mirror of https://github.com/lukechilds/node.git
Browse Source
PR-URL: https://github.com/nodejs/node/pull/7094 Reviewed-By: Trevor Norris <trev.norris@gmail.com> Reviewed-By: Jeremiah Senkpiel <fishrock123@rocketmail.com> Reviewed-By: Brian White <mscdex@mscdex.net> Reviewed-By: Anna Henningsen <anna@addaleax.net>v7.x
Andreas Madsen
9 years ago
3 changed files with 240 additions and 95 deletions
@ -1,147 +1,292 @@ |
|||
# Node.js core benchmark tests |
|||
# Node.js core benchmark |
|||
|
|||
This folder contains benchmark tests to measure the performance for certain |
|||
Node.js APIs. |
|||
This folder contains benchmarks to measure the performance of the Node.js APIs. |
|||
|
|||
## Table of Content |
|||
|
|||
* [Prerequisites](#prerequisites) |
|||
* [Running benchmarks](#running-benchmarks) |
|||
* [Running individual benchmarks](#running-individual-benchmarks) |
|||
* [Running all benchmarks](#running-all-benchmarks) |
|||
* [Comparing node versions](#comparing-node-versions) |
|||
* [Comparing parameters](#comparing-parameters) |
|||
* [Creating a benchmark](#creating-a-benchmark) |
|||
|
|||
## Prerequisites |
|||
|
|||
Most of the http benchmarks require [`wrk`][wrk] and [`ab`][ab] (ApacheBench) being installed. |
|||
These may be available through your preferred package manager. |
|||
Most of the http benchmarks require [`wrk`][wrk] to be installed. It may be |
|||
available through your preferred package manager. If not, `wrk` can be built |
|||
[from source][wrk] via `make`. |
|||
|
|||
If they are not available: |
|||
- `wrk` may easily be built [from source][wrk] via `make`. |
|||
- `ab` is sometimes bundled in a package called `apache2-utils`. |
|||
To analyze the results `R` should be installed. Check you package manager or |
|||
download it from https://www.r-project.org/. |
|||
|
|||
The R packages `ggplot2` and `plyr` are also used and can be installed using |
|||
the R REPL. |
|||
|
|||
```R |
|||
$ R |
|||
install.packages("ggplot2") |
|||
install.packages("plyr") |
|||
``` |
|||
|
|||
[wrk]: https://github.com/wg/wrk |
|||
[ab]: http://httpd.apache.org/docs/2.2/programs/ab.html |
|||
|
|||
## How to run tests |
|||
## Running benchmarks |
|||
|
|||
There are three ways to run benchmark tests: |
|||
### Running individual benchmarks |
|||
|
|||
### Run all tests of a given type |
|||
This can be useful for debugging a benchmark or doing a quick performance |
|||
measure. But it does not provide the statistical information to make any |
|||
conclusions about the performance. |
|||
|
|||
For example, buffers: |
|||
Individual benchmarks can be executed by simply executing the benchmark script |
|||
with node. |
|||
|
|||
```bash |
|||
node benchmark/run.js buffers |
|||
``` |
|||
$ node benchmark/buffers/buffer-tostring.js |
|||
|
|||
The above command will find all scripts under `buffers` directory and require |
|||
each of them as a module. When a test script is required, it creates an instance |
|||
of `Benchmark` (a class defined in common.js). In the next tick, the `Benchmark` |
|||
constructor iterates through the configuration object property values and runs |
|||
the test function with each of the combined arguments in spawned processes. For |
|||
example, buffers/buffer-read.js has the following configuration: |
|||
buffers/buffer-tostring.js n=10000000 len=0 arg=true: 62710590.393305704 |
|||
buffers/buffer-tostring.js n=10000000 len=1 arg=true: 9178624.591787899 |
|||
buffers/buffer-tostring.js n=10000000 len=64 arg=true: 7658962.8891432695 |
|||
buffers/buffer-tostring.js n=10000000 len=1024 arg=true: 4136904.4060201733 |
|||
buffers/buffer-tostring.js n=10000000 len=0 arg=false: 22974354.231509723 |
|||
buffers/buffer-tostring.js n=10000000 len=1 arg=false: 11485945.656765845 |
|||
buffers/buffer-tostring.js n=10000000 len=64 arg=false: 8718280.70650129 |
|||
buffers/buffer-tostring.js n=10000000 len=1024 arg=false: 4103857.0726124765 |
|||
``` |
|||
|
|||
Each line represents a single benchmark with parameters specified as |
|||
`${variable}=${value}`. Each configuration combination is executed in a separate |
|||
process. This ensures that benchmark results aren't affected by the execution |
|||
order due to v8 optimizations. **The last number is the rate of operations |
|||
measured in ops/sec (higher is better).** |
|||
|
|||
Furthermore you can specify a subset of the configurations, by setting them in |
|||
the process arguments: |
|||
|
|||
```js |
|||
var bench = common.createBenchmark(main, { |
|||
noAssert: [false, true], |
|||
buffer: ['fast', 'slow'], |
|||
type: ['UInt8', 'UInt16LE', 'UInt16BE', |
|||
'UInt32LE', 'UInt32BE', |
|||
'Int8', 'Int16LE', 'Int16BE', |
|||
'Int32LE', 'Int32BE', |
|||
'FloatLE', 'FloatBE', |
|||
'DoubleLE', 'DoubleBE'], |
|||
millions: [1] |
|||
}); |
|||
``` |
|||
The runner takes one item from each of the property array value to build a list |
|||
of arguments to run the main function. The main function will receive the conf |
|||
object as follows: |
|||
$ node benchmark/buffers/buffer-tostring.js len=1024 |
|||
|
|||
- first run: |
|||
```js |
|||
{ noAssert: false, |
|||
buffer: 'fast', |
|||
type: 'UInt8', |
|||
millions: 1 |
|||
} |
|||
buffers/buffer-tostring.js n=10000000 len=1024 arg=true: 3498295.68561504 |
|||
buffers/buffer-tostring.js n=10000000 len=1024 arg=false: 3783071.1678948295 |
|||
``` |
|||
- second run: |
|||
```js |
|||
{ |
|||
noAssert: false, |
|||
buffer: 'fast', |
|||
type: 'UInt16LE', |
|||
millions: 1 |
|||
} |
|||
|
|||
### Running all benchmarks |
|||
|
|||
Similar to running individual benchmarks, a group of benchmarks can be executed |
|||
by using the `run.js` tool. Again this does not provide the statistical |
|||
information to make any conclusions. |
|||
|
|||
``` |
|||
$ node benchmark/run.js arrays |
|||
|
|||
arrays/var-int.js |
|||
arrays/var-int.js n=25 type=Array: 71.90148040747789 |
|||
arrays/var-int.js n=25 type=Buffer: 92.89648382795582 |
|||
... |
|||
|
|||
In this case, the main function will run 2*2*14*1 = 56 times. The console output |
|||
looks like the following: |
|||
arrays/zero-float.js |
|||
arrays/zero-float.js n=25 type=Array: 75.46208316171496 |
|||
arrays/zero-float.js n=25 type=Buffer: 101.62785630273159 |
|||
... |
|||
|
|||
``` |
|||
buffers//buffer-read.js |
|||
buffers/buffer-read.js noAssert=false buffer=fast type=UInt8 millions=1: 271.83 |
|||
buffers/buffer-read.js noAssert=false buffer=fast type=UInt16LE millions=1: 239.43 |
|||
buffers/buffer-read.js noAssert=false buffer=fast type=UInt16BE millions=1: 244.57 |
|||
arrays/zero-int.js |
|||
arrays/zero-int.js n=25 type=Array: 72.31023859816062 |
|||
arrays/zero-int.js n=25 type=Buffer: 90.49906662339653 |
|||
... |
|||
``` |
|||
|
|||
The last number is the rate of operations. Higher is better. |
|||
It is possible to execute more groups by adding extra process arguments. |
|||
``` |
|||
$ node benchmark/run.js arrays buffers |
|||
``` |
|||
|
|||
### Comparing node versions |
|||
|
|||
To compare the effect of a new node version use the `compare.js` tool. This |
|||
will run each benchmark multiple times, making it possible to calculate |
|||
statistics on the performance measures. |
|||
|
|||
As an example on how to check for a possible performance improvement, the |
|||
[#5134](https://github.com/nodejs/node/pull/5134) pull request will be used as |
|||
an example. This pull request _claims_ to improve the performance of the |
|||
`string_decoder` module. |
|||
|
|||
First build two versions of node, one from the master branch (here called |
|||
`./node-master`) and another with the pull request applied (here called |
|||
`./node-pr-5135`). |
|||
|
|||
The `compare.js` tool will then produce a csv file with the benchmark results. |
|||
|
|||
### Run an individual test |
|||
``` |
|||
$ node benchmark/compare.js --old ./node-master --new ./node-pr-5134 string_decoder > compare-pr-5134.csv |
|||
``` |
|||
|
|||
For example, buffer-slice.js: |
|||
For analysing the benchmark results use the `compare.R` tool. |
|||
|
|||
```bash |
|||
node benchmark/buffers/buffer-read.js |
|||
``` |
|||
The output: |
|||
$ cat compare-pr-5134.csv | Rscript benchmark/compare.R |
|||
|
|||
improvement significant p.value |
|||
string_decoder/string-decoder.js n=250000 chunk=1024 inlen=1024 encoding=ascii 12.46 % *** 1.165345e-04 |
|||
string_decoder/string-decoder.js n=250000 chunk=1024 inlen=1024 encoding=base64-ascii 24.70 % *** 1.820615e-15 |
|||
string_decoder/string-decoder.js n=250000 chunk=1024 inlen=1024 encoding=base64-utf8 23.60 % *** 2.105625e-12 |
|||
string_decoder/string-decoder.js n=250000 chunk=1024 inlen=1024 encoding=utf8 14.04 % *** 1.291105e-07 |
|||
string_decoder/string-decoder.js n=250000 chunk=1024 inlen=128 encoding=ascii 6.70 % * 2.928003e-02 |
|||
... |
|||
``` |
|||
|
|||
In the output, _improvement_ is the relative improvement of the new version, |
|||
hopefully this is positive. _significant_ tells if there is enough |
|||
statistical evidence to validate the _improvement_. If there is enough evidence |
|||
then there will be at least one star (`*`), more stars is just better. **However |
|||
if there are no stars, then you shouldn't make any conclusions based on the |
|||
_improvement_.** Sometimes this is fine, for example if you are expecting there |
|||
to be no improvements, then there shouldn't be any stars. |
|||
|
|||
**A word of caution:** Statistics is not a foolproof tool. If a benchmark shows |
|||
a statistical significant difference, there is a 5% risk that this |
|||
difference doesn't actually exists. For a single benchmark this is not an |
|||
issue. But when considering 20 benchmarks it's normal that one of them |
|||
will show significance, when it shouldn't. A possible solution is to instead |
|||
consider at least two stars (`**`) as the threshold, in that case the risk |
|||
is 1%. If three stars (`***`) is considered the risk is 0.1%. However this |
|||
may require more runs to obtain (can be set with `--runs`). |
|||
|
|||
_For the statistically minded, the R script performs an [independent/unpaired |
|||
2-group t-test][t-test], with the null hypothesis that the performance is the |
|||
same for both versions. The significant field will show a star if the p-value |
|||
is less than `0.05`._ |
|||
|
|||
[t-test]: https://en.wikipedia.org/wiki/Student%27s_t-test#Equal_or_unequal_sample_sizes.2C_unequal_variances |
|||
|
|||
The `compare.R` tool can also produce a box plot by using the `--plot filename` |
|||
option. In this case there are 48 different benchmark combinations, thus you |
|||
may want to filter the csv file. This can be done while benchmarking using the |
|||
`--set` parameter (e.g. `--set encoding=ascii`) or by filtering results |
|||
afterwards using tools such as `sed` or `grep`. In the `sed` case be sure to |
|||
keep the first line since that contains the header information. |
|||
|
|||
``` |
|||
buffers/buffer-read.js noAssert=false buffer=fast type=UInt8 millions=1: 246.79 |
|||
buffers/buffer-read.js noAssert=false buffer=fast type=UInt16LE millions=1: 240.11 |
|||
buffers/buffer-read.js noAssert=false buffer=fast type=UInt16BE millions=1: 245.91 |
|||
$ cat compare-pr-5134.csv | sed '1p;/encoding=ascii/!d' | Rscript benchmark/compare.R --plot compare-plot.png |
|||
|
|||
improvement significant p.value |
|||
string_decoder/string-decoder.js n=250000 chunk=1024 inlen=1024 encoding=ascii 12.46 % *** 1.165345e-04 |
|||
string_decoder/string-decoder.js n=250000 chunk=1024 inlen=128 encoding=ascii 6.70 % * 2.928003e-02 |
|||
string_decoder/string-decoder.js n=250000 chunk=1024 inlen=32 encoding=ascii 7.47 % *** 5.780583e-04 |
|||
string_decoder/string-decoder.js n=250000 chunk=16 inlen=1024 encoding=ascii 8.94 % *** 1.788579e-04 |
|||
string_decoder/string-decoder.js n=250000 chunk=16 inlen=128 encoding=ascii 10.54 % *** 4.016172e-05 |
|||
... |
|||
``` |
|||
|
|||
### Run tests with options |
|||
![compare tool boxplot](doc_img/compare-boxplot.png) |
|||
|
|||
### Comparing parameters |
|||
|
|||
This example will run only the first type of url test, with one iteration. |
|||
(Note: benchmarks require __many__ iterations to be statistically accurate.) |
|||
It can be useful to compare the performance for different parameters, for |
|||
example to analyze the time complexity. |
|||
|
|||
To do this use the `scatter.js` tool, this will run a benchmark multiple times |
|||
and generate a csv with the results. |
|||
|
|||
```bash |
|||
node benchmark/url/url-parse.js type=one n=1 |
|||
``` |
|||
Output: |
|||
$ node benchmark/scatter.js benchmark/string_decoder/string-decoder.js > scatter.csv |
|||
``` |
|||
url/url-parse.js type=one n=1: 1663.74402 |
|||
|
|||
After generating the csv, a comparison table can be created using the |
|||
`scatter.R` tool. Even more useful it creates an actual scatter plot when using |
|||
the `--plot filename` option. |
|||
|
|||
``` |
|||
$ cat scatter.csv | Rscript benchmark/scatter.R --xaxis chunk --category encoding --plot scatter-plot.png --log |
|||
|
|||
## How to write a benchmark test |
|||
aggregating variable: inlen |
|||
|
|||
The benchmark tests are grouped by types. Each type corresponds to a subdirectory, |
|||
such as `arrays`, `buffers`, or `fs`. |
|||
chunk encoding mean confidence.interval |
|||
16 ascii 1111933.3 221502.48 |
|||
16 base64-ascii 167508.4 33116.09 |
|||
16 base64-utf8 122666.6 25037.65 |
|||
16 utf8 783254.8 159601.79 |
|||
64 ascii 2623462.9 399791.36 |
|||
64 base64-ascii 462008.3 85369.45 |
|||
64 base64-utf8 420108.4 85612.05 |
|||
64 utf8 1358327.5 235152.03 |
|||
256 ascii 3730343.4 371530.47 |
|||
256 base64-ascii 663281.2 80302.73 |
|||
256 base64-utf8 632911.7 81393.07 |
|||
256 utf8 1554216.9 236066.53 |
|||
1024 ascii 4399282.0 186436.46 |
|||
1024 base64-ascii 730426.6 63806.12 |
|||
1024 base64-utf8 680954.3 68076.33 |
|||
1024 utf8 1554832.5 237532.07 |
|||
``` |
|||
|
|||
Let's add a benchmark test for Buffer.slice function. We first create a file |
|||
buffers/buffer-slice.js. |
|||
Because the scatter plot can only show two variables (in this case _chunk_ and |
|||
_encoding_) the rest is aggregated. Sometimes aggregating is a problem, this |
|||
can be solved by filtering. This can be done while benchmarking using the |
|||
`--set` parameter (e.g. `--set encoding=ascii`) or by filtering results |
|||
afterwards using tools such as `sed` or `grep`. In the `sed` case be |
|||
sure to keep the first line since that contains the header information. |
|||
|
|||
### The code snippet |
|||
``` |
|||
$ cat scatter.csv | sed -E '1p;/([^,]+, ){3}128,/!d' | Rscript benchmark/scatter.R --xaxis chunk --category encoding --plot scatter-plot.png --log |
|||
|
|||
```js |
|||
var common = require('../common.js'); // Load the test runner |
|||
chunk encoding mean confidence.interval |
|||
16 ascii 701285.96 21233.982 |
|||
16 base64-ascii 107719.07 3339.439 |
|||
16 base64-utf8 72966.95 2438.448 |
|||
16 utf8 475340.84 17685.450 |
|||
64 ascii 2554105.08 87067.132 |
|||
64 base64-ascii 330120.32 8551.707 |
|||
64 base64-utf8 249693.19 8990.493 |
|||
64 utf8 1128671.90 48433.862 |
|||
256 ascii 4841070.04 181620.768 |
|||
256 base64-ascii 849545.53 29931.656 |
|||
256 base64-utf8 809629.89 33773.496 |
|||
256 utf8 1489525.15 49616.334 |
|||
1024 ascii 4931512.12 165402.805 |
|||
1024 base64-ascii 863933.22 27766.982 |
|||
1024 base64-utf8 827093.97 24376.522 |
|||
1024 utf8 1487176.43 50128.721 |
|||
``` |
|||
|
|||
![compare tool boxplot](doc_img/scatter-plot.png) |
|||
|
|||
## Creating a benchmark |
|||
|
|||
var SlowBuffer = require('buffer').SlowBuffer; |
|||
All benchmarks use the `require('../common.js')` module. This contains the |
|||
`createBenchmark(main, configs)` method which will setup your benchmark. |
|||
|
|||
// Create a benchmark test for function `main` and the configuration variants |
|||
var bench = common.createBenchmark(main, { |
|||
type: ['fast', 'slow'], // Two types of buffer |
|||
n: [512] // Number of times (each unit is 1024) to call the slice API |
|||
The first argument `main` is the benchmark function, the second argument |
|||
specifies the benchmark parameters. `createBenchmark` will run all possible |
|||
combinations of these parameters, unless specified otherwise. Note that the |
|||
configuration values can only be strings or numbers. |
|||
|
|||
`createBenchmark` also creates a `bench` object, which is used for timing |
|||
the runtime of the benchmark. Run `bench.start()` after the initialization |
|||
and `bench.end(n)` when the benchmark is done. `n` is the number of operations |
|||
you performed in the benchmark. |
|||
|
|||
```js |
|||
'use strict'; |
|||
const common = require('../common.js'); |
|||
const SlowBuffer = require('buffer').SlowBuffer; |
|||
|
|||
const bench = common.createBenchmark(main, { |
|||
n: [1024], |
|||
type: ['fast', 'slow'], |
|||
size: [16, 128, 1024] |
|||
}); |
|||
|
|||
function main(conf) { |
|||
// Read the parameters from the configuration |
|||
var n = +conf.n; |
|||
var b = conf.type === 'fast' ? buf : slowBuf; |
|||
bench.start(); // Start benchmarking |
|||
for (var i = 0; i < n * 1024; i++) { |
|||
// Add your test here |
|||
b.slice(10, 256); |
|||
bench.start(); |
|||
|
|||
const BufferConstructor = conf.type === 'fast' ? Buffer : SlowBuffer; |
|||
|
|||
for (let i = 0; i < conf.n; i++) { |
|||
new BufferConstructor(conf.size); |
|||
} |
|||
bench.end(n); // End benchmarking |
|||
bench.end(conf.n); |
|||
} |
|||
``` |
|||
|
After Width: | Height: | Size: 260 KiB |
After Width: | Height: | Size: 178 KiB |
Loading…
Reference in new issue