|
|
Failure* out_of_memory = Failure::OutOfMemoryException();
|
|
|
|
__ cmp(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
|
|
|
|
__ b(eq, throw_out_of_memory_exception);
|
|
|
|
|
|
|
|
// Retrieve the pending exception and clear the variable.
|
|
|
|
__ mov(ip, Operand(ExternalReference::the_hole_value_location()));
|
|
|
|
__ ldr(r3, MemOperand(ip));
|
|
|
|
__ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address)));
|
|
|
|
__ ldr(r0, MemOperand(ip));
|
|
|
|
__ str(r3, MemOperand(ip));
|
|
|
|
|
|
|
|
// Special handling of termination exceptions which are uncatchable
|
|
|
|
// by javascript code.
|
|
|
|
__ cmp(r0, Operand(Factory::termination_exception()));
|
|
|
|
__ b(eq, throw_termination_exception);
|
|
|
|
|
|
|
|
// Handle normal exception.
|
|
|
|
__ jmp(throw_normal_exception);
|
|
|
|
|
|
|
|
__ bind(&retry); // pass last failure (r0) as parameter (r0) when retrying
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CEntryStub::GenerateBody(MacroAssembler* masm, bool is_debug_break) {
|
|
|
|
// Called from JavaScript; parameters are on stack as if calling JS function
|
|
|
|
// r0: number of arguments including receiver
|
|
|
|
// r1: pointer to builtin function
|
|
|
|
// fp: frame pointer (restored after C call)
|
|
|
|
// sp: stack pointer (restored as callee's sp after C call)
|
|
|
|
// cp: current context (C callee-saved)
|
|
|
|
|
|
|
|
// NOTE: Invocations of builtins may return failure objects
|
|
|
|
// instead of a proper result. The builtin entry handles
|
|
|
|
// this by performing a garbage collection and retrying the
|
|
|
|
// builtin once.
|
|
|
|
|
|
|
|
ExitFrame::Mode mode = is_debug_break
|
|
|
|
? ExitFrame::MODE_DEBUG
|
|
|
|
: ExitFrame::MODE_NORMAL;
|
|
|
|
|
|
|
|
// Enter the exit frame that transitions from JavaScript to C++.
|
|
|
|
__ EnterExitFrame(mode);
|
|
|
|
|
|
|
|
// r4: number of arguments (C callee-saved)
|
|
|
|
// r5: pointer to builtin function (C callee-saved)
|
|
|
|
// r6: pointer to first argument (C callee-saved)
|
|
|
|
|
|
|
|
Label throw_normal_exception;
|
|
|
|
Label throw_termination_exception;
|
|
|
|
Label throw_out_of_memory_exception;
|
|
|
|
|
|
|
|
// Call into the runtime system.
|
|
|
|
GenerateCore(masm,
|
|
|
|
&throw_normal_exception,
|
|
|
|
&throw_termination_exception,
|
|
|
|
&throw_out_of_memory_exception,
|
|
|
|
mode,
|
|
|
|
false,
|
|
|
|
false);
|
|
|
|
|
|
|
|
// Do space-specific GC and retry runtime call.
|
|
|
|
GenerateCore(masm,
|
|
|
|
&throw_normal_exception,
|
|
|
|
&throw_termination_exception,
|
|
|
|
&throw_out_of_memory_exception,
|
|
|
|
mode,
|
|
|
|
true,
|
|
|
|
false);
|
|
|
|
|
|
|
|
// Do full GC and retry runtime call one final time.
|
|
|
|
Failure* failure = Failure::InternalError();
|
|
|
|
__ mov(r0, Operand(reinterpret_cast<int32_t>(failure)));
|
|
|
|
GenerateCore(masm,
|
|
|
|
&throw_normal_exception,
|
|
|
|
&throw_termination_exception,
|
|
|
|
&throw_out_of_memory_exception,
|
|
|
|
mode,
|
|
|
|
true,
|
|
|
|
true);
|
|
|
|
|
|
|
|
__ bind(&throw_out_of_memory_exception);
|
|
|
|
GenerateThrowUncatchable(masm, OUT_OF_MEMORY);
|
|
|
|
|
|
|
|
__ bind(&throw_termination_exception);
|
|
|
|
GenerateThrowUncatchable(masm, TERMINATION);
|
|
|
|
|
|
|
|
__ bind(&throw_normal_exception);
|
|
|
|
GenerateThrowTOS(masm);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
|
|
|
|
// r0: code entry
|
|
|
|
// r1: function
|
|
|
|
// r2: receiver
|
|
|
|
// r3: argc
|
|
|
|
// [sp+0]: argv
|
|
|
|
|
|
|
|
Label invoke, exit;
|
|
|
|
|
|
|
|
// Called from C, so do not pop argc and args on exit (preserve sp)
|
|
|
|
// No need to save register-passed args
|
|
|
|
// Save callee-saved registers (incl. cp and fp), sp, and lr
|
|
|
|
__ stm(db_w, sp, kCalleeSaved | lr.bit());
|
|
|
|
|
|
|
|
// Get address of argv, see stm above.
|
|
|
|
// r0: code entry
|
|
|
|
// r1: function
|
|
|
|
// r2: receiver
|
|
|
|
// r3: argc
|
|
|
|
__ add(r4, sp, Operand((kNumCalleeSaved + 1)*kPointerSize));
|
|
|
|
__ ldr(r4, MemOperand(r4)); // argv
|
|
|
|
|
|
|
|
// Push a frame with special values setup to mark it as an entry frame.
|
|
|
|
// r0: code entry
|
|
|
|
// r1: function
|
|
|
|
// r2: receiver
|
|
|
|
// r3: argc
|
|
|
|
// r4: argv
|
|
|
|
__ mov(r8, Operand(-1)); // Push a bad frame pointer to fail if it is used.
|
|
|
|
int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
|
|
|
|
__ mov(r7, Operand(Smi::FromInt(marker)));
|
|
|
|
__ mov(r6, Operand(Smi::FromInt(marker)));
|
|
|
|
__ mov(r5, Operand(ExternalReference(Top::k_c_entry_fp_address)));
|
|
|
|
__ ldr(r5, MemOperand(r5));
|
|
|
|
__ stm(db_w, sp, r5.bit() | r6.bit() | r7.bit() | r8.bit());
|
|
|
|
|
|
|
|
// Setup frame pointer for the frame to be pushed.
|
|
|
|
__ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
|
|
|
|
|
|
|
|
// Call a faked try-block that does the invoke.
|
|
|
|
__ bl(&invoke);
|
|
|
|
|
|
|
|
// Caught exception: Store result (exception) in the pending
|
|
|
|
// exception field in the JSEnv and return a failure sentinel.
|
|
|
|
// Coming in here the fp will be invalid because the PushTryHandler below
|
|
|
|
// sets it to 0 to signal the existence of the JSEntry frame.
|
|
|
|
__ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address)));
|
|
|
|
__ str(r0, MemOperand(ip));
|
|
|
|
__ mov(r0, Operand(reinterpret_cast<int32_t>(Failure::Exception())));
|
|
|
|
__ b(&exit);
|
|
|
|
|
|
|
|
// Invoke: Link this frame into the handler chain.
|
|
|
|
__ bind(&invoke);
|
|
|
|
// Must preserve r0-r4, r5-r7 are available.
|
|
|
|
__ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER);
|
|
|
|
// If an exception not caught by another handler occurs, this handler
|
|
|
|
// returns control to the code after the bl(&invoke) above, which
|
|
|
|
// restores all kCalleeSaved registers (including cp and fp) to their
|
|
|
|
// saved values before returning a failure to C.
|
|
|
|
|
|
|
|
// Clear any pending exceptions.
|
|
|
|
__ mov(ip, Operand(ExternalReference::the_hole_value_location()));
|
|
|
|
__ ldr(r5, MemOperand(ip));
|
|
|
|
__ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address)));
|
|
|
|
__ str(r5, MemOperand(ip));
|
|
|
|
|
|
|
|
// Invoke the function by calling through JS entry trampoline builtin.
|
|
|
|
// Notice that we cannot store a reference to the trampoline code directly in
|
|
|
|
// this stub, because runtime stubs are not traversed when doing GC.
|
|
|
|
|
|
|
|
// Expected registers by Builtins::JSEntryTrampoline
|
|
|
|
// r0: code entry
|
|
|
|
// r1: function
|
|
|
|
// r2: receiver
|
|
|
|
// r3: argc
|
|
|
|
// r4: argv
|
|
|
|
if (is_construct) {
|
|
|
|
ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline);
|
|
|
|
__ mov(ip, Operand(construct_entry));
|
|
|
|
} else {
|
|
|
|
ExternalReference entry(Builtins::JSEntryTrampoline);
|
|
|
|
__ mov(ip, Operand(entry));
|
|
|
|
}
|
|
|
|
__ ldr(ip, MemOperand(ip)); // deref address
|
|
|
|
|
|
|
|
// Branch and link to JSEntryTrampoline. We don't use the double underscore
|
|
|
|
// macro for the add instruction because we don't want the coverage tool
|
|
|
|
// inserting instructions here after we read the pc.
|
|
|
|
__ mov(lr, Operand(pc));
|
|
|
|
masm->add(pc, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
|
|
|
|
|
|
|
|
// Unlink this frame from the handler chain. When reading the
|
|
|
|
// address of the next handler, there is no need to use the address
|
|
|
|
// displacement since the current stack pointer (sp) points directly
|
|
|
|
// to the stack handler.
|
|
|
|
__ ldr(r3, MemOperand(sp, StackHandlerConstants::kNextOffset));
|
|
|
|
__ mov(ip, Operand(ExternalReference(Top::k_handler_address)));
|
|
|
|
__ str(r3, MemOperand(ip));
|
|
|
|
// No need to restore registers
|
|
|
|
__ add(sp, sp, Operand(StackHandlerConstants::kSize));
|
|
|
|
|
|
|
|
|
|
|
|
__ bind(&exit); // r0 holds result
|
|
|
|
// Restore the top frame descriptors from the stack.
|
|
|
|
__ pop(r3);
|
|
|
|
__ mov(ip, Operand(ExternalReference(Top::k_c_entry_fp_address)));
|
|
|
|
__ str(r3, MemOperand(ip));
|
|
|
|
|
|
|
|
// Reset the stack to the callee saved registers.
|
|
|
|
__ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
|
|
|
|
|
|
|
|
// Restore callee-saved registers and return.
|
|
|
|
#ifdef DEBUG
|
|
|
|
if (FLAG_debug_code) {
|
|
|
|
__ mov(lr, Operand(pc));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
__ ldm(ia_w, sp, kCalleeSaved | pc.bit());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// This stub performs an instanceof, calling the builtin function if
|
|
|
|
// necessary. Uses r1 for the object, r0 for the function that it may
|
|
|
|
// be an instance of (these are fetched from the stack).
|
|
|
|
void InstanceofStub::Generate(MacroAssembler* masm) {
|
|
|
|
// Get the object - slow case for smis (we may need to throw an exception
|
|
|
|
// depending on the rhs).
|
|
|
|
Label slow, loop, is_instance, is_not_instance;
|
|
|
|
__ ldr(r0, MemOperand(sp, 1 * kPointerSize));
|
|
|
|
__ BranchOnSmi(r0, &slow);
|
|
|
|
|
|
|
|
// Check that the left hand is a JS object and put map in r3.
|
|
|
|
__ CompareObjectType(r0, r3, r2, FIRST_JS_OBJECT_TYPE);
|
|
|
|
__ b(lt, &slow);
|
|
|
|
__ cmp(r2, Operand(LAST_JS_OBJECT_TYPE));
|
|
|
|
__ b(gt, &slow);
|
|
|
|
|
|
|
|
// Get the prototype of the function (r4 is result, r2 is scratch).
|
|
|
|
__ ldr(r1, MemOperand(sp, 0 * kPointerSize));
|
|
|
|
__ TryGetFunctionPrototype(r1, r4, r2, &slow);
|
|
|
|
|
|
|
|
// Check that the function prototype is a JS object.
|
|
|
|
__ BranchOnSmi(r4, &slow);
|
|
|
|
__ CompareObjectType(r4, r5, r5, FIRST_JS_OBJECT_TYPE);
|
|
|
|
__ b(lt, &slow);
|
|
|
|
__ cmp(r5, Operand(LAST_JS_OBJECT_TYPE));
|
|
|
|
__ b(gt, &slow);
|
|
|
|
|
|
|
|
// Register mapping: r3 is object map and r4 is function prototype.
|
|
|
|
// Get prototype of object into r2.
|
|
|
|
__ ldr(r2, FieldMemOperand(r3, Map::kPrototypeOffset));
|
|
|
|
|
|
|
|
// Loop through the prototype chain looking for the function prototype.
|
|
|
|
__ bind(&loop);
|
|
|
|
__ cmp(r2, Operand(r4));
|
|
|
|
__ b(eq, &is_instance);
|
|
|
|
__ LoadRoot(ip, Heap::kNullValueRootIndex);
|
|
|
|
__ cmp(r2, ip);
|
|
|
|
__ b(eq, &is_not_instance);
|
|
|
|
__ ldr(r2, FieldMemOperand(r2, HeapObject::kMapOffset));
|
|
|
|
__ ldr(r2, FieldMemOperand(r2, Map::kPrototypeOffset));
|
|
|
|
__ jmp(&loop);
|
|
|
|
|
|
|
|
__ bind(&is_instance);
|
|
|
|
__ mov(r0, Operand(Smi::FromInt(0)));
|
|
|
|
__ pop();
|
|
|
|
__ pop();
|
|
|
|
__ mov(pc, Operand(lr)); // Return.
|
|
|
|
|
|
|
|
__ bind(&is_not_instance);
|
|
|
|
__ mov(r0, Operand(Smi::FromInt(1)));
|
|
|
|
__ pop();
|
|
|
|
__ pop();
|
|
|
|
__ mov(pc, Operand(lr)); // Return.
|
|
|
|
|
|
|
|
// Slow-case. Tail call builtin.
|
|
|
|
__ bind(&slow);
|
|
|
|
__ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_JS);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ArgumentsAccessStub::GenerateReadLength(MacroAssembler* masm) {
|
|
|
|
// Check if the calling frame is an arguments adaptor frame.
|
|
|
|
Label adaptor;
|
|
|
|
__ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
|
|
|
__ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
|
|
|
|
__ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
|
|
|
|
__ b(eq, &adaptor);
|
|
|
|
|
|
|
|
// Nothing to do: The formal number of parameters has already been
|
|
|
|
// passed in register r0 by calling function. Just return it.
|
|
|
|
__ Jump(lr);
|
|
|
|
|
|
|
|
// Arguments adaptor case: Read the arguments length from the
|
|
|
|
// adaptor frame and return it.
|
|
|
|
__ bind(&adaptor);
|
|
|
|
__ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
|
|
|
|
__ Jump(lr);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
|
|
|
|
// The displacement is the offset of the last parameter (if any)
|
|
|
|
// relative to the frame pointer.
|
|
|
|
static const int kDisplacement =
|
|
|
|
StandardFrameConstants::kCallerSPOffset - kPointerSize;
|
|
|
|
|
|
|
|
// Check that the key is a smi.
|
|
|
|
Label slow;
|
|
|
|
__ BranchOnNotSmi(r1, &slow);
|
|
|
|
|
|
|
|
// Check if the calling frame is an arguments adaptor frame.
|
|
|
|
Label adaptor;
|
|
|
|
__ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
|
|
|
__ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
|
|
|
|
__ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
|
|
|
|
__ b(eq, &adaptor);
|
|
|
|
|
|
|
|
// Check index against formal parameters count limit passed in
|
|
|
|
// through register r0. Use unsigned comparison to get negative
|
|
|
|
// check for free.
|
|
|
|
__ cmp(r1, r0);
|
|
|
|
__ b(cs, &slow);
|
|
|
|
|
|
|
|
// Read the argument from the stack and return it.
|
|
|
|
__ sub(r3, r0, r1);
|
|
|
|
__ add(r3, fp, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
|
|
|
|
__ ldr(r0, MemOperand(r3, kDisplacement));
|
|
|
|
__ Jump(lr);
|
|
|
|
|
|
|
|
// Arguments adaptor case: Check index against actual arguments
|
|
|
|
// limit found in the arguments adaptor frame. Use unsigned
|
|
|
|
// comparison to get negative check for free.
|
|
|
|
__ bind(&adaptor);
|
|
|
|
__ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
|
|
|
|
__ cmp(r1, r0);
|
|
|
|
__ b(cs, &slow);
|
|
|
|
|
|
|
|
// Read the argument from the adaptor frame and return it.
|
|
|
|
__ sub(r3, r0, r1);
|
|
|
|
__ add(r3, r2, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
|
|
|
|
__ ldr(r0, MemOperand(r3, kDisplacement));
|
|
|
|
__ Jump(lr);
|
|
|
|
|
|
|
|
// Slow-case: Handle non-smi or out-of-bounds access to arguments
|
|
|
|
// by calling the runtime system.
|
|
|
|
__ bind(&slow);
|
|
|
|
__ push(r1);
|
|
|
|
__ TailCallRuntime(ExternalReference(Runtime::kGetArgumentsProperty), 1, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
|
|
|
|
// Check if the calling frame is an arguments adaptor frame.
|
|
|
|
Label runtime;
|
|
|
|
__ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
|
|
|
__ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
|
|
|
|
__ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
|
|
|
|
__ b(ne, &runtime);
|
|
|
|
|
|
|
|
// Patch the arguments.length and the parameters pointer.
|
|
|
|
__ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
|
|
|
|
__ str(r0, MemOperand(sp, 0 * kPointerSize));
|
|
|
|
__ add(r3, r2, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
|
|
|
|
__ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
|
|
|
|
__ str(r3, MemOperand(sp, 1 * kPointerSize));
|
|
|
|
|
|
|
|
// Do the runtime call to allocate the arguments object.
|
|
|
|
__ bind(&runtime);
|
|
|
|
__ TailCallRuntime(ExternalReference(Runtime::kNewArgumentsFast), 3, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CallFunctionStub::Generate(MacroAssembler* masm) {
|
|
|
|
Label slow;
|
|
|
|
// Get the function to call from the stack.
|
|
|
|
// function, receiver [, arguments]
|
|
|
|
__ ldr(r1, MemOperand(sp, (argc_ + 1) * kPointerSize));
|
|
|
|
|
|
|
|
// Check that the function is really a JavaScript function.
|
|
|
|
// r1: pushed function (to be verified)
|
|
|
|
__ BranchOnSmi(r1, &slow);
|
|
|
|
// Get the map of the function object.
|
|
|
|
__ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
|
|
|
|
__ b(ne, &slow);
|
|
|
|
|
|
|
|
// Fast-case: Invoke the function now.
|
|
|
|
// r1: pushed function
|
|
|
|
ParameterCount actual(argc_);
|
|
|
|
__ InvokeFunction(r1, actual, JUMP_FUNCTION);
|
|
|
|
|
|
|
|
// Slow-case: Non-function called.
|
|
|
|
__ bind(&slow);
|
|
|
|
__ mov(r0, Operand(argc_)); // Setup the number of arguments.
|
|
|
|
__ mov(r2, Operand(0));
|
|
|
|
__ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION);
|
|
|
|
__ Jump(Handle<Code>(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)),
|
|
|
|
RelocInfo::CODE_TARGET);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CompareStub::MinorKey() {
|
|
|
|
// Encode the two parameters in a unique 16 bit value.
|
|
|
|
ASSERT(static_cast<unsigned>(cc_) >> 28 < (1 << 15));
|
|
|
|
return (static_cast<unsigned>(cc_) >> 27) | (strict_ ? 1 : 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#undef __
|
|
|
|
|
|
|
|
} } // namespace v8::internal
|