You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

668 lines
18 KiB

// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Platform specific code for MacOS goes here. For the POSIX comaptible parts
// the implementation is in platform-posix.cc.
#include <unistd.h>
#include <sys/mman.h>
#include <mach/mach_init.h>
#include <mach-o/dyld.h>
#include <mach-o/getsect.h>
#include <AvailabilityMacros.h>
#include <pthread.h>
#include <semaphore.h>
#include <signal.h>
#include <mach/mach.h>
#include <mach/semaphore.h>
#include <mach/task.h>
#include <mach/vm_statistics.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/types.h>
#include <stdarg.h>
#include <stdlib.h>
#include <errno.h>
#undef MAP_TYPE
#include "v8.h"
#include "platform.h"
// Manually define these here as weak imports, rather than including execinfo.h.
// This lets us launch on 10.4 which does not have these calls.
extern "C" {
extern int backtrace(void**, int) __attribute__((weak_import));
extern char** backtrace_symbols(void* const*, int)
__attribute__((weak_import));
extern void backtrace_symbols_fd(void* const*, int, int)
__attribute__((weak_import));
}
namespace v8 {
namespace internal {
// 0 is never a valid thread id on MacOSX since a ptread_t is
// a pointer.
static const pthread_t kNoThread = (pthread_t) 0;
double ceiling(double x) {
// Correct Mac OS X Leopard 'ceil' behavior.
if (-1.0 < x && x < 0.0) {
return -0.0;
} else {
return ceil(x);
}
}
double OS::nan_value() {
// NAN from math.h is defined in C99 and not in POSIX.
return NAN;
}
void OS::Setup() {
// Seed the random number generator.
// Convert the current time to a 64-bit integer first, before converting it
// to an unsigned. Going directly will cause an overflow and the seed to be
// set to all ones. The seed will be identical for different instances that
// call this setup code within the same millisecond.
uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
srandom(static_cast<unsigned int>(seed));
}
// We keep the lowest and highest addresses mapped as a quick way of
// determining that pointers are outside the heap (used mostly in assertions
// and verification). The estimate is conservative, ie, not all addresses in
// 'allocated' space are actually allocated to our heap. The range is
// [lowest, highest), inclusive on the low and and exclusive on the high end.
static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
static void* highest_ever_allocated = reinterpret_cast<void*>(0);
static void UpdateAllocatedSpaceLimits(void* address, int size) {
lowest_ever_allocated = Min(lowest_ever_allocated, address);
highest_ever_allocated =
Max(highest_ever_allocated,
reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
}
bool OS::IsOutsideAllocatedSpace(void* address) {
return address < lowest_ever_allocated || address >= highest_ever_allocated;
}
size_t OS::AllocateAlignment() {
return getpagesize();
}
// Constants used for mmap.
// kMmapFd is used to pass vm_alloc flags to tag the region with the user
// defined tag 255 This helps identify V8-allocated regions in memory analysis
// tools like vmmap(1).
static const int kMmapFd = VM_MAKE_TAG(255);
static const off_t kMmapFdOffset = 0;
void* OS::Allocate(const size_t requested,
size_t* allocated,
bool is_executable) {
const size_t msize = RoundUp(requested, getpagesize());
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
void* mbase = mmap(NULL, msize, prot,
MAP_PRIVATE | MAP_ANON,
kMmapFd, kMmapFdOffset);
if (mbase == MAP_FAILED) {
LOG(StringEvent("OS::Allocate", "mmap failed"));
return NULL;
}
*allocated = msize;
UpdateAllocatedSpaceLimits(mbase, msize);
return mbase;
}
void OS::Free(void* address, const size_t size) {
// TODO(1240712): munmap has a return value which is ignored here.
int result = munmap(address, size);
USE(result);
ASSERT(result == 0);
}
#ifdef ENABLE_HEAP_PROTECTION
void OS::Protect(void* address, size_t size) {
UNIMPLEMENTED();
}
void OS::Unprotect(void* address, size_t size, bool is_executable) {
UNIMPLEMENTED();
}
#endif
void OS::Sleep(int milliseconds) {
usleep(1000 * milliseconds);
}
void OS::Abort() {
// Redirect to std abort to signal abnormal program termination
abort();
}
void OS::DebugBreak() {
asm("int $3");
}
class PosixMemoryMappedFile : public OS::MemoryMappedFile {
public:
PosixMemoryMappedFile(FILE* file, void* memory, int size)
: file_(file), memory_(memory), size_(size) { }
virtual ~PosixMemoryMappedFile();
virtual void* memory() { return memory_; }
private:
FILE* file_;
void* memory_;
int size_;
};
OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
void* initial) {
FILE* file = fopen(name, "w+");
if (file == NULL) return NULL;
fwrite(initial, size, 1, file);
void* memory =
mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
return new PosixMemoryMappedFile(file, memory, size);
}
PosixMemoryMappedFile::~PosixMemoryMappedFile() {
if (memory_) munmap(memory_, size_);
fclose(file_);
}
void OS::LogSharedLibraryAddresses() {
#ifdef ENABLE_LOGGING_AND_PROFILING
unsigned int images_count = _dyld_image_count();
for (unsigned int i = 0; i < images_count; ++i) {
const mach_header* header = _dyld_get_image_header(i);
if (header == NULL) continue;
#if V8_HOST_ARCH_X64
uint64_t size;
char* code_ptr = getsectdatafromheader_64(
reinterpret_cast<const mach_header_64*>(header),
SEG_TEXT,
SECT_TEXT,
&size);
#else
unsigned int size;
char* code_ptr = getsectdatafromheader(header, SEG_TEXT, SECT_TEXT, &size);
#endif
if (code_ptr == NULL) continue;
const uintptr_t slide = _dyld_get_image_vmaddr_slide(i);
const uintptr_t start = reinterpret_cast<uintptr_t>(code_ptr) + slide;
LOG(SharedLibraryEvent(_dyld_get_image_name(i), start, start + size));
}
#endif // ENABLE_LOGGING_AND_PROFILING
}
uint64_t OS::CpuFeaturesImpliedByPlatform() {
// MacOSX requires all these to install so we can assume they are present.
// These constants are defined by the CPUid instructions.
const uint64_t one = 1;
return (one << SSE2) | (one << CMOV) | (one << RDTSC) | (one << CPUID);
}
int OS::ActivationFrameAlignment() {
// OS X activation frames must be 16 byte-aligned; see "Mac OS X ABI
// Function Call Guide".
return 16;
}
const char* OS::LocalTimezone(double time) {
if (isnan(time)) return "";
time_t tv = static_cast<time_t>(floor(time/msPerSecond));
struct tm* t = localtime(&tv);
if (NULL == t) return "";
return t->tm_zone;
}
double OS::LocalTimeOffset() {
time_t tv = time(NULL);
struct tm* t = localtime(&tv);
// tm_gmtoff includes any daylight savings offset, so subtract it.
return static_cast<double>(t->tm_gmtoff * msPerSecond -
(t->tm_isdst > 0 ? 3600 * msPerSecond : 0));
}
int OS::StackWalk(Vector<StackFrame> frames) {
// If weak link to execinfo lib has failed, ie because we are on 10.4, abort.
if (backtrace == NULL)
return 0;
int frames_size = frames.length();
void** addresses = NewArray<void*>(frames_size);
int frames_count = backtrace(addresses, frames_size);
char** symbols;
symbols = backtrace_symbols(addresses, frames_count);
if (symbols == NULL) {
DeleteArray(addresses);
return kStackWalkError;
}
for (int i = 0; i < frames_count; i++) {
frames[i].address = addresses[i];
// Format a text representation of the frame based on the information
// available.
SNPrintF(MutableCStrVector(frames[i].text,
kStackWalkMaxTextLen),
"%s",
symbols[i]);
// Make sure line termination is in place.
frames[i].text[kStackWalkMaxTextLen - 1] = '\0';
}
DeleteArray(addresses);
free(symbols);
return frames_count;
}
VirtualMemory::VirtualMemory(size_t size) {
address_ = mmap(NULL, size, PROT_NONE,
MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
kMmapFd, kMmapFdOffset);
size_ = size;
}
VirtualMemory::~VirtualMemory() {
if (IsReserved()) {
if (0 == munmap(address(), size())) address_ = MAP_FAILED;
}
}
bool VirtualMemory::IsReserved() {
return address_ != MAP_FAILED;
}
bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
if (MAP_FAILED == mmap(address, size, prot,
MAP_PRIVATE | MAP_ANON | MAP_FIXED,
kMmapFd, kMmapFdOffset)) {
return false;
}
UpdateAllocatedSpaceLimits(address, size);
return true;
}
bool VirtualMemory::Uncommit(void* address, size_t size) {
return mmap(address, size, PROT_NONE,
MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | MAP_FIXED,
kMmapFd, kMmapFdOffset) != MAP_FAILED;
}
class ThreadHandle::PlatformData : public Malloced {
public:
explicit PlatformData(ThreadHandle::Kind kind) {
Initialize(kind);
}
void Initialize(ThreadHandle::Kind kind) {
switch (kind) {
case ThreadHandle::SELF: thread_ = pthread_self(); break;
case ThreadHandle::INVALID: thread_ = kNoThread; break;
}
}
pthread_t thread_; // Thread handle for pthread.
};
ThreadHandle::ThreadHandle(Kind kind) {
data_ = new PlatformData(kind);
}
void ThreadHandle::Initialize(ThreadHandle::Kind kind) {
data_->Initialize(kind);
}
ThreadHandle::~ThreadHandle() {
delete data_;
}
bool ThreadHandle::IsSelf() const {
return pthread_equal(data_->thread_, pthread_self());
}
bool ThreadHandle::IsValid() const {
return data_->thread_ != kNoThread;
}
Thread::Thread() : ThreadHandle(ThreadHandle::INVALID) {
}
Thread::~Thread() {
}
static void* ThreadEntry(void* arg) {
Thread* thread = reinterpret_cast<Thread*>(arg);
// This is also initialized by the first argument to pthread_create() but we
// don't know which thread will run first (the original thread or the new
// one) so we initialize it here too.
thread->thread_handle_data()->thread_ = pthread_self();
ASSERT(thread->IsValid());
thread->Run();
return NULL;
}
void Thread::Start() {
pthread_create(&thread_handle_data()->thread_, NULL, ThreadEntry, this);
}
void Thread::Join() {
pthread_join(thread_handle_data()->thread_, NULL);
}
Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
pthread_key_t key;
int result = pthread_key_create(&key, NULL);
USE(result);
ASSERT(result == 0);
return static_cast<LocalStorageKey>(key);
}
void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
int result = pthread_key_delete(pthread_key);
USE(result);
ASSERT(result == 0);
}
void* Thread::GetThreadLocal(LocalStorageKey key) {
pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
return pthread_getspecific(pthread_key);
}
void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
pthread_setspecific(pthread_key, value);
}
void Thread::YieldCPU() {
sched_yield();
}
class MacOSMutex : public Mutex {
public:
MacOSMutex() {
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
pthread_mutex_init(&mutex_, &attr);
}
~MacOSMutex() { pthread_mutex_destroy(&mutex_); }
int Lock() { return pthread_mutex_lock(&mutex_); }
int Unlock() { return pthread_mutex_unlock(&mutex_); }
private:
pthread_mutex_t mutex_;
};
Mutex* OS::CreateMutex() {
return new MacOSMutex();
}
class MacOSSemaphore : public Semaphore {
public:
explicit MacOSSemaphore(int count) {
semaphore_create(mach_task_self(), &semaphore_, SYNC_POLICY_FIFO, count);
}
~MacOSSemaphore() {
semaphore_destroy(mach_task_self(), semaphore_);
}
// The MacOS mach semaphore documentation claims it does not have spurious
// wakeups, the way pthreads semaphores do. So the code from the linux
// platform is not needed here.
void Wait() { semaphore_wait(semaphore_); }
bool Wait(int timeout);
void Signal() { semaphore_signal(semaphore_); }
private:
semaphore_t semaphore_;
};
bool MacOSSemaphore::Wait(int timeout) {
mach_timespec_t ts;
ts.tv_sec = timeout / 1000000;
ts.tv_nsec = (timeout % 1000000) * 1000;
return semaphore_timedwait(semaphore_, ts) != KERN_OPERATION_TIMED_OUT;
}
Semaphore* OS::CreateSemaphore(int count) {
return new MacOSSemaphore(count);
}
#ifdef ENABLE_LOGGING_AND_PROFILING
class Sampler::PlatformData : public Malloced {
public:
explicit PlatformData(Sampler* sampler)
: sampler_(sampler),
task_self_(mach_task_self()),
profiled_thread_(0),
sampler_thread_(0) {
}
Sampler* sampler_;
// Note: for profiled_thread_ Mach primitives are used instead of PThread's
// because the latter doesn't provide thread manipulation primitives required.
// For details, consult "Mac OS X Internals" book, Section 7.3.
mach_port_t task_self_;
thread_act_t profiled_thread_;
pthread_t sampler_thread_;
// Sampler thread handler.
void Runner() {
// Loop until the sampler is disengaged.
while (sampler_->IsActive()) {
TickSample sample;
// If profiling, we record the pc and sp of the profiled thread.
if (sampler_->IsProfiling()
&& KERN_SUCCESS == thread_suspend(profiled_thread_)) {
#if V8_HOST_ARCH_X64
thread_state_flavor_t flavor = x86_THREAD_STATE64;
x86_thread_state64_t state;
mach_msg_type_number_t count = x86_THREAD_STATE64_COUNT;
#if __DARWIN_UNIX03
#define REGISTER_FIELD(name) __r ## name
#else
#define REGISTER_FIELD(name) r ## name
#endif // __DARWIN_UNIX03
#elif V8_HOST_ARCH_IA32
thread_state_flavor_t flavor = i386_THREAD_STATE;
i386_thread_state_t state;
mach_msg_type_number_t count = i386_THREAD_STATE_COUNT;
#if __DARWIN_UNIX03
#define REGISTER_FIELD(name) __e ## name
#else
#define REGISTER_FIELD(name) e ## name
#endif // __DARWIN_UNIX03
#else
#error Unsupported Mac OS X host architecture.
#endif // V8_HOST_ARCH
if (thread_get_state(profiled_thread_,
flavor,
reinterpret_cast<natural_t*>(&state),
&count) == KERN_SUCCESS) {
sample.pc = state.REGISTER_FIELD(ip);
sample.sp = state.REGISTER_FIELD(sp);
sample.fp = state.REGISTER_FIELD(bp);
sampler_->SampleStack(&sample);
}
thread_resume(profiled_thread_);
}
// We always sample the VM state.
sample.state = Logger::state();
// Invoke tick handler with program counter and stack pointer.
sampler_->Tick(&sample);
// Wait until next sampling.
usleep(sampler_->interval_ * 1000);
}
}
};
#undef REGISTER_FIELD
// Entry point for sampler thread.
static void* SamplerEntry(void* arg) {
Sampler::PlatformData* data =
reinterpret_cast<Sampler::PlatformData*>(arg);
data->Runner();
return 0;
}
Sampler::Sampler(int interval, bool profiling)
: interval_(interval), profiling_(profiling), active_(false) {
data_ = new PlatformData(this);
}
Sampler::~Sampler() {
delete data_;
}
void Sampler::Start() {
// If we are profiling, we need to be able to access the calling
// thread.
if (IsProfiling()) {
data_->profiled_thread_ = mach_thread_self();
}
// Create sampler thread with high priority.
// According to POSIX spec, when SCHED_FIFO policy is used, a thread
// runs until it exits or blocks.
pthread_attr_t sched_attr;
sched_param fifo_param;
pthread_attr_init(&sched_attr);
pthread_attr_setinheritsched(&sched_attr, PTHREAD_EXPLICIT_SCHED);
pthread_attr_setschedpolicy(&sched_attr, SCHED_FIFO);
fifo_param.sched_priority = sched_get_priority_max(SCHED_FIFO);
pthread_attr_setschedparam(&sched_attr, &fifo_param);
active_ = true;
pthread_create(&data_->sampler_thread_, &sched_attr, SamplerEntry, data_);
}
void Sampler::Stop() {
// Seting active to false triggers termination of the sampler
// thread.
active_ = false;
// Wait for sampler thread to terminate.
pthread_join(data_->sampler_thread_, NULL);
// Deallocate Mach port for thread.
if (IsProfiling()) {
mach_port_deallocate(data_->task_self_, data_->profiled_thread_);
}
}
#endif // ENABLE_LOGGING_AND_PROFILING
} } // namespace v8::internal