mirror of https://github.com/lukechilds/node.git
Ryan Dahl
15 years ago
17 changed files with 857 additions and 40 deletions
@ -0,0 +1,686 @@ |
|||
// Copyright 2006-2009 the V8 project authors. All rights reserved.
|
|||
// Redistribution and use in source and binary forms, with or without
|
|||
// modification, are permitted provided that the following conditions are
|
|||
// met:
|
|||
//
|
|||
// * Redistributions of source code must retain the above copyright
|
|||
// notice, this list of conditions and the following disclaimer.
|
|||
// * Redistributions in binary form must reproduce the above
|
|||
// copyright notice, this list of conditions and the following
|
|||
// disclaimer in the documentation and/or other materials provided
|
|||
// with the distribution.
|
|||
// * Neither the name of Google Inc. nor the names of its
|
|||
// contributors may be used to endorse or promote products derived
|
|||
// from this software without specific prior written permission.
|
|||
//
|
|||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|||
|
|||
// Platform specific code for Solaris 10 goes here. For the POSIX comaptible
|
|||
// parts the implementation is in platform-posix.cc.
|
|||
|
|||
#include <sys/stack.h> // for stack alignment |
|||
#include <unistd.h> // getpagesize() |
|||
#include <sys/mman.h> // mmap() |
|||
#include <unistd.h> // usleep() |
|||
#include <execinfo.h> // backtrace(), backtrace_symbols() |
|||
#include <pthread.h> |
|||
#include <sched.h> // for sched_yield |
|||
#include <semaphore.h> |
|||
#include <time.h> |
|||
#include <sys/time.h> // gettimeofday(), timeradd() |
|||
#include <errno.h> |
|||
#include <ieeefp.h> // finite() |
|||
#include <signal.h> // sigemptyset(), etc |
|||
|
|||
#undef MAP_TYPE |
|||
|
|||
#include "v8.h" |
|||
|
|||
#include "platform.h" |
|||
|
|||
|
|||
namespace v8 { |
|||
namespace internal { |
|||
|
|||
int isfinite(double x) { |
|||
return finite(x) && !isnand(x); |
|||
} |
|||
|
|||
} } // namespace v8::internal
|
|||
|
|||
|
|||
// Test for infinity - usually defined in math.h
|
|||
int isinf(double x) { |
|||
fpclass_t fpc = fpclass(x); |
|||
return (fpc == FP_NINF || fpc == FP_PINF); |
|||
} |
|||
|
|||
|
|||
// Test if x is less than y and both nominal - usually defined in math.h
|
|||
int isless(double x, double y) { |
|||
return isnan(x) || isnan(y) ? 0 : x < y; |
|||
} |
|||
|
|||
|
|||
// Test if x is greater than y and both nominal - usually defined in math.h
|
|||
int isgreater(double x, double y) { |
|||
return isnan(x) || isnan(y) ? 0 : x > y; |
|||
} |
|||
|
|||
|
|||
// Classify floating point number - usually defined in math.h#ifndef fpclassify
|
|||
int fpclassify(double x) { |
|||
// Use the Solaris-specific fpclass() for classification.
|
|||
fpclass_t fpc = fpclass(x); |
|||
|
|||
switch (fpc) { |
|||
case FP_PNORM: |
|||
case FP_NNORM: |
|||
return FP_NORMAL; |
|||
case FP_PZERO: |
|||
case FP_NZERO: |
|||
return FP_ZERO; |
|||
case FP_PDENORM: |
|||
case FP_NDENORM: |
|||
return FP_SUBNORMAL; |
|||
case FP_PINF: |
|||
case FP_NINF: |
|||
return FP_INFINITE; |
|||
default: |
|||
// All cases should be covered by the code above.
|
|||
ASSERT(fpc == FP_QNAN || fpc == FP_SNAN); |
|||
return FP_NAN; |
|||
} |
|||
} |
|||
|
|||
|
|||
int signbit(double x) { |
|||
// We need to take care of the special case of both positive
|
|||
// and negative versions of zero.
|
|||
if (x == 0) |
|||
return fpclass(x) == FP_NZERO; |
|||
else |
|||
return x < 0; |
|||
} |
|||
|
|||
|
|||
namespace v8 { |
|||
namespace internal { |
|||
|
|||
// 0 is never a valid thread id on Solaris since the main thread is 1 and
|
|||
// subsequent have their ids incremented from there
|
|||
static const pthread_t kNoThread = (pthread_t) 0; |
|||
|
|||
|
|||
// TODO: Test to see if ceil() is correct on Solaris.
|
|||
double ceiling(double x) { |
|||
return ceil(x); |
|||
} |
|||
|
|||
|
|||
void OS::Setup() { |
|||
// Seed the random number generator.
|
|||
// Convert the current time to a 64-bit integer first, before converting it
|
|||
// to an unsigned. Going directly will cause an overflow and the seed to be
|
|||
// set to all ones. The seed will be identical for different instances that
|
|||
// call this setup code within the same millisecond.
|
|||
uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis()); |
|||
srandom(static_cast<unsigned int>(seed)); |
|||
} |
|||
|
|||
|
|||
uint64_t OS::CpuFeaturesImpliedByPlatform() { |
|||
return 0; // Solaris runs on a lot of things.
|
|||
} |
|||
|
|||
|
|||
double OS::nan_value() { |
|||
static double NAN = __builtin_nan("0x0"); |
|||
return NAN; |
|||
} |
|||
|
|||
|
|||
int OS::ActivationFrameAlignment() { |
|||
return STACK_ALIGN; |
|||
} |
|||
|
|||
|
|||
const char* OS::LocalTimezone(double time) { |
|||
if (isnan(time)) return ""; |
|||
time_t tv = static_cast<time_t>(floor(time/msPerSecond)); |
|||
struct tm* t = localtime(&tv); |
|||
if (NULL == t) return ""; |
|||
return tzname[0]; // the location of the timezone string on Solaris
|
|||
} |
|||
|
|||
|
|||
double OS::LocalTimeOffset() { |
|||
int days, hours, minutes; |
|||
time_t tv = time(NULL); |
|||
|
|||
// on Solaris, struct tm does not contain a tm_gmtoff field...
|
|||
struct tm* loc = localtime(&tv); |
|||
struct tm* utc = gmtime(&tv); |
|||
|
|||
// calulate the utc offset
|
|||
days = loc->tm_yday = utc->tm_yday; |
|||
hours = ((days < -1 ? 24 : 1 < days ? -24 : days * 24) + |
|||
loc->tm_hour - utc->tm_hour); |
|||
minutes = hours * 60 + loc->tm_min - utc->tm_min; |
|||
|
|||
// don't include any daylight savings offset in local time
|
|||
if (loc->tm_isdst > 0) minutes -= 60; |
|||
|
|||
// the result is in milliseconds
|
|||
return static_cast<double>(minutes * 60 * msPerSecond); |
|||
} |
|||
|
|||
|
|||
// We keep the lowest and highest addresses mapped as a quick way of
|
|||
// determining that pointers are outside the heap (used mostly in assertions
|
|||
// and verification). The estimate is conservative, ie, not all addresses in
|
|||
// 'allocated' space are actually allocated to our heap. The range is
|
|||
// [lowest, highest), inclusive on the low and and exclusive on the high end.
|
|||
static void* lowest_ever_allocated = reinterpret_cast<void*>(-1); |
|||
static void* highest_ever_allocated = reinterpret_cast<void*>(0); |
|||
|
|||
|
|||
static void UpdateAllocatedSpaceLimits(void* address, int size) { |
|||
lowest_ever_allocated = Min(lowest_ever_allocated, address); |
|||
highest_ever_allocated = |
|||
Max(highest_ever_allocated, |
|||
reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size)); |
|||
} |
|||
|
|||
|
|||
bool OS::IsOutsideAllocatedSpace(void* address) { |
|||
return address < lowest_ever_allocated || address >= highest_ever_allocated; |
|||
} |
|||
|
|||
|
|||
size_t OS::AllocateAlignment() { |
|||
return (size_t)getpagesize(); |
|||
} |
|||
|
|||
|
|||
void* OS::Allocate(const size_t requested, |
|||
size_t* allocated, |
|||
bool is_executable) { |
|||
const size_t msize = RoundUp(requested, getpagesize()); |
|||
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); |
|||
void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANON, -1, 0); |
|||
|
|||
if (mbase == MAP_FAILED) { |
|||
LOG(StringEvent("OS::Allocate", "mmap failed")); |
|||
return NULL; |
|||
} |
|||
*allocated = msize; |
|||
UpdateAllocatedSpaceLimits(mbase, msize); |
|||
return mbase; |
|||
} |
|||
|
|||
|
|||
void OS::Free(void* address, const size_t size) { |
|||
// TODO(1240712): munmap has a return value which is ignored here.
|
|||
int result = munmap(address, size); |
|||
USE(result); |
|||
ASSERT(result == 0); |
|||
} |
|||
|
|||
|
|||
#ifdef ENABLE_HEAP_PROTECTION |
|||
|
|||
void OS::Protect(void* address, size_t size) { |
|||
// TODO(1240712): mprotect has a return value which is ignored here.
|
|||
mprotect(address, size, PROT_READ); |
|||
} |
|||
|
|||
|
|||
void OS::Unprotect(void* address, size_t size, bool is_executable) { |
|||
// TODO(1240712): mprotect has a return value which is ignored here.
|
|||
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); |
|||
mprotect(address, size, prot); |
|||
} |
|||
|
|||
#endif |
|||
|
|||
|
|||
void OS::Sleep(int milliseconds) { |
|||
useconds_t ms = static_cast<useconds_t>(milliseconds); |
|||
usleep(1000 * ms); |
|||
} |
|||
|
|||
|
|||
void OS::Abort() { |
|||
// Redirect to std abort to signal abnormal program termination
|
|||
abort(); |
|||
} |
|||
|
|||
|
|||
void OS::DebugBreak() { |
|||
asm("int $3"); |
|||
} |
|||
|
|||
|
|||
class PosixMemoryMappedFile : public OS::MemoryMappedFile { |
|||
public: |
|||
PosixMemoryMappedFile(FILE* file, void* memory, int size) |
|||
: file_(file), memory_(memory), size_(size) { } |
|||
virtual ~PosixMemoryMappedFile(); |
|||
virtual void* memory() { return memory_; } |
|||
private: |
|||
FILE* file_; |
|||
void* memory_; |
|||
int size_; |
|||
}; |
|||
|
|||
|
|||
OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size, |
|||
void* initial) { |
|||
FILE* file = fopen(name, "w+"); |
|||
if (file == NULL) return NULL; |
|||
int result = fwrite(initial, size, 1, file); |
|||
if (result < 1) { |
|||
fclose(file); |
|||
return NULL; |
|||
} |
|||
void* memory = |
|||
mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0); |
|||
return new PosixMemoryMappedFile(file, memory, size); |
|||
} |
|||
|
|||
|
|||
PosixMemoryMappedFile::~PosixMemoryMappedFile() { |
|||
if (memory_) munmap(memory_, size_); |
|||
fclose(file_); |
|||
} |
|||
|
|||
|
|||
void OS::LogSharedLibraryAddresses() { |
|||
#ifdef ENABLE_LOGGING_AND_PROFILING |
|||
UNIMPLEMENTED(); |
|||
#endif |
|||
} |
|||
|
|||
|
|||
int OS::StackWalk(Vector<OS::StackFrame> frames) { |
|||
int frames_size = frames.length(); |
|||
void** addresses = NewArray<void*>(frames_size); |
|||
|
|||
int frames_count = backtrace(addresses, frames_size); |
|||
|
|||
char** symbols; |
|||
symbols = backtrace_symbols(addresses, frames_count); |
|||
if (symbols == NULL) { |
|||
DeleteArray(addresses); |
|||
return kStackWalkError; |
|||
} |
|||
|
|||
for (int i = 0; i < frames_count; i++) { |
|||
frames[i].address = addresses[i]; |
|||
// Format a text representation of the frame based on the information
|
|||
// available.
|
|||
SNPrintF(MutableCStrVector(frames[i].text, kStackWalkMaxTextLen), |
|||
"%s", |
|||
symbols[i]); |
|||
// Make sure line termination is in place.
|
|||
frames[i].text[kStackWalkMaxTextLen - 1] = '\0'; |
|||
} |
|||
|
|||
DeleteArray(addresses); |
|||
free(symbols); |
|||
|
|||
return frames_count; |
|||
} |
|||
|
|||
|
|||
// Constants used for mmap.
|
|||
static const int kMmapFd = -1; |
|||
static const int kMmapFdOffset = 0; |
|||
|
|||
|
|||
VirtualMemory::VirtualMemory(size_t size) { |
|||
address_ = mmap(NULL, size, PROT_NONE, |
|||
MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, |
|||
kMmapFd, kMmapFdOffset); |
|||
size_ = size; |
|||
} |
|||
|
|||
|
|||
VirtualMemory::~VirtualMemory() { |
|||
if (IsReserved()) { |
|||
if (0 == munmap(address(), size())) address_ = MAP_FAILED; |
|||
} |
|||
} |
|||
|
|||
|
|||
bool VirtualMemory::IsReserved() { |
|||
return address_ != MAP_FAILED; |
|||
} |
|||
|
|||
|
|||
bool VirtualMemory::Commit(void* address, size_t size, bool executable) { |
|||
int prot = PROT_READ | PROT_WRITE | (executable ? PROT_EXEC : 0); |
|||
if (MAP_FAILED == mmap(address, size, prot, |
|||
MAP_PRIVATE | MAP_ANON | MAP_FIXED, |
|||
kMmapFd, kMmapFdOffset)) { |
|||
return false; |
|||
} |
|||
|
|||
UpdateAllocatedSpaceLimits(address, size); |
|||
return true; |
|||
} |
|||
|
|||
|
|||
bool VirtualMemory::Uncommit(void* address, size_t size) { |
|||
return mmap(address, size, PROT_NONE, |
|||
MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | MAP_FIXED, |
|||
kMmapFd, kMmapFdOffset) != MAP_FAILED; |
|||
} |
|||
|
|||
|
|||
class ThreadHandle::PlatformData : public Malloced { |
|||
public: |
|||
explicit PlatformData(ThreadHandle::Kind kind) { |
|||
Initialize(kind); |
|||
} |
|||
|
|||
void Initialize(ThreadHandle::Kind kind) { |
|||
switch (kind) { |
|||
case ThreadHandle::SELF: thread_ = pthread_self(); break; |
|||
case ThreadHandle::INVALID: thread_ = kNoThread; break; |
|||
} |
|||
} |
|||
|
|||
pthread_t thread_; // Thread handle for pthread.
|
|||
}; |
|||
|
|||
|
|||
ThreadHandle::ThreadHandle(Kind kind) { |
|||
data_ = new PlatformData(kind); |
|||
} |
|||
|
|||
|
|||
void ThreadHandle::Initialize(ThreadHandle::Kind kind) { |
|||
data_->Initialize(kind); |
|||
} |
|||
|
|||
|
|||
ThreadHandle::~ThreadHandle() { |
|||
delete data_; |
|||
} |
|||
|
|||
|
|||
bool ThreadHandle::IsSelf() const { |
|||
return pthread_equal(data_->thread_, pthread_self()); |
|||
} |
|||
|
|||
|
|||
bool ThreadHandle::IsValid() const { |
|||
return data_->thread_ != kNoThread; |
|||
} |
|||
|
|||
|
|||
Thread::Thread() : ThreadHandle(ThreadHandle::INVALID) { |
|||
} |
|||
|
|||
|
|||
Thread::~Thread() { |
|||
} |
|||
|
|||
|
|||
static void* ThreadEntry(void* arg) { |
|||
Thread* thread = reinterpret_cast<Thread*>(arg); |
|||
// This is also initialized by the first argument to pthread_create() but we
|
|||
// don't know which thread will run first (the original thread or the new
|
|||
// one) so we initialize it here too.
|
|||
thread->thread_handle_data()->thread_ = pthread_self(); |
|||
ASSERT(thread->IsValid()); |
|||
thread->Run(); |
|||
return NULL; |
|||
} |
|||
|
|||
|
|||
void Thread::Start() { |
|||
pthread_create(&thread_handle_data()->thread_, NULL, ThreadEntry, this); |
|||
ASSERT(IsValid()); |
|||
} |
|||
|
|||
|
|||
void Thread::Join() { |
|||
pthread_join(thread_handle_data()->thread_, NULL); |
|||
} |
|||
|
|||
|
|||
Thread::LocalStorageKey Thread::CreateThreadLocalKey() { |
|||
pthread_key_t key; |
|||
int result = pthread_key_create(&key, NULL); |
|||
USE(result); |
|||
ASSERT(result == 0); |
|||
return static_cast<LocalStorageKey>(key); |
|||
} |
|||
|
|||
|
|||
void Thread::DeleteThreadLocalKey(LocalStorageKey key) { |
|||
pthread_key_t pthread_key = static_cast<pthread_key_t>(key); |
|||
int result = pthread_key_delete(pthread_key); |
|||
USE(result); |
|||
ASSERT(result == 0); |
|||
} |
|||
|
|||
|
|||
void* Thread::GetThreadLocal(LocalStorageKey key) { |
|||
pthread_key_t pthread_key = static_cast<pthread_key_t>(key); |
|||
return pthread_getspecific(pthread_key); |
|||
} |
|||
|
|||
|
|||
void Thread::SetThreadLocal(LocalStorageKey key, void* value) { |
|||
pthread_key_t pthread_key = static_cast<pthread_key_t>(key); |
|||
pthread_setspecific(pthread_key, value); |
|||
} |
|||
|
|||
|
|||
void Thread::YieldCPU() { |
|||
sched_yield(); |
|||
} |
|||
|
|||
|
|||
class SolarisMutex : public Mutex { |
|||
public: |
|||
|
|||
SolarisMutex() { |
|||
pthread_mutexattr_t attr; |
|||
pthread_mutexattr_init(&attr); |
|||
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE); |
|||
pthread_mutex_init(&mutex_, &attr); |
|||
} |
|||
|
|||
~SolarisMutex() { pthread_mutex_destroy(&mutex_); } |
|||
|
|||
int Lock() { return pthread_mutex_lock(&mutex_); } |
|||
|
|||
int Unlock() { return pthread_mutex_unlock(&mutex_); } |
|||
|
|||
private: |
|||
pthread_mutex_t mutex_; |
|||
}; |
|||
|
|||
|
|||
Mutex* OS::CreateMutex() { |
|||
return new SolarisMutex(); |
|||
} |
|||
|
|||
|
|||
class SolarisSemaphore : public Semaphore { |
|||
public: |
|||
explicit SolarisSemaphore(int count) { sem_init(&sem_, 0, count); } |
|||
virtual ~SolarisSemaphore() { sem_destroy(&sem_); } |
|||
|
|||
virtual void Wait(); |
|||
virtual bool Wait(int timeout); |
|||
virtual void Signal() { sem_post(&sem_); } |
|||
private: |
|||
sem_t sem_; |
|||
}; |
|||
|
|||
|
|||
void SolarisSemaphore::Wait() { |
|||
while (true) { |
|||
int result = sem_wait(&sem_); |
|||
if (result == 0) return; // Successfully got semaphore.
|
|||
CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
|
|||
} |
|||
} |
|||
|
|||
|
|||
#ifndef TIMEVAL_TO_TIMESPEC |
|||
#define TIMEVAL_TO_TIMESPEC(tv, ts) do { \ |
|||
(ts)->tv_sec = (tv)->tv_sec; \ |
|||
(ts)->tv_nsec = (tv)->tv_usec * 1000; \ |
|||
} while (false) |
|||
#endif |
|||
|
|||
|
|||
#ifndef timeradd |
|||
#define timeradd(a, b, result) \ |
|||
do { \ |
|||
(result)->tv_sec = (a)->tv_sec + (b)->tv_sec; \ |
|||
(result)->tv_usec = (a)->tv_usec + (b)->tv_usec; \ |
|||
if ((result)->tv_usec >= 1000000) { \ |
|||
++(result)->tv_sec; \ |
|||
(result)->tv_usec -= 1000000; \ |
|||
} \ |
|||
} while (0) |
|||
#endif |
|||
|
|||
|
|||
bool SolarisSemaphore::Wait(int timeout) { |
|||
const long kOneSecondMicros = 1000000; // NOLINT
|
|||
|
|||
// Split timeout into second and nanosecond parts.
|
|||
struct timeval delta; |
|||
delta.tv_usec = timeout % kOneSecondMicros; |
|||
delta.tv_sec = timeout / kOneSecondMicros; |
|||
|
|||
struct timeval current_time; |
|||
// Get the current time.
|
|||
if (gettimeofday(¤t_time, NULL) == -1) { |
|||
return false; |
|||
} |
|||
|
|||
// Calculate time for end of timeout.
|
|||
struct timeval end_time; |
|||
timeradd(¤t_time, &delta, &end_time); |
|||
|
|||
struct timespec ts; |
|||
TIMEVAL_TO_TIMESPEC(&end_time, &ts); |
|||
// Wait for semaphore signalled or timeout.
|
|||
while (true) { |
|||
int result = sem_timedwait(&sem_, &ts); |
|||
if (result == 0) return true; // Successfully got semaphore.
|
|||
if (result == -1 && errno == ETIMEDOUT) return false; // Timeout.
|
|||
CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
|
|||
} |
|||
} |
|||
|
|||
|
|||
Semaphore* OS::CreateSemaphore(int count) { |
|||
return new SolarisSemaphore(count); |
|||
} |
|||
|
|||
|
|||
#ifdef ENABLE_LOGGING_AND_PROFILING |
|||
|
|||
static Sampler* active_sampler_ = NULL; |
|||
|
|||
static void ProfilerSignalHandler(int signal, siginfo_t* info, void* context) { |
|||
USE(info); |
|||
if (signal != SIGPROF) return; |
|||
if (active_sampler_ == NULL) return; |
|||
|
|||
TickSample sample; |
|||
|
|||
// We always sample the VM state.
|
|||
sample.state = Logger::state(); |
|||
|
|||
active_sampler_->Tick(&sample); |
|||
} |
|||
|
|||
|
|||
class Sampler::PlatformData : public Malloced { |
|||
public: |
|||
PlatformData() { |
|||
signal_handler_installed_ = false; |
|||
} |
|||
|
|||
bool signal_handler_installed_; |
|||
struct sigaction old_signal_handler_; |
|||
struct itimerval old_timer_value_; |
|||
}; |
|||
|
|||
|
|||
Sampler::Sampler(int interval, bool profiling) |
|||
: interval_(interval), profiling_(profiling), active_(false) { |
|||
data_ = new PlatformData(); |
|||
} |
|||
|
|||
|
|||
Sampler::~Sampler() { |
|||
delete data_; |
|||
} |
|||
|
|||
|
|||
void Sampler::Start() { |
|||
// There can only be one active sampler at the time on POSIX
|
|||
// platforms.
|
|||
if (active_sampler_ != NULL) return; |
|||
|
|||
// Request profiling signals.
|
|||
struct sigaction sa; |
|||
sa.sa_sigaction = ProfilerSignalHandler; |
|||
sigemptyset(&sa.sa_mask); |
|||
sa.sa_flags = SA_SIGINFO; |
|||
if (sigaction(SIGPROF, &sa, &data_->old_signal_handler_) != 0) return; |
|||
data_->signal_handler_installed_ = true; |
|||
|
|||
// Set the itimer to generate a tick for each interval.
|
|||
itimerval itimer; |
|||
itimer.it_interval.tv_sec = interval_ / 1000; |
|||
itimer.it_interval.tv_usec = (interval_ % 1000) * 1000; |
|||
itimer.it_value.tv_sec = itimer.it_interval.tv_sec; |
|||
itimer.it_value.tv_usec = itimer.it_interval.tv_usec; |
|||
setitimer(ITIMER_PROF, &itimer, &data_->old_timer_value_); |
|||
|
|||
// Set this sampler as the active sampler.
|
|||
active_sampler_ = this; |
|||
active_ = true; |
|||
} |
|||
|
|||
|
|||
void Sampler::Stop() { |
|||
// Restore old signal handler
|
|||
if (data_->signal_handler_installed_) { |
|||
setitimer(ITIMER_PROF, &data_->old_timer_value_, NULL); |
|||
sigaction(SIGPROF, &data_->old_signal_handler_, 0); |
|||
data_->signal_handler_installed_ = false; |
|||
} |
|||
|
|||
// This sampler is no longer the active sampler.
|
|||
active_sampler_ = NULL; |
|||
active_ = false; |
|||
} |
|||
|
|||
#endif // ENABLE_LOGGING_AND_PROFILING
|
|||
|
|||
} } // namespace v8::internal
|
Loading…
Reference in new issue