mirror of https://github.com/lukechilds/node.git
Bert Belder
14 years ago
committed by
Ryan Dahl
6 changed files with 741 additions and 4 deletions
@ -0,0 +1,727 @@ |
|||||
|
// Copyright 2006-2008 the V8 project authors. All rights reserved.
|
||||
|
// Redistribution and use in source and binary forms, with or without
|
||||
|
// modification, are permitted provided that the following conditions are
|
||||
|
// met:
|
||||
|
//
|
||||
|
// * Redistributions of source code must retain the above copyright
|
||||
|
// notice, this list of conditions and the following disclaimer.
|
||||
|
// * Redistributions in binary form must reproduce the above
|
||||
|
// copyright notice, this list of conditions and the following
|
||||
|
// disclaimer in the documentation and/or other materials provided
|
||||
|
// with the distribution.
|
||||
|
// * Neither the name of Google Inc. nor the names of its
|
||||
|
// contributors may be used to endorse or promote products derived
|
||||
|
// from this software without specific prior written permission.
|
||||
|
//
|
||||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
|
||||
|
// Platform specific code for Cygwin goes here. For the POSIX comaptible parts
|
||||
|
// the implementation is in platform-posix.cc.
|
||||
|
|
||||
|
#include <errno.h> |
||||
|
#include <pthread.h> |
||||
|
#include <semaphore.h> |
||||
|
#include <stdarg.h> |
||||
|
#include <strings.h> // index |
||||
|
#include <sys/time.h> |
||||
|
#include <sys/mman.h> // mmap & munmap |
||||
|
#include <unistd.h> // sysconf |
||||
|
|
||||
|
#undef MAP_TYPE |
||||
|
|
||||
|
#include "v8.h" |
||||
|
|
||||
|
#include "platform.h" |
||||
|
#include "top.h" |
||||
|
#include "v8threads.h" |
||||
|
#include "vm-state-inl.h" |
||||
|
#include "win32-headers.h" |
||||
|
|
||||
|
namespace v8 { |
||||
|
namespace internal { |
||||
|
|
||||
|
// 0 is never a valid thread id
|
||||
|
static const pthread_t kNoThread = (pthread_t) 0; |
||||
|
|
||||
|
|
||||
|
double ceiling(double x) { |
||||
|
return ceil(x); |
||||
|
} |
||||
|
|
||||
|
|
||||
|
void OS::Setup() { |
||||
|
// Seed the random number generator.
|
||||
|
// Convert the current time to a 64-bit integer first, before converting it
|
||||
|
// to an unsigned. Going directly can cause an overflow and the seed to be
|
||||
|
// set to all ones. The seed will be identical for different instances that
|
||||
|
// call this setup code within the same millisecond.
|
||||
|
uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis()); |
||||
|
srandom(static_cast<unsigned int>(seed)); |
||||
|
} |
||||
|
|
||||
|
|
||||
|
uint64_t OS::CpuFeaturesImpliedByPlatform() { |
||||
|
return 0; // Nothing special about cygwin
|
||||
|
} |
||||
|
|
||||
|
|
||||
|
int OS::ActivationFrameAlignment() { |
||||
|
// With gcc 4.4 the tree vectorization optimizer can generate code
|
||||
|
// that requires 16 byte alignment such as movdqa on x86.
|
||||
|
return 16; |
||||
|
} |
||||
|
|
||||
|
|
||||
|
void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) { |
||||
|
__asm__ __volatile__("" : : : "memory"); |
||||
|
// An x86 store acts as a release barrier.
|
||||
|
*ptr = value; |
||||
|
} |
||||
|
|
||||
|
const char* OS::LocalTimezone(double time) { |
||||
|
if (isnan(time)) return ""; |
||||
|
time_t tv = static_cast<time_t>(floor(time/msPerSecond)); |
||||
|
struct tm* t = localtime(&tv); |
||||
|
if (NULL == t) return ""; |
||||
|
return tzname[0]; // The location of the timezone string on Cygwin.
|
||||
|
} |
||||
|
|
||||
|
|
||||
|
double OS::LocalTimeOffset() { |
||||
|
// On Cygwin, struct tm does not contain a tm_gmtoff field.
|
||||
|
time_t utc = time(NULL); |
||||
|
ASSERT(utc != -1); |
||||
|
struct tm* loc = localtime(&utc); |
||||
|
ASSERT(loc != NULL); |
||||
|
// time - localtime includes any daylight savings offset, so subtract it.
|
||||
|
return static_cast<double>((mktime(loc) - utc) * msPerSecond - |
||||
|
(loc->tm_isdst > 0 ? 3600 * msPerSecond : 0)); |
||||
|
} |
||||
|
|
||||
|
|
||||
|
// We keep the lowest and highest addresses mapped as a quick way of
|
||||
|
// determining that pointers are outside the heap (used mostly in assertions
|
||||
|
// and verification). The estimate is conservative, ie, not all addresses in
|
||||
|
// 'allocated' space are actually allocated to our heap. The range is
|
||||
|
// [lowest, highest), inclusive on the low and and exclusive on the high end.
|
||||
|
static void* lowest_ever_allocated = reinterpret_cast<void*>(-1); |
||||
|
static void* highest_ever_allocated = reinterpret_cast<void*>(0); |
||||
|
|
||||
|
|
||||
|
static void UpdateAllocatedSpaceLimits(void* address, int size) { |
||||
|
lowest_ever_allocated = Min(lowest_ever_allocated, address); |
||||
|
highest_ever_allocated = |
||||
|
Max(highest_ever_allocated, |
||||
|
reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size)); |
||||
|
} |
||||
|
|
||||
|
|
||||
|
bool OS::IsOutsideAllocatedSpace(void* address) { |
||||
|
return address < lowest_ever_allocated || address >= highest_ever_allocated; |
||||
|
} |
||||
|
|
||||
|
|
||||
|
size_t OS::AllocateAlignment() { |
||||
|
return sysconf(_SC_PAGESIZE); |
||||
|
} |
||||
|
|
||||
|
|
||||
|
void* OS::Allocate(const size_t requested, |
||||
|
size_t* allocated, |
||||
|
bool is_executable) { |
||||
|
const size_t msize = RoundUp(requested, sysconf(_SC_PAGESIZE)); |
||||
|
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); |
||||
|
void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); |
||||
|
if (mbase == MAP_FAILED) { |
||||
|
LOG(StringEvent("OS::Allocate", "mmap failed")); |
||||
|
return NULL; |
||||
|
} |
||||
|
*allocated = msize; |
||||
|
UpdateAllocatedSpaceLimits(mbase, msize); |
||||
|
return mbase; |
||||
|
} |
||||
|
|
||||
|
|
||||
|
void OS::Free(void* address, const size_t size) { |
||||
|
// TODO(1240712): munmap has a return value which is ignored here.
|
||||
|
int result = munmap(address, size); |
||||
|
USE(result); |
||||
|
ASSERT(result == 0); |
||||
|
} |
||||
|
|
||||
|
|
||||
|
#ifdef ENABLE_HEAP_PROTECTION |
||||
|
|
||||
|
void OS::Protect(void* address, size_t size) { |
||||
|
// TODO(1240712): mprotect has a return value which is ignored here.
|
||||
|
mprotect(address, size, PROT_READ); |
||||
|
} |
||||
|
|
||||
|
|
||||
|
void OS::Unprotect(void* address, size_t size, bool is_executable) { |
||||
|
// TODO(1240712): mprotect has a return value which is ignored here.
|
||||
|
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); |
||||
|
mprotect(address, size, prot); |
||||
|
} |
||||
|
|
||||
|
#endif |
||||
|
|
||||
|
|
||||
|
void OS::Sleep(int milliseconds) { |
||||
|
unsigned int ms = static_cast<unsigned int>(milliseconds); |
||||
|
usleep(1000 * ms); |
||||
|
} |
||||
|
|
||||
|
|
||||
|
void OS::Abort() { |
||||
|
// Redirect to std abort to signal abnormal program termination.
|
||||
|
abort(); |
||||
|
} |
||||
|
|
||||
|
|
||||
|
void OS::DebugBreak() { |
||||
|
asm("int $3"); |
||||
|
} |
||||
|
|
||||
|
|
||||
|
class PosixMemoryMappedFile : public OS::MemoryMappedFile { |
||||
|
public: |
||||
|
PosixMemoryMappedFile(FILE* file, void* memory, int size) |
||||
|
: file_(file), memory_(memory), size_(size) { } |
||||
|
virtual ~PosixMemoryMappedFile(); |
||||
|
virtual void* memory() { return memory_; } |
||||
|
virtual int size() { return size_; } |
||||
|
private: |
||||
|
FILE* file_; |
||||
|
void* memory_; |
||||
|
int size_; |
||||
|
}; |
||||
|
|
||||
|
|
||||
|
OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) { |
||||
|
FILE* file = fopen(name, "w+"); |
||||
|
if (file == NULL) return NULL; |
||||
|
|
||||
|
fseek(file, 0, SEEK_END); |
||||
|
int size = ftell(file); |
||||
|
|
||||
|
void* memory = |
||||
|
mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0); |
||||
|
return new PosixMemoryMappedFile(file, memory, size); |
||||
|
} |
||||
|
|
||||
|
|
||||
|
OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size, |
||||
|
void* initial) { |
||||
|
FILE* file = fopen(name, "w+"); |
||||
|
if (file == NULL) return NULL; |
||||
|
int result = fwrite(initial, size, 1, file); |
||||
|
if (result < 1) { |
||||
|
fclose(file); |
||||
|
return NULL; |
||||
|
} |
||||
|
void* memory = |
||||
|
mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0); |
||||
|
return new PosixMemoryMappedFile(file, memory, size); |
||||
|
} |
||||
|
|
||||
|
|
||||
|
PosixMemoryMappedFile::~PosixMemoryMappedFile() { |
||||
|
if (memory_) munmap(memory_, size_); |
||||
|
fclose(file_); |
||||
|
} |
||||
|
|
||||
|
|
||||
|
void OS::LogSharedLibraryAddresses() { |
||||
|
#ifdef ENABLE_LOGGING_AND_PROFILING |
||||
|
// This function assumes that the layout of the file is as follows:
|
||||
|
// hex_start_addr-hex_end_addr rwxp <unused data> [binary_file_name]
|
||||
|
// If we encounter an unexpected situation we abort scanning further entries.
|
||||
|
FILE* fp = fopen("/proc/self/maps", "r"); |
||||
|
if (fp == NULL) return; |
||||
|
|
||||
|
// Allocate enough room to be able to store a full file name.
|
||||
|
const int kLibNameLen = FILENAME_MAX + 1; |
||||
|
char* lib_name = reinterpret_cast<char*>(malloc(kLibNameLen)); |
||||
|
|
||||
|
// This loop will terminate once the scanning hits an EOF.
|
||||
|
while (true) { |
||||
|
uintptr_t start, end; |
||||
|
char attr_r, attr_w, attr_x, attr_p; |
||||
|
// Parse the addresses and permission bits at the beginning of the line.
|
||||
|
if (fscanf(fp, "%" V8PRIxPTR "-%" V8PRIxPTR, &start, &end) != 2) break; |
||||
|
if (fscanf(fp, " %c%c%c%c", &attr_r, &attr_w, &attr_x, &attr_p) != 4) break; |
||||
|
|
||||
|
int c; |
||||
|
if (attr_r == 'r' && attr_w != 'w' && attr_x == 'x') { |
||||
|
// Found a read-only executable entry. Skip characters until we reach
|
||||
|
// the beginning of the filename or the end of the line.
|
||||
|
do { |
||||
|
c = getc(fp); |
||||
|
} while ((c != EOF) && (c != '\n') && (c != '/')); |
||||
|
if (c == EOF) break; // EOF: Was unexpected, just exit.
|
||||
|
|
||||
|
// Process the filename if found.
|
||||
|
if (c == '/') { |
||||
|
ungetc(c, fp); // Push the '/' back into the stream to be read below.
|
||||
|
|
||||
|
// Read to the end of the line. Exit if the read fails.
|
||||
|
if (fgets(lib_name, kLibNameLen, fp) == NULL) break; |
||||
|
|
||||
|
// Drop the newline character read by fgets. We do not need to check
|
||||
|
// for a zero-length string because we know that we at least read the
|
||||
|
// '/' character.
|
||||
|
lib_name[strlen(lib_name) - 1] = '\0'; |
||||
|
} else { |
||||
|
// No library name found, just record the raw address range.
|
||||
|
snprintf(lib_name, kLibNameLen, |
||||
|
"%08" V8PRIxPTR "-%08" V8PRIxPTR, start, end); |
||||
|
} |
||||
|
LOG(SharedLibraryEvent(lib_name, start, end)); |
||||
|
} else { |
||||
|
// Entry not describing executable data. Skip to end of line to setup
|
||||
|
// reading the next entry.
|
||||
|
do { |
||||
|
c = getc(fp); |
||||
|
} while ((c != EOF) && (c != '\n')); |
||||
|
if (c == EOF) break; |
||||
|
} |
||||
|
} |
||||
|
free(lib_name); |
||||
|
fclose(fp); |
||||
|
#endif |
||||
|
} |
||||
|
|
||||
|
|
||||
|
void OS::SignalCodeMovingGC() { |
||||
|
// Nothing to do on Cygwin
|
||||
|
} |
||||
|
|
||||
|
|
||||
|
int OS::StackWalk(Vector<OS::StackFrame> frames) { |
||||
|
// Not supported on Cygwin
|
||||
|
return 0; |
||||
|
} |
||||
|
|
||||
|
|
||||
|
// Constants used for mmap.
|
||||
|
static const int kMmapFd = -1; |
||||
|
static const int kMmapFdOffset = 0; |
||||
|
|
||||
|
|
||||
|
VirtualMemory::VirtualMemory(size_t size) { |
||||
|
address_ = mmap(NULL, size, PROT_NONE, |
||||
|
MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE, |
||||
|
kMmapFd, kMmapFdOffset); |
||||
|
size_ = size; |
||||
|
} |
||||
|
|
||||
|
|
||||
|
VirtualMemory::~VirtualMemory() { |
||||
|
if (IsReserved()) { |
||||
|
if (0 == munmap(address(), size())) address_ = MAP_FAILED; |
||||
|
} |
||||
|
} |
||||
|
|
||||
|
|
||||
|
bool VirtualMemory::IsReserved() { |
||||
|
return address_ != MAP_FAILED; |
||||
|
} |
||||
|
|
||||
|
|
||||
|
bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) { |
||||
|
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); |
||||
|
|
||||
|
if (mprotect(address, size, prot) != 0) { |
||||
|
return false; |
||||
|
} |
||||
|
|
||||
|
UpdateAllocatedSpaceLimits(address, size); |
||||
|
return true; |
||||
|
} |
||||
|
|
||||
|
|
||||
|
bool VirtualMemory::Uncommit(void* address, size_t size) { |
||||
|
return mmap(address, size, PROT_NONE, |
||||
|
MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE, |
||||
|
kMmapFd, kMmapFdOffset) != MAP_FAILED; |
||||
|
} |
||||
|
|
||||
|
|
||||
|
class ThreadHandle::PlatformData : public Malloced { |
||||
|
public: |
||||
|
explicit PlatformData(ThreadHandle::Kind kind) { |
||||
|
Initialize(kind); |
||||
|
} |
||||
|
|
||||
|
void Initialize(ThreadHandle::Kind kind) { |
||||
|
switch (kind) { |
||||
|
case ThreadHandle::SELF: thread_ = pthread_self(); break; |
||||
|
case ThreadHandle::INVALID: thread_ = kNoThread; break; |
||||
|
} |
||||
|
} |
||||
|
|
||||
|
pthread_t thread_; // Thread handle for pthread.
|
||||
|
}; |
||||
|
|
||||
|
|
||||
|
ThreadHandle::ThreadHandle(Kind kind) { |
||||
|
data_ = new PlatformData(kind); |
||||
|
} |
||||
|
|
||||
|
|
||||
|
void ThreadHandle::Initialize(ThreadHandle::Kind kind) { |
||||
|
data_->Initialize(kind); |
||||
|
} |
||||
|
|
||||
|
|
||||
|
ThreadHandle::~ThreadHandle() { |
||||
|
delete data_; |
||||
|
} |
||||
|
|
||||
|
|
||||
|
bool ThreadHandle::IsSelf() const { |
||||
|
return pthread_equal(data_->thread_, pthread_self()); |
||||
|
} |
||||
|
|
||||
|
|
||||
|
bool ThreadHandle::IsValid() const { |
||||
|
return data_->thread_ != kNoThread; |
||||
|
} |
||||
|
|
||||
|
|
||||
|
Thread::Thread() : ThreadHandle(ThreadHandle::INVALID) { |
||||
|
set_name("v8:<unknown>"); |
||||
|
} |
||||
|
|
||||
|
|
||||
|
Thread::Thread(const char* name) : ThreadHandle(ThreadHandle::INVALID) { |
||||
|
set_name(name); |
||||
|
} |
||||
|
|
||||
|
|
||||
|
Thread::~Thread() { |
||||
|
} |
||||
|
|
||||
|
|
||||
|
static void* ThreadEntry(void* arg) { |
||||
|
Thread* thread = reinterpret_cast<Thread*>(arg); |
||||
|
// This is also initialized by the first argument to pthread_create() but we
|
||||
|
// don't know which thread will run first (the original thread or the new
|
||||
|
// one) so we initialize it here too.
|
||||
|
thread->thread_handle_data()->thread_ = pthread_self(); |
||||
|
ASSERT(thread->IsValid()); |
||||
|
thread->Run(); |
||||
|
return NULL; |
||||
|
} |
||||
|
|
||||
|
|
||||
|
void Thread::set_name(const char* name) { |
||||
|
strncpy(name_, name, sizeof(name_)); |
||||
|
name_[sizeof(name_) - 1] = '\0'; |
||||
|
} |
||||
|
|
||||
|
|
||||
|
void Thread::Start() { |
||||
|
pthread_create(&thread_handle_data()->thread_, NULL, ThreadEntry, this); |
||||
|
ASSERT(IsValid()); |
||||
|
} |
||||
|
|
||||
|
|
||||
|
void Thread::Join() { |
||||
|
pthread_join(thread_handle_data()->thread_, NULL); |
||||
|
} |
||||
|
|
||||
|
|
||||
|
Thread::LocalStorageKey Thread::CreateThreadLocalKey() { |
||||
|
pthread_key_t key; |
||||
|
int result = pthread_key_create(&key, NULL); |
||||
|
USE(result); |
||||
|
ASSERT(result == 0); |
||||
|
return static_cast<LocalStorageKey>(key); |
||||
|
} |
||||
|
|
||||
|
|
||||
|
void Thread::DeleteThreadLocalKey(LocalStorageKey key) { |
||||
|
pthread_key_t pthread_key = static_cast<pthread_key_t>(key); |
||||
|
int result = pthread_key_delete(pthread_key); |
||||
|
USE(result); |
||||
|
ASSERT(result == 0); |
||||
|
} |
||||
|
|
||||
|
|
||||
|
void* Thread::GetThreadLocal(LocalStorageKey key) { |
||||
|
pthread_key_t pthread_key = static_cast<pthread_key_t>(key); |
||||
|
return pthread_getspecific(pthread_key); |
||||
|
} |
||||
|
|
||||
|
|
||||
|
void Thread::SetThreadLocal(LocalStorageKey key, void* value) { |
||||
|
pthread_key_t pthread_key = static_cast<pthread_key_t>(key); |
||||
|
pthread_setspecific(pthread_key, value); |
||||
|
} |
||||
|
|
||||
|
|
||||
|
void Thread::YieldCPU() { |
||||
|
sched_yield(); |
||||
|
} |
||||
|
|
||||
|
|
||||
|
class CygwinMutex : public Mutex { |
||||
|
public: |
||||
|
|
||||
|
CygwinMutex() { |
||||
|
pthread_mutexattr_t attrs; |
||||
|
memset(&attrs, 0, sizeof(attrs)); |
||||
|
|
||||
|
int result = pthread_mutexattr_init(&attrs); |
||||
|
ASSERT(result == 0); |
||||
|
result = pthread_mutexattr_settype(&attrs, PTHREAD_MUTEX_RECURSIVE); |
||||
|
ASSERT(result == 0); |
||||
|
result = pthread_mutex_init(&mutex_, &attrs); |
||||
|
ASSERT(result == 0); |
||||
|
} |
||||
|
|
||||
|
virtual ~CygwinMutex() { pthread_mutex_destroy(&mutex_); } |
||||
|
|
||||
|
virtual int Lock() { |
||||
|
int result = pthread_mutex_lock(&mutex_); |
||||
|
return result; |
||||
|
} |
||||
|
|
||||
|
virtual int Unlock() { |
||||
|
int result = pthread_mutex_unlock(&mutex_); |
||||
|
return result; |
||||
|
} |
||||
|
|
||||
|
virtual bool TryLock() { |
||||
|
int result = pthread_mutex_trylock(&mutex_); |
||||
|
// Return false if the lock is busy and locking failed.
|
||||
|
if (result == EBUSY) { |
||||
|
return false; |
||||
|
} |
||||
|
ASSERT(result == 0); // Verify no other errors.
|
||||
|
return true; |
||||
|
} |
||||
|
|
||||
|
private: |
||||
|
pthread_mutex_t mutex_; // Pthread mutex for POSIX platforms.
|
||||
|
}; |
||||
|
|
||||
|
|
||||
|
Mutex* OS::CreateMutex() { |
||||
|
return new CygwinMutex(); |
||||
|
} |
||||
|
|
||||
|
|
||||
|
class CygwinSemaphore : public Semaphore { |
||||
|
public: |
||||
|
explicit CygwinSemaphore(int count) { sem_init(&sem_, 0, count); } |
||||
|
virtual ~CygwinSemaphore() { sem_destroy(&sem_); } |
||||
|
|
||||
|
virtual void Wait(); |
||||
|
virtual bool Wait(int timeout); |
||||
|
virtual void Signal() { sem_post(&sem_); } |
||||
|
private: |
||||
|
sem_t sem_; |
||||
|
}; |
||||
|
|
||||
|
|
||||
|
void CygwinSemaphore::Wait() { |
||||
|
while (true) { |
||||
|
int result = sem_wait(&sem_); |
||||
|
if (result == 0) return; // Successfully got semaphore.
|
||||
|
CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
|
||||
|
} |
||||
|
} |
||||
|
|
||||
|
|
||||
|
#ifndef TIMEVAL_TO_TIMESPEC |
||||
|
#define TIMEVAL_TO_TIMESPEC(tv, ts) do { \ |
||||
|
(ts)->tv_sec = (tv)->tv_sec; \ |
||||
|
(ts)->tv_nsec = (tv)->tv_usec * 1000; \ |
||||
|
} while (false) |
||||
|
#endif |
||||
|
|
||||
|
|
||||
|
bool CygwinSemaphore::Wait(int timeout) { |
||||
|
const long kOneSecondMicros = 1000000; // NOLINT
|
||||
|
|
||||
|
// Split timeout into second and nanosecond parts.
|
||||
|
struct timeval delta; |
||||
|
delta.tv_usec = timeout % kOneSecondMicros; |
||||
|
delta.tv_sec = timeout / kOneSecondMicros; |
||||
|
|
||||
|
struct timeval current_time; |
||||
|
// Get the current time.
|
||||
|
if (gettimeofday(¤t_time, NULL) == -1) { |
||||
|
return false; |
||||
|
} |
||||
|
|
||||
|
// Calculate time for end of timeout.
|
||||
|
struct timeval end_time; |
||||
|
timeradd(¤t_time, &delta, &end_time); |
||||
|
|
||||
|
struct timespec ts; |
||||
|
TIMEVAL_TO_TIMESPEC(&end_time, &ts); |
||||
|
// Wait for semaphore signalled or timeout.
|
||||
|
while (true) { |
||||
|
int result = sem_timedwait(&sem_, &ts); |
||||
|
if (result == 0) return true; // Successfully got semaphore.
|
||||
|
if (result == -1 && errno == ETIMEDOUT) return false; // Timeout.
|
||||
|
CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
|
||||
|
} |
||||
|
} |
||||
|
|
||||
|
|
||||
|
Semaphore* OS::CreateSemaphore(int count) { |
||||
|
return new CygwinSemaphore(count); |
||||
|
} |
||||
|
|
||||
|
|
||||
|
#ifdef ENABLE_LOGGING_AND_PROFILING |
||||
|
|
||||
|
// ----------------------------------------------------------------------------
|
||||
|
// Cygwin profiler support.
|
||||
|
//
|
||||
|
// On cygwin we use the same sampler implementation as on win32
|
||||
|
|
||||
|
class Sampler::PlatformData : public Malloced { |
||||
|
public: |
||||
|
explicit PlatformData(Sampler* sampler) { |
||||
|
sampler_ = sampler; |
||||
|
sampler_thread_ = INVALID_HANDLE_VALUE; |
||||
|
profiled_thread_ = INVALID_HANDLE_VALUE; |
||||
|
} |
||||
|
|
||||
|
Sampler* sampler_; |
||||
|
HANDLE sampler_thread_; |
||||
|
HANDLE profiled_thread_; |
||||
|
RuntimeProfilerRateLimiter rate_limiter_; |
||||
|
|
||||
|
// Sampler thread handler.
|
||||
|
void Runner() { |
||||
|
while (sampler_->IsActive()) { |
||||
|
if (rate_limiter_.SuspendIfNecessary()) continue; |
||||
|
Sample(); |
||||
|
Sleep(sampler_->interval_); |
||||
|
} |
||||
|
} |
||||
|
|
||||
|
void Sample() { |
||||
|
if (sampler_->IsProfiling()) { |
||||
|
// Context used for sampling the register state of the profiled thread.
|
||||
|
CONTEXT context; |
||||
|
memset(&context, 0, sizeof(context)); |
||||
|
|
||||
|
TickSample sample_obj; |
||||
|
TickSample* sample = CpuProfiler::TickSampleEvent(); |
||||
|
if (sample == NULL) sample = &sample_obj; |
||||
|
|
||||
|
static const DWORD kSuspendFailed = static_cast<DWORD>(-1); |
||||
|
if (SuspendThread(profiled_thread_) == kSuspendFailed) return; |
||||
|
sample->state = Top::current_vm_state(); |
||||
|
|
||||
|
context.ContextFlags = CONTEXT_FULL; |
||||
|
if (GetThreadContext(profiled_thread_, &context) != 0) { |
||||
|
#if V8_HOST_ARCH_X64 |
||||
|
sample->pc = reinterpret_cast<Address>(context.Rip); |
||||
|
sample->sp = reinterpret_cast<Address>(context.Rsp); |
||||
|
sample->fp = reinterpret_cast<Address>(context.Rbp); |
||||
|
#else |
||||
|
sample->pc = reinterpret_cast<Address>(context.Eip); |
||||
|
sample->sp = reinterpret_cast<Address>(context.Esp); |
||||
|
sample->fp = reinterpret_cast<Address>(context.Ebp); |
||||
|
#endif |
||||
|
sampler_->SampleStack(sample); |
||||
|
sampler_->Tick(sample); |
||||
|
} |
||||
|
ResumeThread(profiled_thread_); |
||||
|
} |
||||
|
if (RuntimeProfiler::IsEnabled()) RuntimeProfiler::NotifyTick(); |
||||
|
} |
||||
|
}; |
||||
|
|
||||
|
|
||||
|
// Entry point for sampler thread.
|
||||
|
static DWORD __stdcall SamplerEntry(void* arg) { |
||||
|
Sampler::PlatformData* data = |
||||
|
reinterpret_cast<Sampler::PlatformData*>(arg); |
||||
|
data->Runner(); |
||||
|
return 0; |
||||
|
} |
||||
|
|
||||
|
|
||||
|
// Initialize a profile sampler.
|
||||
|
Sampler::Sampler(int interval) |
||||
|
: interval_(interval), |
||||
|
profiling_(false), |
||||
|
active_(false), |
||||
|
samples_taken_(0) { |
||||
|
data_ = new PlatformData(this); |
||||
|
} |
||||
|
|
||||
|
|
||||
|
Sampler::~Sampler() { |
||||
|
delete data_; |
||||
|
} |
||||
|
|
||||
|
|
||||
|
// Start profiling.
|
||||
|
void Sampler::Start() { |
||||
|
// Do not start multiple threads for the same sampler.
|
||||
|
ASSERT(!IsActive()); |
||||
|
|
||||
|
// Get a handle to the calling thread. This is the thread that we are
|
||||
|
// going to profile. We need to make a copy of the handle because we are
|
||||
|
// going to use it in the sampler thread. Using GetThreadHandle() will
|
||||
|
// not work in this case. We're using OpenThread because DuplicateHandle
|
||||
|
// for some reason doesn't work in Chrome's sandbox.
|
||||
|
data_->profiled_thread_ = OpenThread(THREAD_GET_CONTEXT | |
||||
|
THREAD_SUSPEND_RESUME | |
||||
|
THREAD_QUERY_INFORMATION, |
||||
|
false, |
||||
|
GetCurrentThreadId()); |
||||
|
BOOL ok = data_->profiled_thread_ != NULL; |
||||
|
if (!ok) return; |
||||
|
|
||||
|
// Start sampler thread.
|
||||
|
DWORD tid; |
||||
|
SetActive(true); |
||||
|
data_->sampler_thread_ = CreateThread(NULL, 0, SamplerEntry, data_, 0, |
||||
|
&tid); |
||||
|
// Set thread to high priority to increase sampling accuracy.
|
||||
|
SetThreadPriority(data_->sampler_thread_, THREAD_PRIORITY_TIME_CRITICAL); |
||||
|
} |
||||
|
|
||||
|
|
||||
|
// Stop profiling.
|
||||
|
void Sampler::Stop() { |
||||
|
// Seting active to false triggers termination of the sampler
|
||||
|
// thread.
|
||||
|
SetActive(false); |
||||
|
|
||||
|
// Wait for sampler thread to terminate.
|
||||
|
Top::WakeUpRuntimeProfilerThreadBeforeShutdown(); |
||||
|
WaitForSingleObject(data_->sampler_thread_, INFINITE); |
||||
|
|
||||
|
// Release the thread handles
|
||||
|
CloseHandle(data_->sampler_thread_); |
||||
|
CloseHandle(data_->profiled_thread_); |
||||
|
} |
||||
|
|
||||
|
|
||||
|
#endif // ENABLE_LOGGING_AND_PROFILING
|
||||
|
|
||||
|
} } // namespace v8::internal
|
||||
|
|
Loading…
Reference in new issue