You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

771 lines
26 KiB

// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "codegen-inl.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void Builtins::Generate_Adaptor(MacroAssembler* masm, CFunctionId id) {
// TODO(1238487): Don't pass the function in a static variable.
ExternalReference passed = ExternalReference::builtin_passed_function();
__ mov(Operand::StaticVariable(passed), edi);
// The actual argument count has already been loaded into register
// eax, but JumpToBuiltin expects eax to contain the number of
// arguments including the receiver.
__ inc(eax);
__ JumpToBuiltin(ExternalReference(id));
}
void Builtins::Generate_JSConstructCall(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax: number of arguments
// -- edi: constructor function
// -----------------------------------
Label non_function_call;
// Check that function is not a smi.
__ test(edi, Immediate(kSmiTagMask));
__ j(zero, &non_function_call);
// Check that function is a JSFunction.
__ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
__ j(not_equal, &non_function_call);
// Enter a construct frame.
__ EnterConstructFrame();
// Store a smi-tagged arguments count on the stack.
__ shl(eax, kSmiTagSize);
__ push(eax);
// Push the function to invoke on the stack.
__ push(edi);
// Try to allocate the object without transitioning into C code. If any of the
// preconditions is not met, the code bails out to the runtime call.
Label rt_call, allocated;
if (FLAG_inline_new) {
Label undo_allocation;
#ifdef ENABLE_DEBUGGER_SUPPORT
ExternalReference debug_step_in_fp =
ExternalReference::debug_step_in_fp_address();
__ cmp(Operand::StaticVariable(debug_step_in_fp), Immediate(0));
__ j(not_equal, &rt_call);
#endif
// Verified that the constructor is a JSFunction.
// Load the initial map and verify that it is in fact a map.
// edi: constructor
__ mov(eax, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi
__ test(eax, Immediate(kSmiTagMask));
__ j(zero, &rt_call);
// edi: constructor
// eax: initial map (if proven valid below)
__ CmpObjectType(eax, MAP_TYPE, ebx);
__ j(not_equal, &rt_call);
// Check that the constructor is not constructing a JSFunction (see comments
// in Runtime_NewObject in runtime.cc). In which case the initial map's
// instance type would be JS_FUNCTION_TYPE.
// edi: constructor
// eax: initial map
__ CmpInstanceType(eax, JS_FUNCTION_TYPE);
__ j(equal, &rt_call);
// Now allocate the JSObject on the heap.
// edi: constructor
// eax: initial map
__ movzx_b(edi, FieldOperand(eax, Map::kInstanceSizeOffset));
__ shl(edi, kPointerSizeLog2);
// Make sure that the maximum heap object size will never cause us
// problem here, because it is always greater than the maximum
// instance size that can be represented in a byte.
ASSERT(Heap::MaxHeapObjectSize() >= (1 << kBitsPerByte));
ExternalReference new_space_allocation_top =
ExternalReference::new_space_allocation_top_address();
__ mov(ebx, Operand::StaticVariable(new_space_allocation_top));
__ add(edi, Operand(ebx)); // Calculate new top
ExternalReference new_space_allocation_limit =
ExternalReference::new_space_allocation_limit_address();
__ cmp(edi, Operand::StaticVariable(new_space_allocation_limit));
__ j(greater_equal, &rt_call);
// Allocated the JSObject, now initialize the fields.
// eax: initial map
// ebx: JSObject
// edi: start of next object
__ mov(Operand(ebx, JSObject::kMapOffset), eax);
__ mov(ecx, Factory::empty_fixed_array());
__ mov(Operand(ebx, JSObject::kPropertiesOffset), ecx);
__ mov(Operand(ebx, JSObject::kElementsOffset), ecx);
// Set extra fields in the newly allocated object.
// eax: initial map
// ebx: JSObject
// edi: start of next object
{ Label loop, entry;
__ mov(edx, Factory::undefined_value());
__ lea(ecx, Operand(ebx, JSObject::kHeaderSize));
__ jmp(&entry);
__ bind(&loop);
__ mov(Operand(ecx, 0), edx);
__ add(Operand(ecx), Immediate(kPointerSize));
__ bind(&entry);
__ cmp(ecx, Operand(edi));
__ j(less, &loop);
}
// Mostly done with the JSObject. Add the heap tag and store the new top, so
// that we can continue and jump into the continuation code at any time from
// now on. Any failures need to undo the setting of the new top, so that the
// heap is in a consistent state and verifiable.
// eax: initial map
// ebx: JSObject
// edi: start of next object
__ or_(Operand(ebx), Immediate(kHeapObjectTag));
__ mov(Operand::StaticVariable(new_space_allocation_top), edi);
// Check if a properties array should be setup and allocate one if needed.
// Otherwise initialize the properties to the empty_fixed_array as well.
// eax: initial map
// ebx: JSObject
// edi: start of next object
__ movzx_b(edx, FieldOperand(eax, Map::kUnusedPropertyFieldsOffset));
__ movzx_b(ecx, FieldOperand(eax, Map::kInObjectPropertiesOffset));
// Calculate unused properties past the end of the in-object properties.
__ sub(edx, Operand(ecx));
__ test(edx, Operand(edx));
// Done if no extra properties are to be allocated.
__ j(zero, &allocated);
// Scale the number of elements by pointer size and add the header for
// FixedArrays to the start of the next object calculation from above.
// eax: initial map
// ebx: JSObject
// edi: start of next object (will be start of FixedArray)
// edx: number of elements in properties array
ASSERT(Heap::MaxHeapObjectSize() >
(FixedArray::kHeaderSize + 255*kPointerSize));
__ lea(ecx, Operand(edi, edx, times_4, FixedArray::kHeaderSize));
__ cmp(ecx, Operand::StaticVariable(new_space_allocation_limit));
__ j(greater_equal, &undo_allocation);
__ mov(Operand::StaticVariable(new_space_allocation_top), ecx);
// Initialize the FixedArray.
// ebx: JSObject
// edi: FixedArray
// edx: number of elements
// ecx: start of next object
__ mov(eax, Factory::fixed_array_map());
__ mov(Operand(edi, JSObject::kMapOffset), eax); // setup the map
__ mov(Operand(edi, Array::kLengthOffset), edx); // and length
// Initialize the fields to undefined.
// ebx: JSObject
// edi: FixedArray
// ecx: start of next object
{ Label loop, entry;
__ mov(edx, Factory::undefined_value());
__ lea(eax, Operand(edi, FixedArray::kHeaderSize));
__ jmp(&entry);
__ bind(&loop);
__ mov(Operand(eax, 0), edx);
__ add(Operand(eax), Immediate(kPointerSize));
__ bind(&entry);
__ cmp(eax, Operand(ecx));
__ j(less, &loop);
}
// Store the initialized FixedArray into the properties field of
// the JSObject
// ebx: JSObject
// edi: FixedArray
__ or_(Operand(edi), Immediate(kHeapObjectTag)); // add the heap tag
__ mov(FieldOperand(ebx, JSObject::kPropertiesOffset), edi);
// Continue with JSObject being successfully allocated
// ebx: JSObject
__ jmp(&allocated);
// Undo the setting of the new top so that the heap is verifiable. For
// example, the map's unused properties potentially do not match the
// allocated objects unused properties.
// ebx: JSObject (previous new top)
__ bind(&undo_allocation);
__ xor_(Operand(ebx), Immediate(kHeapObjectTag)); // clear the heap tag
__ mov(Operand::StaticVariable(new_space_allocation_top), ebx);
}
// Allocate the new receiver object using the runtime call.
// edi: function (constructor)
__ bind(&rt_call);
// Must restore edi (constructor) before calling runtime.
__ mov(edi, Operand(esp, 0));
__ push(edi);
__ CallRuntime(Runtime::kNewObject, 1);
__ mov(ebx, Operand(eax)); // store result in ebx
// New object allocated.
// ebx: newly allocated object
__ bind(&allocated);
// Retrieve the function from the stack.
__ pop(edi);
// Retrieve smi-tagged arguments count from the stack.
__ mov(eax, Operand(esp, 0));
__ shr(eax, kSmiTagSize);
// Push the allocated receiver to the stack. We need two copies
// because we may have to return the original one and the calling
// conventions dictate that the called function pops the receiver.
__ push(ebx);
__ push(ebx);
// Setup pointer to last argument.
__ lea(ebx, Operand(ebp, StandardFrameConstants::kCallerSPOffset));
// Copy arguments and receiver to the expression stack.
Label loop, entry;
__ mov(ecx, Operand(eax));
__ jmp(&entry);
__ bind(&loop);
__ push(Operand(ebx, ecx, times_4, 0));
__ bind(&entry);
__ dec(ecx);
__ j(greater_equal, &loop);
// Call the function.
ParameterCount actual(eax);
__ InvokeFunction(edi, actual, CALL_FUNCTION);
// Restore context from the frame.
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, exit;
// If the result is a smi, it is *not* an object in the ECMA sense.
__ test(eax, Immediate(kSmiTagMask));
__ j(zero, &use_receiver, not_taken);
// If the type of the result (stored in its map) is less than
// FIRST_JS_OBJECT_TYPE, it is not an object in the ECMA sense.
__ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
__ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
__ cmp(ecx, FIRST_JS_OBJECT_TYPE);
__ j(greater_equal, &exit, not_taken);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ bind(&use_receiver);
__ mov(eax, Operand(esp, 0));
// Restore the arguments count and leave the construct frame.
__ bind(&exit);
__ mov(ebx, Operand(esp, kPointerSize)); // get arguments count
__ LeaveConstructFrame();
// Remove caller arguments from the stack and return.
ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ pop(ecx);
__ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); // 1 ~ receiver
__ push(ecx);
__ ret(0);
// edi: called object
// eax: number of arguments
__ bind(&non_function_call);
// Set expected number of arguments to zero (not changing eax).
__ Set(ebx, Immediate(0));
__ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
__ jmp(Handle<Code>(builtin(ArgumentsAdaptorTrampoline)),
RelocInfo::CODE_TARGET);
}
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
// Clear the context before we push it when entering the JS frame.
__ xor_(esi, Operand(esi)); // clear esi
// Enter an internal frame.
__ EnterInternalFrame();
// Load the previous frame pointer (ebx) to access C arguments
__ mov(ebx, Operand(ebp, 0));
// Get the function from the frame and setup the context.
__ mov(ecx, Operand(ebx, EntryFrameConstants::kFunctionArgOffset));
__ mov(esi, FieldOperand(ecx, JSFunction::kContextOffset));
// Push the function and the receiver onto the stack.
__ push(ecx);
__ push(Operand(ebx, EntryFrameConstants::kReceiverArgOffset));
// Load the number of arguments and setup pointer to the arguments.
__ mov(eax, Operand(ebx, EntryFrameConstants::kArgcOffset));
__ mov(ebx, Operand(ebx, EntryFrameConstants::kArgvOffset));
// Copy arguments to the stack in a loop.
Label loop, entry;
__ xor_(ecx, Operand(ecx)); // clear ecx
__ jmp(&entry);
__ bind(&loop);
__ mov(edx, Operand(ebx, ecx, times_4, 0)); // push parameter from argv
__ push(Operand(edx, 0)); // dereference handle
__ inc(Operand(ecx));
__ bind(&entry);
__ cmp(ecx, Operand(eax));
__ j(not_equal, &loop);
// Get the function from the stack and call it.
__ mov(edi, Operand(esp, eax, times_4, +1 * kPointerSize)); // +1 ~ receiver
// Invoke the code.
if (is_construct) {
__ call(Handle<Code>(Builtins::builtin(Builtins::JSConstructCall)),
RelocInfo::CODE_TARGET);
} else {
ParameterCount actual(eax);
__ InvokeFunction(edi, actual, CALL_FUNCTION);
}
// Exit the JS frame. Notice that this also removes the empty
// context and the function left on the stack by the code
// invocation.
__ LeaveInternalFrame();
__ ret(1 * kPointerSize); // remove receiver
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
// 1. Make sure we have at least one argument.
{ Label done;
__ test(eax, Operand(eax));
__ j(not_zero, &done, taken);
__ pop(ebx);
__ push(Immediate(Factory::undefined_value()));
__ push(ebx);
__ inc(eax);
__ bind(&done);
}
// 2. Get the function to call from the stack.
{ Label done, non_function, function;
// +1 ~ return address.
__ mov(edi, Operand(esp, eax, times_4, +1 * kPointerSize));
__ test(edi, Immediate(kSmiTagMask));
__ j(zero, &non_function, not_taken);
__ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
__ j(equal, &function, taken);
// Non-function called: Clear the function to force exception.
__ bind(&non_function);
__ xor_(edi, Operand(edi));
__ jmp(&done);
// Function called: Change context eagerly to get the right global object.
__ bind(&function);
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
__ bind(&done);
}
// 3. Make sure first argument is an object; convert if necessary.
{ Label call_to_object, use_global_receiver, patch_receiver, done;
__ mov(ebx, Operand(esp, eax, times_4, 0));
__ test(ebx, Immediate(kSmiTagMask));
__ j(zero, &call_to_object);
__ cmp(ebx, Factory::null_value());
__ j(equal, &use_global_receiver);
__ cmp(ebx, Factory::undefined_value());
__ j(equal, &use_global_receiver);
__ mov(ecx, FieldOperand(ebx, HeapObject::kMapOffset));
__ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
__ cmp(ecx, FIRST_JS_OBJECT_TYPE);
__ j(less, &call_to_object);
__ cmp(ecx, LAST_JS_OBJECT_TYPE);
__ j(less_equal, &done);
__ bind(&call_to_object);
__ EnterInternalFrame(); // preserves eax, ebx, edi
// Store the arguments count on the stack (smi tagged).
ASSERT(kSmiTag == 0);
__ shl(eax, kSmiTagSize);
__ push(eax);
__ push(edi); // save edi across the call
__ push(ebx);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
__ mov(ebx, eax);
__ pop(edi); // restore edi after the call
// Get the arguments count and untag it.
__ pop(eax);
__ shr(eax, kSmiTagSize);
__ LeaveInternalFrame();
__ jmp(&patch_receiver);
// Use the global receiver object from the called function as the receiver.
__ bind(&use_global_receiver);
const int kGlobalIndex =
Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
__ mov(ebx, FieldOperand(esi, kGlobalIndex));
__ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalReceiverOffset));
__ bind(&patch_receiver);
__ mov(Operand(esp, eax, times_4, 0), ebx);
__ bind(&done);
}
// 4. Shift stuff one slot down the stack.
{ Label loop;
__ lea(ecx, Operand(eax, +1)); // +1 ~ copy receiver too
__ bind(&loop);
__ mov(ebx, Operand(esp, ecx, times_4, 0));
__ mov(Operand(esp, ecx, times_4, kPointerSize), ebx);
__ dec(ecx);
__ j(not_zero, &loop);
}
// 5. Remove TOS (copy of last arguments), but keep return address.
__ pop(ebx);
__ pop(ecx);
__ push(ebx);
__ dec(eax);
// 6. Check that function really was a function and get the code to
// call from the function and check that the number of expected
// arguments matches what we're providing.
{ Label invoke;
__ test(edi, Operand(edi));
__ j(not_zero, &invoke, taken);
__ xor_(ebx, Operand(ebx));
__ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION);
__ jmp(Handle<Code>(builtin(ArgumentsAdaptorTrampoline)),
RelocInfo::CODE_TARGET);
__ bind(&invoke);
__ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(ebx,
FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
__ mov(edx, FieldOperand(edx, SharedFunctionInfo::kCodeOffset));
__ lea(edx, FieldOperand(edx, Code::kHeaderSize));
__ cmp(eax, Operand(ebx));
__ j(not_equal, Handle<Code>(builtin(ArgumentsAdaptorTrampoline)));
}
// 7. Jump (tail-call) to the code in register edx without checking arguments.
ParameterCount expected(0);
__ InvokeCode(Operand(edx), expected, expected, JUMP_FUNCTION);
}
void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
__ EnterInternalFrame();
__ push(Operand(ebp, 4 * kPointerSize)); // push this
__ push(Operand(ebp, 2 * kPointerSize)); // push arguments
__ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION);
if (FLAG_check_stack) {
// We need to catch preemptions right here, otherwise an unlucky preemption
// could show up as a failed apply.
ExternalReference stack_guard_limit =
ExternalReference::address_of_stack_guard_limit();
Label retry_preemption;
Label no_preemption;
__ bind(&retry_preemption);
__ mov(edi, Operand::StaticVariable(stack_guard_limit));
__ cmp(esp, Operand(edi));
__ j(above, &no_preemption, taken);
// Preemption!
// Because builtins always remove the receiver from the stack, we
// have to fake one to avoid underflowing the stack.
__ push(eax);
__ push(Immediate(Smi::FromInt(0)));
// Do call to runtime routine.
__ CallRuntime(Runtime::kStackGuard, 1);
__ pop(eax);
__ jmp(&retry_preemption);
__ bind(&no_preemption);
Label okay;
// Make ecx the space we have left.
__ mov(ecx, Operand(esp));
__ sub(ecx, Operand(edi));
// Make edx the space we need for the array when it is unrolled onto the
// stack.
__ mov(edx, Operand(eax));
__ shl(edx, kPointerSizeLog2 - kSmiTagSize);
__ cmp(ecx, Operand(edx));
__ j(greater, &okay, taken);
// Too bad: Out of stack space.
__ push(Operand(ebp, 4 * kPointerSize)); // push this
__ push(eax);
__ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION);
__ bind(&okay);
}
// Push current index and limit.
const int kLimitOffset =
StandardFrameConstants::kExpressionsOffset - 1 * kPointerSize;
const int kIndexOffset = kLimitOffset - 1 * kPointerSize;
__ push(eax); // limit
__ push(Immediate(0)); // index
// Change context eagerly to get the right global object if
// necessary.
__ mov(edi, Operand(ebp, 4 * kPointerSize));
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
// Compute the receiver.
Label call_to_object, use_global_receiver, push_receiver;
__ mov(ebx, Operand(ebp, 3 * kPointerSize));
__ test(ebx, Immediate(kSmiTagMask));
__ j(zero, &call_to_object);
__ cmp(ebx, Factory::null_value());
__ j(equal, &use_global_receiver);
__ cmp(ebx, Factory::undefined_value());
__ j(equal, &use_global_receiver);
// If given receiver is already a JavaScript object then there's no
// reason for converting it.
__ mov(ecx, FieldOperand(ebx, HeapObject::kMapOffset));
__ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
__ cmp(ecx, FIRST_JS_OBJECT_TYPE);
__ j(less, &call_to_object);
__ cmp(ecx, LAST_JS_OBJECT_TYPE);
__ j(less_equal, &push_receiver);
// Convert the receiver to an object.
__ bind(&call_to_object);
__ push(ebx);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
__ mov(ebx, Operand(eax));
__ jmp(&push_receiver);
// Use the current global receiver object as the receiver.
__ bind(&use_global_receiver);
const int kGlobalOffset =
Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
__ mov(ebx, FieldOperand(esi, kGlobalOffset));
__ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalReceiverOffset));
// Push the receiver.
__ bind(&push_receiver);
__ push(ebx);
// Copy all arguments from the array to the stack.
Label entry, loop;
__ mov(eax, Operand(ebp, kIndexOffset));
__ jmp(&entry);
__ bind(&loop);
__ mov(ecx, Operand(ebp, 2 * kPointerSize)); // load arguments
__ push(ecx);
__ push(eax);
// Use inline caching to speed up access to arguments.
Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
__ call(ic, RelocInfo::CODE_TARGET);
// It is important that we do not have a test instruction after the
// call. A test instruction after the call is used to indicate that
// we have generated an inline version of the keyed load. In this
// case, we know that we are not generating a test instruction next.
// Remove IC arguments from the stack and push the nth argument.
__ add(Operand(esp), Immediate(2 * kPointerSize));
__ push(eax);
// Update the index on the stack and in register eax.
__ mov(eax, Operand(ebp, kIndexOffset));
__ add(Operand(eax), Immediate(1 << kSmiTagSize));
__ mov(Operand(ebp, kIndexOffset), eax);
__ bind(&entry);
__ cmp(eax, Operand(ebp, kLimitOffset));
__ j(not_equal, &loop);
// Invoke the function.
ParameterCount actual(eax);
__ shr(eax, kSmiTagSize);
__ mov(edi, Operand(ebp, 4 * kPointerSize));
__ InvokeFunction(edi, actual, CALL_FUNCTION);
__ LeaveInternalFrame();
__ ret(3 * kPointerSize); // remove this, receiver, and arguments
}
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
__ push(ebp);
__ mov(ebp, Operand(esp));
// Store the arguments adaptor context sentinel.
__ push(Immediate(ArgumentsAdaptorFrame::SENTINEL));
// Push the function on the stack.
__ push(edi);
// Preserve the number of arguments on the stack. Must preserve both
// eax and ebx because these registers are used when copying the
// arguments and the receiver.
ASSERT(kSmiTagSize == 1);
__ lea(ecx, Operand(eax, eax, times_1, kSmiTag));
__ push(ecx);
}
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// Retrieve the number of arguments from the stack.
__ mov(ebx, Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset));
// Leave the frame.
__ leave();
// Remove caller arguments from the stack.
ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ pop(ecx);
__ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); // 1 ~ receiver
__ push(ecx);
}
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : actual number of arguments
// -- ebx : expected number of arguments
// -- edx : code entry to call
// -----------------------------------
Label invoke, dont_adapt_arguments;
__ IncrementCounter(&Counters::arguments_adaptors, 1);
Label enough, too_few;
__ cmp(eax, Operand(ebx));
__ j(less, &too_few);
__ cmp(ebx, SharedFunctionInfo::kDontAdaptArgumentsSentinel);
__ j(equal, &dont_adapt_arguments);
{ // Enough parameters: Actual >= expected.
__ bind(&enough);
EnterArgumentsAdaptorFrame(masm);
// Copy receiver and all expected arguments.
const int offset = StandardFrameConstants::kCallerSPOffset;
__ lea(eax, Operand(ebp, eax, times_4, offset));
__ mov(ecx, -1); // account for receiver
Label copy;
__ bind(&copy);
__ inc(ecx);
__ push(Operand(eax, 0));
__ sub(Operand(eax), Immediate(kPointerSize));
__ cmp(ecx, Operand(ebx));
__ j(less, &copy);
__ jmp(&invoke);
}
{ // Too few parameters: Actual < expected.
__ bind(&too_few);
EnterArgumentsAdaptorFrame(masm);
// Copy receiver and all actual arguments.
const int offset = StandardFrameConstants::kCallerSPOffset;
__ lea(edi, Operand(ebp, eax, times_4, offset));
__ mov(ecx, -1); // account for receiver
Label copy;
__ bind(&copy);
__ inc(ecx);
__ push(Operand(edi, 0));
__ sub(Operand(edi), Immediate(kPointerSize));
__ cmp(ecx, Operand(eax));
__ j(less, &copy);
// Fill remaining expected arguments with undefined values.
Label fill;
__ bind(&fill);
__ inc(ecx);
__ push(Immediate(Factory::undefined_value()));
__ cmp(ecx, Operand(ebx));
__ j(less, &fill);
// Restore function pointer.
__ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
}
// Call the entry point.
__ bind(&invoke);
__ call(Operand(edx));
// Leave frame and return.
LeaveArgumentsAdaptorFrame(masm);
__ ret(0);
// -------------------------------------------
// Dont adapt arguments.
// -------------------------------------------
__ bind(&dont_adapt_arguments);
__ jmp(Operand(edx));
}
#undef __
} } // namespace v8::internal