This is only relevant for CentOS 6.3 using kernel version 2.6.32.
On other linuxes and darwin, the `read` call gets an ECONNRESET in that
case. On sunos, the `write` call fails with EPIPE.
However, old CentOS will occasionally send an EOF instead of a
ECONNRESET or EPIPE when the client has been destroyed abruptly.
Make sure we don't keep trying to write or read more in that case.
Fixes#5504
However, there is still the question of what libuv should do when it
gets an EOF. Apparently in this case, it will continue trying to read,
which is almost certainly the wrong thing to do.
That should be fixed in libuv, even though this works around the issue.
In cases where there are multiple @-chars in a url, Node currently
parses the hostname and auth sections differently than web browsers.
This part of the bug is serious, and should be landed in v0.10, and
also ported to v0.8, and releases made as soon as possible.
The less serious issue is that there are many other sorts of malformed
urls which Node either accepts when it should reject, or interprets
differently than web browsers. For example, `http://a.com*foo` is
interpreted by Node like `http://a.com/*foo` when web browsers treat
this as `http://a.com%3Bfoo/`.
In general, *only* the `hostEndingChars` should be the characters that
delimit the host portion of the URL. Most of the current `nonHostChars`
that appear in the hostname should be escaped, but some of them (such as
`;` and `%` when it does not introduce a hex pair) should raise an
error.
We need to have a broader discussion about whether it's best to throw in
these cases, and potentially break extant programs, or return an object
that has every field set to `null` so that any attempt to read the
hostname/auth/etc. will appear to be empty.
In some cases, the http CONNECT/Upgrade API is unshifting an empty
bodyHead buffer onto the socket.
Normally, stream.unshift(chunk) does not set state.reading=false.
However, this check was not being done for the case when the chunk was
empty (either `''` or `Buffer(0)`), and as a result, it was causing the
socket to think that a read had completed, and to stop providing data.
This bug is not limited to http or web sockets, but rather would affect
any parser that unshifts data back onto the source stream without being
very careful to never unshift an empty chunk. Since the intent of
unshift is to *not* change the state.reading property, this is a bug.
Fixes#5557FixesLearnBoost/socket.io#1242
Before this, entering something like:
> JSON.parse('066');
resulted in the "..." prompt instead of displaying the expected
"SyntaxError: Unexpected number"
1. Emit `sslOutEnd` only when `_internallyPendingBytes() === 0`.
2. Read before checking `._halfRead`, otherwise we'll see only previous
value, and will invoke `._write` callback improperly.
3. Wait for both `end` and `finish` events in `.destroySoon`.
4. Unpipe encrypted stream from socket to prevent write after destroy.
Stream's `._write()` callback should be invoked only after it's opposite
stream has finished processing incoming data, otherwise `finish` event
fires too early and connection might be closed while there's some data
to send to the client.
see #5544
Quote from SSL_shutdown man page:
The output of SSL_get_error(3) may be misleading,
as an erroneous SSL_ERROR_SYSCALL may be flagged even though
no error occurred.
Also, handle all other errors to prevent assertion in `ClearError()`.
When writing bad data to EncryptedStream it'll first get to the
ClientHello parser, and, only after it will refuse it, to the OpenSSL.
But ClientHello parser has limited buffer and therefore write could
return `bytes_written` < `incoming_bytes`, which is not the case when
working with OpenSSL.
After such errors ClientHello parser disables itself and will
pass-through all data to the OpenSSL. So just trying to write data one
more time will throw the rest into OpenSSL and let it handle it.
Otherwise, writing an empty string causes the whole program to grind to
a halt when piping data into http messages.
This wasn't as much of a problem (though it WAS a bug) in 0.8 and
before, because our hyperactive 'drain' behavior would mean that some
*previous* write() would probably have a pending drain event, and cause
things to start moving again.
This commit adds an optimization to the HTTP client that makes it
possible to:
* Pack the headers and the first chunk of the request body into a
single write().
* Pack the chunk header and the chunk itself into a single write().
Because only one write() system call is issued instead of several,
the chances of data ending up in a single TCP packet are phenomenally
higher: the benchmark with `type=buf size=32` jumps from 50 req/s to
7,500 req/s, a 150-fold increase.
This commit removes the check from e4b716ef that pushes binary encoded
strings into the slow path. The commit log mentions that:
We were assuming that any string can be concatenated safely to
CRLF. However, for hex, base64, or binary encoded writes, this
is not the case, and results in sending the incorrect response.
For hex and base64 strings that's certainly true but binary strings
are 'das Ding an sich': string.length is the same before and after
decoding.
Fixes#5528.
Consider a user on his Mac, who wants to cross-compile for his Linux ARM device:
./configure --dest-cpu=arm --dest-os=linux
Before this patch, for example, DTrace probes would incorrectly attempt to be
enabled because the configure script is running on a MacOS machine, even though
we're trying to compile a binary for `linux`.
With this patch, the `--dest-os` flag is respected throughout the configure
script, thus leaving DTrace probes disabled in this cross-compiling scenario.