mirror of https://github.com/lukechilds/node.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
247 lines
8.8 KiB
247 lines
8.8 KiB
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "v8.h"
|
|
#include "accessors.h"
|
|
|
|
#include "cctest.h"
|
|
|
|
|
|
using namespace v8::internal;
|
|
|
|
|
|
// Also used in test-heap.cc test cases.
|
|
void SimulateFullSpace(PagedSpace* space) {
|
|
int old_linear_size = static_cast<int>(space->limit() - space->top());
|
|
space->Free(space->top(), old_linear_size);
|
|
space->SetTop(space->limit(), space->limit());
|
|
space->ResetFreeList();
|
|
space->ClearStats();
|
|
}
|
|
|
|
|
|
static MaybeObject* AllocateAfterFailures() {
|
|
static int attempts = 0;
|
|
if (++attempts < 3) return Failure::RetryAfterGC();
|
|
Heap* heap = Isolate::Current()->heap();
|
|
|
|
// New space.
|
|
NewSpace* new_space = heap->new_space();
|
|
static const int kNewSpaceFillerSize = ByteArray::SizeFor(0);
|
|
while (new_space->Available() > kNewSpaceFillerSize) {
|
|
int available_before = static_cast<int>(new_space->Available());
|
|
CHECK(!heap->AllocateByteArray(0)->IsFailure());
|
|
if (available_before == new_space->Available()) {
|
|
// It seems that we are avoiding new space allocations when
|
|
// allocation is forced, so no need to fill up new space
|
|
// in order to make the test harder.
|
|
break;
|
|
}
|
|
}
|
|
CHECK(!heap->AllocateByteArray(100)->IsFailure());
|
|
CHECK(!heap->AllocateFixedArray(100, NOT_TENURED)->IsFailure());
|
|
|
|
// Make sure we can allocate through optimized allocation functions
|
|
// for specific kinds.
|
|
CHECK(!heap->AllocateFixedArray(100)->IsFailure());
|
|
CHECK(!heap->AllocateHeapNumber(0.42)->IsFailure());
|
|
CHECK(!heap->AllocateArgumentsObject(Smi::FromInt(87), 10)->IsFailure());
|
|
Object* object = heap->AllocateJSObject(
|
|
*Isolate::Current()->object_function())->ToObjectChecked();
|
|
CHECK(!heap->CopyJSObject(JSObject::cast(object))->IsFailure());
|
|
|
|
// Old data space.
|
|
SimulateFullSpace(heap->old_data_space());
|
|
CHECK(!heap->AllocateRawAsciiString(100, TENURED)->IsFailure());
|
|
|
|
// Old pointer space.
|
|
SimulateFullSpace(heap->old_pointer_space());
|
|
CHECK(!heap->AllocateFixedArray(10000, TENURED)->IsFailure());
|
|
|
|
// Large object space.
|
|
static const int kLargeObjectSpaceFillerLength = 300000;
|
|
static const int kLargeObjectSpaceFillerSize = FixedArray::SizeFor(
|
|
kLargeObjectSpaceFillerLength);
|
|
ASSERT(kLargeObjectSpaceFillerSize > heap->old_pointer_space()->AreaSize());
|
|
while (heap->OldGenerationSpaceAvailable() > kLargeObjectSpaceFillerSize) {
|
|
CHECK(!heap->AllocateFixedArray(kLargeObjectSpaceFillerLength, TENURED)->
|
|
IsFailure());
|
|
}
|
|
CHECK(!heap->AllocateFixedArray(kLargeObjectSpaceFillerLength, TENURED)->
|
|
IsFailure());
|
|
|
|
// Map space.
|
|
SimulateFullSpace(heap->map_space());
|
|
int instance_size = JSObject::kHeaderSize;
|
|
CHECK(!heap->AllocateMap(JS_OBJECT_TYPE, instance_size)->IsFailure());
|
|
|
|
// Test that we can allocate in old pointer space and code space.
|
|
CHECK(!heap->AllocateFixedArray(100, TENURED)->IsFailure());
|
|
CHECK(!heap->CopyCode(Isolate::Current()->builtins()->builtin(
|
|
Builtins::kIllegal))->IsFailure());
|
|
|
|
// Return success.
|
|
return Smi::FromInt(42);
|
|
}
|
|
|
|
|
|
static Handle<Object> Test() {
|
|
CALL_HEAP_FUNCTION(ISOLATE, AllocateAfterFailures(), Object);
|
|
}
|
|
|
|
|
|
TEST(StressHandles) {
|
|
v8::Persistent<v8::Context> env = v8::Context::New();
|
|
v8::HandleScope scope;
|
|
env->Enter();
|
|
Handle<Object> o = Test();
|
|
CHECK(o->IsSmi() && Smi::cast(*o)->value() == 42);
|
|
env->Exit();
|
|
}
|
|
|
|
|
|
static MaybeObject* TestAccessorGet(Object* object, void*) {
|
|
return AllocateAfterFailures();
|
|
}
|
|
|
|
|
|
const AccessorDescriptor kDescriptor = {
|
|
TestAccessorGet,
|
|
0,
|
|
0
|
|
};
|
|
|
|
|
|
TEST(StressJS) {
|
|
v8::Persistent<v8::Context> env = v8::Context::New();
|
|
v8::HandleScope scope;
|
|
env->Enter();
|
|
Handle<JSFunction> function =
|
|
FACTORY->NewFunction(FACTORY->function_symbol(), FACTORY->null_value());
|
|
// Force the creation of an initial map and set the code to
|
|
// something empty.
|
|
FACTORY->NewJSObject(function);
|
|
function->ReplaceCode(Isolate::Current()->builtins()->builtin(
|
|
Builtins::kEmptyFunction));
|
|
// Patch the map to have an accessor for "get".
|
|
Handle<Map> map(function->initial_map());
|
|
Handle<DescriptorArray> instance_descriptors(map->instance_descriptors());
|
|
Handle<Foreign> foreign = FACTORY->NewForeign(&kDescriptor);
|
|
Handle<String> name =
|
|
FACTORY->NewStringFromAscii(Vector<const char>("get", 3));
|
|
ASSERT(instance_descriptors->IsEmpty());
|
|
|
|
Handle<DescriptorArray> new_descriptors = FACTORY->NewDescriptorArray(0, 1);
|
|
|
|
v8::internal::DescriptorArray::WhitenessWitness witness(*new_descriptors);
|
|
map->set_instance_descriptors(*new_descriptors);
|
|
|
|
CallbacksDescriptor d(*name,
|
|
*foreign,
|
|
static_cast<PropertyAttributes>(0),
|
|
v8::internal::PropertyDetails::kInitialIndex);
|
|
map->AppendDescriptor(&d, witness);
|
|
|
|
// Add the Foo constructor the global object.
|
|
env->Global()->Set(v8::String::New("Foo"), v8::Utils::ToLocal(function));
|
|
// Call the accessor through JavaScript.
|
|
v8::Handle<v8::Value> result =
|
|
v8::Script::Compile(v8::String::New("(new Foo).get"))->Run();
|
|
CHECK_EQ(42, result->Int32Value());
|
|
env->Exit();
|
|
}
|
|
|
|
|
|
// CodeRange test.
|
|
// Tests memory management in a CodeRange by allocating and freeing blocks,
|
|
// using a pseudorandom generator to choose block sizes geometrically
|
|
// distributed between 2 * Page::kPageSize and 2^5 + 1 * Page::kPageSize.
|
|
// Ensure that the freed chunks are collected and reused by allocating (in
|
|
// total) more than the size of the CodeRange.
|
|
|
|
// This pseudorandom generator does not need to be particularly good.
|
|
// Use the lower half of the V8::Random() generator.
|
|
unsigned int Pseudorandom() {
|
|
static uint32_t lo = 2345;
|
|
lo = 18273 * (lo & 0xFFFF) + (lo >> 16); // Provably not 0.
|
|
return lo & 0xFFFF;
|
|
}
|
|
|
|
|
|
// Plain old data class. Represents a block of allocated memory.
|
|
class Block {
|
|
public:
|
|
Block(Address base_arg, int size_arg)
|
|
: base(base_arg), size(size_arg) {}
|
|
|
|
Address base;
|
|
int size;
|
|
};
|
|
|
|
|
|
TEST(CodeRange) {
|
|
const int code_range_size = 32*MB;
|
|
OS::SetUp();
|
|
Isolate::Current()->InitializeLoggingAndCounters();
|
|
CodeRange* code_range = new CodeRange(Isolate::Current());
|
|
code_range->SetUp(code_range_size);
|
|
int current_allocated = 0;
|
|
int total_allocated = 0;
|
|
List<Block> blocks(1000);
|
|
|
|
while (total_allocated < 5 * code_range_size) {
|
|
if (current_allocated < code_range_size / 10) {
|
|
// Allocate a block.
|
|
// Geometrically distributed sizes, greater than
|
|
// Page::kMaxNonCodeHeapObjectSize (which is greater than code page area).
|
|
// TODO(gc): instead of using 3 use some contant based on code_range_size
|
|
// kMaxHeapObjectSize.
|
|
size_t requested =
|
|
(Page::kMaxNonCodeHeapObjectSize << (Pseudorandom() % 3)) +
|
|
Pseudorandom() % 5000 + 1;
|
|
size_t allocated = 0;
|
|
Address base = code_range->AllocateRawMemory(requested, &allocated);
|
|
CHECK(base != NULL);
|
|
blocks.Add(Block(base, static_cast<int>(allocated)));
|
|
current_allocated += static_cast<int>(allocated);
|
|
total_allocated += static_cast<int>(allocated);
|
|
} else {
|
|
// Free a block.
|
|
int index = Pseudorandom() % blocks.length();
|
|
code_range->FreeRawMemory(blocks[index].base, blocks[index].size);
|
|
current_allocated -= blocks[index].size;
|
|
if (index < blocks.length() - 1) {
|
|
blocks[index] = blocks.RemoveLast();
|
|
} else {
|
|
blocks.RemoveLast();
|
|
}
|
|
}
|
|
}
|
|
|
|
code_range->TearDown();
|
|
delete code_range;
|
|
}
|
|
|