|
|
|
# -*- coding: utf-8 -*-
|
|
|
|
#!/usr/bin/env python
|
|
|
|
#
|
|
|
|
# Electrum - lightweight Bitcoin client
|
|
|
|
# Copyright (C) 2011 thomasv@gitorious
|
|
|
|
#
|
|
|
|
# Permission is hereby granted, free of charge, to any person
|
|
|
|
# obtaining a copy of this software and associated documentation files
|
|
|
|
# (the "Software"), to deal in the Software without restriction,
|
|
|
|
# including without limitation the rights to use, copy, modify, merge,
|
|
|
|
# publish, distribute, sublicense, and/or sell copies of the Software,
|
|
|
|
# and to permit persons to whom the Software is furnished to do so,
|
|
|
|
# subject to the following conditions:
|
|
|
|
#
|
|
|
|
# The above copyright notice and this permission notice shall be
|
|
|
|
# included in all copies or substantial portions of the Software.
|
|
|
|
#
|
|
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
|
|
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
|
|
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
|
|
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
|
|
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
|
|
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
|
|
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
|
|
# SOFTWARE.
|
|
|
|
|
|
|
|
import hashlib
|
|
|
|
import base64
|
|
|
|
import os
|
|
|
|
import re
|
|
|
|
import hmac
|
|
|
|
|
|
|
|
import version
|
|
|
|
from util import print_error, InvalidPassword
|
|
|
|
|
|
|
|
import ecdsa
|
|
|
|
import pyaes
|
|
|
|
|
|
|
|
# Bitcoin network constants
|
|
|
|
TESTNET = False
|
|
|
|
NOLNET = False
|
|
|
|
ADDRTYPE_P2PKH = 0
|
|
|
|
ADDRTYPE_P2SH = 5
|
|
|
|
ADDRTYPE_P2WPKH = 6
|
|
|
|
XPRV_HEADER = 0x0488ade4
|
|
|
|
XPUB_HEADER = 0x0488b21e
|
|
|
|
HEADERS_URL = "https://headers.electrum.org/blockchain_headers"
|
|
|
|
GENESIS = "000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f"
|
|
|
|
|
|
|
|
def set_testnet():
|
|
|
|
global ADDRTYPE_P2PKH, ADDRTYPE_P2SH, ADDRTYPE_P2WPKH
|
|
|
|
global XPRV_HEADER, XPUB_HEADER
|
|
|
|
global TESTNET, HEADERS_URL
|
|
|
|
global GENESIS
|
|
|
|
TESTNET = True
|
|
|
|
ADDRTYPE_P2PKH = 111
|
|
|
|
ADDRTYPE_P2SH = 196
|
|
|
|
ADDRTYPE_P2WPKH = 3
|
|
|
|
XPRV_HEADER = 0x04358394
|
|
|
|
XPUB_HEADER = 0x043587cf
|
|
|
|
HEADERS_URL = "https://headers.electrum.org/testnet_headers"
|
|
|
|
GENESIS = "000000000933ea01ad0ee984209779baaec3ced90fa3f408719526f8d77f4943"
|
|
|
|
|
|
|
|
def set_nolnet():
|
|
|
|
global ADDRTYPE_P2PKH, ADDRTYPE_P2SH, ADDRTYPE_P2WPKH
|
|
|
|
global XPRV_HEADER, XPUB_HEADER
|
|
|
|
global NOLNET, HEADERS_URL
|
|
|
|
global GENESIS
|
|
|
|
TESTNET = True
|
|
|
|
ADDRTYPE_P2PKH = 0
|
|
|
|
ADDRTYPE_P2SH = 5
|
|
|
|
ADDRTYPE_P2WPKH = 6
|
|
|
|
XPRV_HEADER = 0x0488ade4
|
|
|
|
XPUB_HEADER = 0x0488b21e
|
|
|
|
HEADERS_URL = "https://headers.electrum.org/nolnet_headers"
|
|
|
|
GENESIS = "663c88be18d07c45f87f910b93a1a71ed9ef1946cad50eb6a6f3af4c424625c6"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
################################## transactions
|
|
|
|
|
|
|
|
FEE_STEP = 10000
|
|
|
|
MAX_FEE_RATE = 300000
|
|
|
|
FEE_TARGETS = [25, 10, 5, 2]
|
|
|
|
|
|
|
|
COINBASE_MATURITY = 100
|
|
|
|
COIN = 100000000
|
|
|
|
|
|
|
|
# supported types of transction outputs
|
|
|
|
TYPE_ADDRESS = 0
|
|
|
|
TYPE_PUBKEY = 1
|
|
|
|
TYPE_SCRIPT = 2
|
|
|
|
|
|
|
|
# AES encryption
|
|
|
|
try:
|
|
|
|
from Cryptodome.Cipher import AES
|
|
|
|
except:
|
|
|
|
AES = None
|
|
|
|
|
|
|
|
def aes_encrypt_with_iv(key, iv, data):
|
|
|
|
if AES:
|
|
|
|
padlen = 16 - (len(data) % 16)
|
|
|
|
if padlen == 0:
|
|
|
|
padlen = 16
|
|
|
|
data += chr(padlen) * padlen
|
|
|
|
e = AES.new(key, AES.MODE_CBC, iv).encrypt(data)
|
|
|
|
return e
|
|
|
|
else:
|
|
|
|
aes_cbc = pyaes.AESModeOfOperationCBC(key, iv=iv)
|
|
|
|
aes = pyaes.Encrypter(aes_cbc)
|
|
|
|
e = aes.feed(data) + aes.feed() # empty aes.feed() appends pkcs padding
|
|
|
|
return e
|
|
|
|
|
|
|
|
def aes_decrypt_with_iv(key, iv, data):
|
|
|
|
if AES:
|
|
|
|
cipher = AES.new(key, AES.MODE_CBC, iv)
|
|
|
|
data = cipher.decrypt(data)
|
|
|
|
padlen = ord(data[-1])
|
|
|
|
for i in data[-padlen:]:
|
|
|
|
if ord(i) != padlen:
|
|
|
|
raise InvalidPassword()
|
|
|
|
return data[0:-padlen]
|
|
|
|
else:
|
|
|
|
aes_cbc = pyaes.AESModeOfOperationCBC(key, iv=iv)
|
|
|
|
aes = pyaes.Decrypter(aes_cbc)
|
|
|
|
s = aes.feed(data) + aes.feed() # empty aes.feed() strips pkcs padding
|
|
|
|
return s
|
|
|
|
|
|
|
|
def EncodeAES(secret, s):
|
|
|
|
iv = bytes(os.urandom(16))
|
|
|
|
ct = aes_encrypt_with_iv(secret, iv, s)
|
|
|
|
e = iv + ct
|
|
|
|
return base64.b64encode(e)
|
|
|
|
|
|
|
|
def DecodeAES(secret, e):
|
|
|
|
e = bytes(base64.b64decode(e))
|
|
|
|
iv, e = e[:16], e[16:]
|
|
|
|
s = aes_decrypt_with_iv(secret, iv, e)
|
|
|
|
return s
|
|
|
|
|
|
|
|
def pw_encode(s, password):
|
|
|
|
if password:
|
|
|
|
secret = Hash(password)
|
|
|
|
return EncodeAES(secret, s.encode("utf8"))
|
|
|
|
else:
|
|
|
|
return s
|
|
|
|
|
|
|
|
def pw_decode(s, password):
|
|
|
|
if password is not None:
|
|
|
|
secret = Hash(password)
|
|
|
|
try:
|
|
|
|
d = DecodeAES(secret, s).decode("utf8")
|
|
|
|
except Exception:
|
|
|
|
raise InvalidPassword()
|
|
|
|
return d
|
|
|
|
else:
|
|
|
|
return s
|
|
|
|
|
|
|
|
|
|
|
|
def rev_hex(s):
|
|
|
|
return s.decode('hex')[::-1].encode('hex')
|
|
|
|
|
|
|
|
|
|
|
|
def int_to_hex(i, length=1):
|
|
|
|
s = hex(i)[2:].rstrip('L')
|
|
|
|
s = "0"*(2*length - len(s)) + s
|
|
|
|
return rev_hex(s)
|
|
|
|
|
|
|
|
|
|
|
|
def var_int(i):
|
|
|
|
# https://en.bitcoin.it/wiki/Protocol_specification#Variable_length_integer
|
|
|
|
if i<0xfd:
|
|
|
|
return int_to_hex(i)
|
|
|
|
elif i<=0xffff:
|
|
|
|
return "fd"+int_to_hex(i,2)
|
|
|
|
elif i<=0xffffffff:
|
|
|
|
return "fe"+int_to_hex(i,4)
|
|
|
|
else:
|
|
|
|
return "ff"+int_to_hex(i,8)
|
|
|
|
|
|
|
|
|
|
|
|
def op_push(i):
|
|
|
|
if i<0x4c:
|
|
|
|
return int_to_hex(i)
|
|
|
|
elif i<0xff:
|
|
|
|
return '4c' + int_to_hex(i)
|
|
|
|
elif i<0xffff:
|
|
|
|
return '4d' + int_to_hex(i,2)
|
|
|
|
else:
|
|
|
|
return '4e' + int_to_hex(i,4)
|
|
|
|
|
|
|
|
|
|
|
|
def sha256(x):
|
|
|
|
return hashlib.sha256(x).digest()
|
|
|
|
|
|
|
|
|
|
|
|
def Hash(x):
|
|
|
|
if type(x) is unicode: x=x.encode('utf-8')
|
|
|
|
return sha256(sha256(x))
|
|
|
|
|
|
|
|
hash_encode = lambda x: x[::-1].encode('hex')
|
|
|
|
hash_decode = lambda x: x.decode('hex')[::-1]
|
|
|
|
hmac_sha_512 = lambda x,y: hmac.new(x, y, hashlib.sha512).digest()
|
|
|
|
|
|
|
|
def is_new_seed(x, prefix=version.SEED_PREFIX):
|
|
|
|
import mnemonic
|
|
|
|
x = mnemonic.normalize_text(x)
|
|
|
|
s = hmac_sha_512("Seed version", x.encode('utf8')).encode('hex')
|
|
|
|
return s.startswith(prefix)
|
|
|
|
|
|
|
|
|
|
|
|
def is_old_seed(seed):
|
|
|
|
import old_mnemonic
|
|
|
|
words = seed.strip().split()
|
|
|
|
try:
|
|
|
|
old_mnemonic.mn_decode(words)
|
|
|
|
uses_electrum_words = True
|
|
|
|
except Exception:
|
|
|
|
uses_electrum_words = False
|
|
|
|
try:
|
|
|
|
seed.decode('hex')
|
|
|
|
is_hex = (len(seed) == 32 or len(seed) == 64)
|
|
|
|
except Exception:
|
|
|
|
is_hex = False
|
|
|
|
return is_hex or (uses_electrum_words and (len(words) == 12 or len(words) == 24))
|
|
|
|
|
|
|
|
|
|
|
|
def seed_type(x):
|
|
|
|
if is_old_seed(x):
|
|
|
|
return 'old'
|
|
|
|
elif is_new_seed(x):
|
|
|
|
return 'standard'
|
|
|
|
elif TESTNET and is_new_seed(x, version.SEED_PREFIX_SW):
|
|
|
|
return 'segwit'
|
|
|
|
elif is_new_seed(x, version.SEED_PREFIX_2FA):
|
|
|
|
return '2fa'
|
|
|
|
return ''
|
|
|
|
|
|
|
|
is_seed = lambda x: bool(seed_type(x))
|
|
|
|
|
|
|
|
# pywallet openssl private key implementation
|
|
|
|
|
|
|
|
def i2o_ECPublicKey(pubkey, compressed=False):
|
|
|
|
# public keys are 65 bytes long (520 bits)
|
|
|
|
# 0x04 + 32-byte X-coordinate + 32-byte Y-coordinate
|
|
|
|
# 0x00 = point at infinity, 0x02 and 0x03 = compressed, 0x04 = uncompressed
|
|
|
|
# compressed keys: <sign> <x> where <sign> is 0x02 if y is even and 0x03 if y is odd
|
|
|
|
if compressed:
|
|
|
|
if pubkey.point.y() & 1:
|
|
|
|
key = '03' + '%064x' % pubkey.point.x()
|
|
|
|
else:
|
|
|
|
key = '02' + '%064x' % pubkey.point.x()
|
|
|
|
else:
|
|
|
|
key = '04' + \
|
|
|
|
'%064x' % pubkey.point.x() + \
|
|
|
|
'%064x' % pubkey.point.y()
|
|
|
|
|
|
|
|
return key.decode('hex')
|
|
|
|
|
|
|
|
# end pywallet openssl private key implementation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
############ functions from pywallet #####################
|
|
|
|
|
|
|
|
def hash_160(public_key):
|
|
|
|
if 'ANDROID_DATA' in os.environ:
|
|
|
|
from Crypto.Hash import RIPEMD
|
|
|
|
md = RIPEMD.new()
|
|
|
|
else:
|
|
|
|
md = hashlib.new('ripemd')
|
|
|
|
md.update(sha256(public_key))
|
|
|
|
return md.digest()
|
|
|
|
|
|
|
|
def hash_160_to_bc_address(h160, addrtype, witness_program_version=1):
|
|
|
|
s = chr(addrtype)
|
|
|
|
if addrtype == ADDRTYPE_P2WPKH:
|
|
|
|
s += chr(witness_program_version) + chr(0)
|
|
|
|
s += h160
|
|
|
|
return base_encode(s+Hash(s)[0:4], base=58)
|
|
|
|
|
|
|
|
def bc_address_to_hash_160(addr):
|
|
|
|
bytes = base_decode(addr, 25, base=58)
|
|
|
|
return ord(bytes[0]), bytes[1:21]
|
|
|
|
|
|
|
|
def hash160_to_p2pkh(h160):
|
|
|
|
return hash_160_to_bc_address(h160, ADDRTYPE_P2PKH)
|
|
|
|
|
|
|
|
def hash160_to_p2sh(h160):
|
|
|
|
return hash_160_to_bc_address(h160, ADDRTYPE_P2SH)
|
|
|
|
|
|
|
|
def public_key_to_p2pkh(public_key):
|
|
|
|
return hash160_to_p2pkh(hash_160(public_key))
|
|
|
|
|
|
|
|
def public_key_to_p2wpkh(public_key):
|
|
|
|
return hash160_to_bc_address(hash_160(public_key), ADDRTYPE_P2WPKH)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
__b58chars = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'
|
|
|
|
assert len(__b58chars) == 58
|
|
|
|
|
|
|
|
__b43chars = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ$*+-./:'
|
|
|
|
assert len(__b43chars) == 43
|
|
|
|
|
|
|
|
|
|
|
|
def base_encode(v, base):
|
|
|
|
""" encode v, which is a string of bytes, to base58."""
|
|
|
|
if base == 58:
|
|
|
|
chars = __b58chars
|
|
|
|
elif base == 43:
|
|
|
|
chars = __b43chars
|
|
|
|
long_value = 0L
|
|
|
|
for (i, c) in enumerate(v[::-1]):
|
|
|
|
long_value += (256**i) * ord(c)
|
|
|
|
result = ''
|
|
|
|
while long_value >= base:
|
|
|
|
div, mod = divmod(long_value, base)
|
|
|
|
result = chars[mod] + result
|
|
|
|
long_value = div
|
|
|
|
result = chars[long_value] + result
|
|
|
|
# Bitcoin does a little leading-zero-compression:
|
|
|
|
# leading 0-bytes in the input become leading-1s
|
|
|
|
nPad = 0
|
|
|
|
for c in v:
|
|
|
|
if c == '\0': nPad += 1
|
|
|
|
else: break
|
|
|
|
return (chars[0]*nPad) + result
|
|
|
|
|
|
|
|
|
|
|
|
def base_decode(v, length, base):
|
|
|
|
""" decode v into a string of len bytes."""
|
|
|
|
if base == 58:
|
|
|
|
chars = __b58chars
|
|
|
|
elif base == 43:
|
|
|
|
chars = __b43chars
|
|
|
|
long_value = 0L
|
|
|
|
for (i, c) in enumerate(v[::-1]):
|
|
|
|
long_value += chars.find(c) * (base**i)
|
|
|
|
result = ''
|
|
|
|
while long_value >= 256:
|
|
|
|
div, mod = divmod(long_value, 256)
|
|
|
|
result = chr(mod) + result
|
|
|
|
long_value = div
|
|
|
|
result = chr(long_value) + result
|
|
|
|
nPad = 0
|
|
|
|
for c in v:
|
|
|
|
if c == chars[0]: nPad += 1
|
|
|
|
else: break
|
|
|
|
result = chr(0)*nPad + result
|
|
|
|
if length is not None and len(result) != length:
|
|
|
|
return None
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
|
|
def EncodeBase58Check(vchIn):
|
|
|
|
hash = Hash(vchIn)
|
|
|
|
return base_encode(vchIn + hash[0:4], base=58)
|
|
|
|
|
|
|
|
|
|
|
|
def DecodeBase58Check(psz):
|
|
|
|
vchRet = base_decode(psz, None, base=58)
|
|
|
|
key = vchRet[0:-4]
|
|
|
|
csum = vchRet[-4:]
|
|
|
|
hash = Hash(key)
|
|
|
|
cs32 = hash[0:4]
|
|
|
|
if cs32 != csum:
|
|
|
|
return None
|
|
|
|
else:
|
|
|
|
return key
|
|
|
|
|
|
|
|
|
|
|
|
def PrivKeyToSecret(privkey):
|
|
|
|
return privkey[9:9+32]
|
|
|
|
|
|
|
|
|
|
|
|
def SecretToASecret(secret, compressed=False):
|
|
|
|
addrtype = ADDRTYPE_P2PKH
|
|
|
|
vchIn = chr((addrtype+128)&255) + secret
|
|
|
|
if compressed: vchIn += '\01'
|
|
|
|
return EncodeBase58Check(vchIn)
|
|
|
|
|
|
|
|
def ASecretToSecret(key):
|
|
|
|
addrtype = ADDRTYPE_P2PKH
|
|
|
|
vch = DecodeBase58Check(key)
|
|
|
|
if vch and vch[0] == chr((addrtype+128)&255):
|
|
|
|
return vch[1:]
|
|
|
|
elif is_minikey(key):
|
|
|
|
return minikey_to_private_key(key)
|
|
|
|
else:
|
|
|
|
return False
|
|
|
|
|
|
|
|
def regenerate_key(sec):
|
|
|
|
b = ASecretToSecret(sec)
|
|
|
|
if not b:
|
|
|
|
return False
|
|
|
|
b = b[0:32]
|
|
|
|
return EC_KEY(b)
|
|
|
|
|
|
|
|
|
|
|
|
def GetPubKey(pubkey, compressed=False):
|
|
|
|
return i2o_ECPublicKey(pubkey, compressed)
|
|
|
|
|
|
|
|
|
|
|
|
def GetSecret(pkey):
|
|
|
|
return ('%064x' % pkey.secret).decode('hex')
|
|
|
|
|
|
|
|
|
|
|
|
def is_compressed(sec):
|
|
|
|
b = ASecretToSecret(sec)
|
|
|
|
return len(b) == 33
|
|
|
|
|
|
|
|
|
|
|
|
def public_key_from_private_key(sec):
|
|
|
|
# rebuild public key from private key, compressed or uncompressed
|
|
|
|
pkey = regenerate_key(sec)
|
|
|
|
assert pkey
|
|
|
|
compressed = is_compressed(sec)
|
|
|
|
public_key = GetPubKey(pkey.pubkey, compressed)
|
|
|
|
return public_key.encode('hex')
|
|
|
|
|
|
|
|
|
|
|
|
def address_from_private_key(sec):
|
|
|
|
public_key = public_key_from_private_key(sec)
|
|
|
|
address = public_key_to_p2pkh(public_key.decode('hex'))
|
|
|
|
return address
|
|
|
|
|
|
|
|
|
|
|
|
def is_valid(addr):
|
|
|
|
return is_address(addr)
|
|
|
|
|
|
|
|
|
|
|
|
def is_address(addr):
|
|
|
|
try:
|
|
|
|
addrtype, h = bc_address_to_hash_160(addr)
|
|
|
|
except Exception:
|
|
|
|
return False
|
|
|
|
if addrtype not in [ADDRTYPE_P2PKH, ADDRTYPE_P2SH]:
|
|
|
|
return False
|
|
|
|
return addr == hash_160_to_bc_address(h, addrtype)
|
|
|
|
|
|
|
|
def is_p2pkh(addr):
|
|
|
|
if is_address(addr):
|
|
|
|
addrtype, h = bc_address_to_hash_160(addr)
|
|
|
|
return addrtype == ADDRTYPE_P2PKH
|
|
|
|
|
|
|
|
def is_p2sh(addr):
|
|
|
|
if is_address(addr):
|
|
|
|
addrtype, h = bc_address_to_hash_160(addr)
|
|
|
|
return addrtype == ADDRTYPE_P2SH
|
|
|
|
|
|
|
|
def is_private_key(key):
|
|
|
|
try:
|
|
|
|
k = ASecretToSecret(key)
|
|
|
|
return k is not False
|
|
|
|
except:
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
|
|
########### end pywallet functions #######################
|
|
|
|
|
|
|
|
def is_minikey(text):
|
|
|
|
# Minikeys are typically 22 or 30 characters, but this routine
|
|
|
|
# permits any length of 20 or more provided the minikey is valid.
|
|
|
|
# A valid minikey must begin with an 'S', be in base58, and when
|
|
|
|
# suffixed with '?' have its SHA256 hash begin with a zero byte.
|
|
|
|
# They are widely used in Casascius physical bitoins.
|
|
|
|
return (len(text) >= 20 and text[0] == 'S'
|
|
|
|
and all(c in __b58chars for c in text)
|
|
|
|
and ord(sha256(text + '?')[0]) == 0)
|
|
|
|
|
|
|
|
def minikey_to_private_key(text):
|
|
|
|
return sha256(text)
|
|
|
|
|
|
|
|
from ecdsa.ecdsa import curve_secp256k1, generator_secp256k1
|
|
|
|
from ecdsa.curves import SECP256k1
|
|
|
|
from ecdsa.ellipticcurve import Point
|
|
|
|
from ecdsa.util import string_to_number, number_to_string
|
|
|
|
|
|
|
|
def msg_magic(message):
|
|
|
|
varint = var_int(len(message))
|
|
|
|
encoded_varint = "".join([chr(int(varint[i:i+2], 16)) for i in xrange(0, len(varint), 2)])
|
|
|
|
return "\x18Bitcoin Signed Message:\n" + encoded_varint + message
|
|
|
|
|
|
|
|
|
|
|
|
def verify_message(address, sig, message):
|
|
|
|
try:
|
|
|
|
h = Hash(msg_magic(message))
|
|
|
|
public_key, compressed = pubkey_from_signature(sig, h)
|
|
|
|
# check public key using the address
|
|
|
|
pubkey = point_to_ser(public_key.pubkey.point, compressed)
|
|
|
|
addr = public_key_to_p2pkh(pubkey)
|
|
|
|
if address != addr:
|
|
|
|
raise Exception("Bad signature")
|
|
|
|
# check message
|
|
|
|
public_key.verify_digest(sig[1:], h, sigdecode = ecdsa.util.sigdecode_string)
|
|
|
|
return True
|
|
|
|
except Exception as e:
|
|
|
|
print_error("Verification error: {0}".format(e))
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
|
|
def encrypt_message(message, pubkey):
|
|
|
|
return EC_KEY.encrypt_message(message, pubkey.decode('hex'))
|
|
|
|
|
|
|
|
|
|
|
|
def chunks(l, n):
|
|
|
|
return [l[i:i+n] for i in xrange(0, len(l), n)]
|
|
|
|
|
|
|
|
|
|
|
|
def ECC_YfromX(x,curved=curve_secp256k1, odd=True):
|
|
|
|
_p = curved.p()
|
|
|
|
_a = curved.a()
|
|
|
|
_b = curved.b()
|
|
|
|
for offset in range(128):
|
|
|
|
Mx = x + offset
|
|
|
|
My2 = pow(Mx, 3, _p) + _a * pow(Mx, 2, _p) + _b % _p
|
|
|
|
My = pow(My2, (_p+1)/4, _p )
|
|
|
|
|
|
|
|
if curved.contains_point(Mx,My):
|
|
|
|
if odd == bool(My&1):
|
|
|
|
return [My,offset]
|
|
|
|
return [_p-My,offset]
|
|
|
|
raise Exception('ECC_YfromX: No Y found')
|
|
|
|
|
|
|
|
|
|
|
|
def negative_point(P):
|
|
|
|
return Point( P.curve(), P.x(), -P.y(), P.order() )
|
|
|
|
|
|
|
|
|
|
|
|
def point_to_ser(P, comp=True ):
|
|
|
|
if comp:
|
|
|
|
return ( ('%02x'%(2+(P.y()&1)))+('%064x'%P.x()) ).decode('hex')
|
|
|
|
return ( '04'+('%064x'%P.x())+('%064x'%P.y()) ).decode('hex')
|
|
|
|
|
|
|
|
|
|
|
|
def ser_to_point(Aser):
|
|
|
|
curve = curve_secp256k1
|
|
|
|
generator = generator_secp256k1
|
|
|
|
_r = generator.order()
|
|
|
|
assert Aser[0] in ['\x02','\x03','\x04']
|
|
|
|
if Aser[0] == '\x04':
|
|
|
|
return Point( curve, string_to_number(Aser[1:33]), string_to_number(Aser[33:]), _r )
|
|
|
|
Mx = string_to_number(Aser[1:])
|
|
|
|
return Point( curve, Mx, ECC_YfromX(Mx, curve, Aser[0]=='\x03')[0], _r )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class MyVerifyingKey(ecdsa.VerifyingKey):
|
|
|
|
@classmethod
|
|
|
|
def from_signature(klass, sig, recid, h, curve):
|
|
|
|
""" See http://www.secg.org/download/aid-780/sec1-v2.pdf, chapter 4.1.6 """
|
|
|
|
from ecdsa import util, numbertheory
|
|
|
|
import msqr
|
|
|
|
curveFp = curve.curve
|
|
|
|
G = curve.generator
|
|
|
|
order = G.order()
|
|
|
|
# extract r,s from signature
|
|
|
|
r, s = util.sigdecode_string(sig, order)
|
|
|
|
# 1.1
|
|
|
|
x = r + (recid/2) * order
|
|
|
|
# 1.3
|
|
|
|
alpha = ( x * x * x + curveFp.a() * x + curveFp.b() ) % curveFp.p()
|
|
|
|
beta = msqr.modular_sqrt(alpha, curveFp.p())
|
|
|
|
y = beta if (beta - recid) % 2 == 0 else curveFp.p() - beta
|
|
|
|
# 1.4 the constructor checks that nR is at infinity
|
|
|
|
R = Point(curveFp, x, y, order)
|
|
|
|
# 1.5 compute e from message:
|
|
|
|
e = string_to_number(h)
|
|
|
|
minus_e = -e % order
|
|
|
|
# 1.6 compute Q = r^-1 (sR - eG)
|
|
|
|
inv_r = numbertheory.inverse_mod(r,order)
|
|
|
|
Q = inv_r * ( s * R + minus_e * G )
|
|
|
|
return klass.from_public_point( Q, curve )
|
|
|
|
|
|
|
|
|
|
|
|
def pubkey_from_signature(sig, h):
|
|
|
|
if len(sig) != 65:
|
|
|
|
raise Exception("Wrong encoding")
|
|
|
|
nV = ord(sig[0])
|
|
|
|
if nV < 27 or nV >= 35:
|
|
|
|
raise Exception("Bad encoding")
|
|
|
|
if nV >= 31:
|
|
|
|
compressed = True
|
|
|
|
nV -= 4
|
|
|
|
else:
|
|
|
|
compressed = False
|
|
|
|
recid = nV - 27
|
|
|
|
return MyVerifyingKey.from_signature(sig[1:], recid, h, curve = SECP256k1), compressed
|
|
|
|
|
|
|
|
|
|
|
|
class MySigningKey(ecdsa.SigningKey):
|
|
|
|
"""Enforce low S values in signatures"""
|
|
|
|
|
|
|
|
def sign_number(self, number, entropy=None, k=None):
|
|
|
|
curve = SECP256k1
|
|
|
|
G = curve.generator
|
|
|
|
order = G.order()
|
|
|
|
r, s = ecdsa.SigningKey.sign_number(self, number, entropy, k)
|
|
|
|
if s > order/2:
|
|
|
|
s = order - s
|
|
|
|
return r, s
|
|
|
|
|
|
|
|
|
|
|
|
class EC_KEY(object):
|
|
|
|
|
|
|
|
def __init__( self, k ):
|
|
|
|
secret = string_to_number(k)
|
|
|
|
self.pubkey = ecdsa.ecdsa.Public_key( generator_secp256k1, generator_secp256k1 * secret )
|
|
|
|
self.privkey = ecdsa.ecdsa.Private_key( self.pubkey, secret )
|
|
|
|
self.secret = secret
|
|
|
|
|
|
|
|
def get_public_key(self, compressed=True):
|
|
|
|
return point_to_ser(self.pubkey.point, compressed).encode('hex')
|
|
|
|
|
|
|
|
def sign(self, msg_hash):
|
|
|
|
private_key = MySigningKey.from_secret_exponent(self.secret, curve = SECP256k1)
|
|
|
|
public_key = private_key.get_verifying_key()
|
|
|
|
signature = private_key.sign_digest_deterministic(msg_hash, hashfunc=hashlib.sha256, sigencode = ecdsa.util.sigencode_string)
|
|
|
|
assert public_key.verify_digest(signature, msg_hash, sigdecode = ecdsa.util.sigdecode_string)
|
|
|
|
return signature
|
|
|
|
|
|
|
|
def sign_message(self, message, is_compressed):
|
|
|
|
signature = self.sign(Hash(msg_magic(message)))
|
|
|
|
for i in range(4):
|
|
|
|
sig = chr(27 + i + (4 if is_compressed else 0)) + signature
|
|
|
|
try:
|
|
|
|
self.verify_message(sig, message)
|
|
|
|
return sig
|
|
|
|
except Exception:
|
|
|
|
continue
|
|
|
|
else:
|
|
|
|
raise Exception("error: cannot sign message")
|
|
|
|
|
|
|
|
|
|
|
|
def verify_message(self, sig, message):
|
|
|
|
h = Hash(msg_magic(message))
|
|
|
|
public_key, compressed = pubkey_from_signature(sig, h)
|
|
|
|
# check public key
|
|
|
|
if point_to_ser(public_key.pubkey.point, compressed) != point_to_ser(self.pubkey.point, compressed):
|
|
|
|
raise Exception("Bad signature")
|
|
|
|
# check message
|
|
|
|
public_key.verify_digest(sig[1:], h, sigdecode = ecdsa.util.sigdecode_string)
|
|
|
|
|
|
|
|
|
|
|
|
# ECIES encryption/decryption methods; AES-128-CBC with PKCS7 is used as the cipher; hmac-sha256 is used as the mac
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def encrypt_message(self, message, pubkey):
|
|
|
|
|
|
|
|
pk = ser_to_point(pubkey)
|
|
|
|
if not ecdsa.ecdsa.point_is_valid(generator_secp256k1, pk.x(), pk.y()):
|
|
|
|
raise Exception('invalid pubkey')
|
|
|
|
|
|
|
|
ephemeral_exponent = number_to_string(ecdsa.util.randrange(pow(2,256)), generator_secp256k1.order())
|
|
|
|
ephemeral = EC_KEY(ephemeral_exponent)
|
|
|
|
ecdh_key = point_to_ser(pk * ephemeral.privkey.secret_multiplier)
|
|
|
|
key = hashlib.sha512(ecdh_key).digest()
|
|
|
|
iv, key_e, key_m = key[0:16], key[16:32], key[32:]
|
|
|
|
ciphertext = aes_encrypt_with_iv(key_e, iv, message)
|
|
|
|
ephemeral_pubkey = ephemeral.get_public_key(compressed=True).decode('hex')
|
|
|
|
encrypted = 'BIE1' + ephemeral_pubkey + ciphertext
|
|
|
|
mac = hmac.new(key_m, encrypted, hashlib.sha256).digest()
|
|
|
|
|
|
|
|
return base64.b64encode(encrypted + mac)
|
|
|
|
|
|
|
|
|
|
|
|
def decrypt_message(self, encrypted):
|
|
|
|
encrypted = base64.b64decode(encrypted)
|
|
|
|
if len(encrypted) < 85:
|
|
|
|
raise Exception('invalid ciphertext: length')
|
|
|
|
magic = encrypted[:4]
|
|
|
|
ephemeral_pubkey = encrypted[4:37]
|
|
|
|
ciphertext = encrypted[37:-32]
|
|
|
|
mac = encrypted[-32:]
|
|
|
|
if magic != 'BIE1':
|
|
|
|
raise Exception('invalid ciphertext: invalid magic bytes')
|
|
|
|
try:
|
|
|
|
ephemeral_pubkey = ser_to_point(ephemeral_pubkey)
|
|
|
|
except AssertionError, e:
|
|
|
|
raise Exception('invalid ciphertext: invalid ephemeral pubkey')
|
|
|
|
if not ecdsa.ecdsa.point_is_valid(generator_secp256k1, ephemeral_pubkey.x(), ephemeral_pubkey.y()):
|
|
|
|
raise Exception('invalid ciphertext: invalid ephemeral pubkey')
|
|
|
|
ecdh_key = point_to_ser(ephemeral_pubkey * self.privkey.secret_multiplier)
|
|
|
|
key = hashlib.sha512(ecdh_key).digest()
|
|
|
|
iv, key_e, key_m = key[0:16], key[16:32], key[32:]
|
|
|
|
if mac != hmac.new(key_m, encrypted[:-32], hashlib.sha256).digest():
|
|
|
|
raise InvalidPassword()
|
|
|
|
return aes_decrypt_with_iv(key_e, iv, ciphertext)
|
|
|
|
|
|
|
|
|
|
|
|
###################################### BIP32 ##############################
|
|
|
|
|
|
|
|
random_seed = lambda n: "%032x"%ecdsa.util.randrange( pow(2,n) )
|
|
|
|
BIP32_PRIME = 0x80000000
|
|
|
|
|
|
|
|
|
|
|
|
def get_pubkeys_from_secret(secret):
|
|
|
|
# public key
|
|
|
|
private_key = ecdsa.SigningKey.from_string( secret, curve = SECP256k1 )
|
|
|
|
public_key = private_key.get_verifying_key()
|
|
|
|
K = public_key.to_string()
|
|
|
|
K_compressed = GetPubKey(public_key.pubkey,True)
|
|
|
|
return K, K_compressed
|
|
|
|
|
|
|
|
|
|
|
|
# Child private key derivation function (from master private key)
|
|
|
|
# k = master private key (32 bytes)
|
|
|
|
# c = master chain code (extra entropy for key derivation) (32 bytes)
|
|
|
|
# n = the index of the key we want to derive. (only 32 bits will be used)
|
|
|
|
# If n is negative (i.e. the 32nd bit is set), the resulting private key's
|
|
|
|
# corresponding public key can NOT be determined without the master private key.
|
|
|
|
# However, if n is positive, the resulting private key's corresponding
|
|
|
|
# public key can be determined without the master private key.
|
|
|
|
def CKD_priv(k, c, n):
|
|
|
|
is_prime = n & BIP32_PRIME
|
|
|
|
return _CKD_priv(k, c, rev_hex(int_to_hex(n,4)).decode('hex'), is_prime)
|
|
|
|
|
|
|
|
def _CKD_priv(k, c, s, is_prime):
|
|
|
|
order = generator_secp256k1.order()
|
|
|
|
keypair = EC_KEY(k)
|
|
|
|
cK = GetPubKey(keypair.pubkey,True)
|
|
|
|
data = chr(0) + k + s if is_prime else cK + s
|
|
|
|
I = hmac.new(c, data, hashlib.sha512).digest()
|
|
|
|
k_n = number_to_string( (string_to_number(I[0:32]) + string_to_number(k)) % order , order )
|
|
|
|
c_n = I[32:]
|
|
|
|
return k_n, c_n
|
|
|
|
|
|
|
|
# Child public key derivation function (from public key only)
|
|
|
|
# K = master public key
|
|
|
|
# c = master chain code
|
|
|
|
# n = index of key we want to derive
|
|
|
|
# This function allows us to find the nth public key, as long as n is
|
|
|
|
# non-negative. If n is negative, we need the master private key to find it.
|
|
|
|
def CKD_pub(cK, c, n):
|
|
|
|
if n & BIP32_PRIME: raise
|
|
|
|
return _CKD_pub(cK, c, rev_hex(int_to_hex(n,4)).decode('hex'))
|
|
|
|
|
|
|
|
# helper function, callable with arbitrary string
|
|
|
|
def _CKD_pub(cK, c, s):
|
|
|
|
order = generator_secp256k1.order()
|
|
|
|
I = hmac.new(c, cK + s, hashlib.sha512).digest()
|
|
|
|
curve = SECP256k1
|
|
|
|
pubkey_point = string_to_number(I[0:32])*curve.generator + ser_to_point(cK)
|
|
|
|
public_key = ecdsa.VerifyingKey.from_public_point( pubkey_point, curve = SECP256k1 )
|
|
|
|
c_n = I[32:]
|
|
|
|
cK_n = GetPubKey(public_key.pubkey,True)
|
|
|
|
return cK_n, c_n
|
|
|
|
|
|
|
|
|
|
|
|
def xprv_header(xtype):
|
|
|
|
return ("%08x"%(XPRV_HEADER + xtype)).decode('hex')
|
|
|
|
|
|
|
|
def xpub_header(xtype):
|
|
|
|
return ("%08x"%(XPUB_HEADER + xtype)).decode('hex')
|
|
|
|
|
|
|
|
def serialize_xprv(xtype, c, k, depth=0, fingerprint=chr(0)*4, child_number=chr(0)*4):
|
|
|
|
xprv = xprv_header(xtype) + chr(depth) + fingerprint + child_number + c + chr(0) + k
|
|
|
|
return EncodeBase58Check(xprv)
|
|
|
|
|
|
|
|
def serialize_xpub(xtype, c, cK, depth=0, fingerprint=chr(0)*4, child_number=chr(0)*4):
|
|
|
|
xpub = xpub_header(xtype) + chr(depth) + fingerprint + child_number + c + cK
|
|
|
|
return EncodeBase58Check(xpub)
|
|
|
|
|
|
|
|
def deserialize_xkey(xkey, prv):
|
|
|
|
xkey = DecodeBase58Check(xkey)
|
|
|
|
if len(xkey) != 78:
|
|
|
|
raise BaseException('Invalid length')
|
|
|
|
depth = ord(xkey[4])
|
|
|
|
fingerprint = xkey[5:9]
|
|
|
|
child_number = xkey[9:13]
|
|
|
|
c = xkey[13:13+32]
|
|
|
|
header = XPRV_HEADER if prv else XPUB_HEADER
|
|
|
|
xtype = int('0x' + xkey[0:4].encode('hex'), 16) - header
|
|
|
|
if xtype not in ([0, 1] if TESTNET else [0]):
|
|
|
|
raise BaseException('Invalid header')
|
|
|
|
n = 33 if prv else 32
|
|
|
|
K_or_k = xkey[13+n:]
|
|
|
|
return xtype, depth, fingerprint, child_number, c, K_or_k
|
|
|
|
|
|
|
|
def deserialize_xpub(xkey):
|
|
|
|
return deserialize_xkey(xkey, False)
|
|
|
|
|
|
|
|
def deserialize_xprv(xkey):
|
|
|
|
return deserialize_xkey(xkey, True)
|
|
|
|
|
|
|
|
def is_xpub(text):
|
|
|
|
try:
|
|
|
|
deserialize_xpub(text)
|
|
|
|
return True
|
|
|
|
except:
|
|
|
|
return False
|
|
|
|
|
|
|
|
def is_xprv(text):
|
|
|
|
try:
|
|
|
|
deserialize_xprv(text)
|
|
|
|
return True
|
|
|
|
except:
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
|
|
def xpub_from_xprv(xprv):
|
|
|
|
xtype, depth, fingerprint, child_number, c, k = deserialize_xprv(xprv)
|
|
|
|
K, cK = get_pubkeys_from_secret(k)
|
|
|
|
return serialize_xpub(xtype, c, cK, depth, fingerprint, child_number)
|
|
|
|
|
|
|
|
|
|
|
|
def bip32_root(seed, xtype):
|
|
|
|
I = hmac.new("Bitcoin seed", seed, hashlib.sha512).digest()
|
|
|
|
master_k = I[0:32]
|
|
|
|
master_c = I[32:]
|
|
|
|
K, cK = get_pubkeys_from_secret(master_k)
|
|
|
|
xprv = serialize_xprv(xtype, master_c, master_k)
|
|
|
|
xpub = serialize_xpub(xtype, master_c, cK)
|
|
|
|
return xprv, xpub
|
|
|
|
|
|
|
|
def xpub_from_pubkey(xtype, cK):
|
|
|
|
assert cK[0] in ['\x02','\x03']
|
|
|
|
return serialize_xpub(xtype, chr(0)*32, cK)
|
|
|
|
|
|
|
|
|
|
|
|
def bip32_derivation(s):
|
|
|
|
assert s.startswith('m/')
|
|
|
|
s = s[2:]
|
|
|
|
for n in s.split('/'):
|
|
|
|
if n == '': continue
|
|
|
|
i = int(n[:-1]) + BIP32_PRIME if n[-1] == "'" else int(n)
|
|
|
|
yield i
|
|
|
|
|
|
|
|
def is_bip32_derivation(x):
|
|
|
|
try:
|
|
|
|
[ i for i in bip32_derivation(x)]
|
|
|
|
return True
|
|
|
|
except :
|
|
|
|
return False
|
|
|
|
|
|
|
|
def bip32_private_derivation(xprv, branch, sequence):
|
|
|
|
assert sequence.startswith(branch)
|
|
|
|
if branch == sequence:
|
|
|
|
return xprv, xpub_from_xprv(xprv)
|
|
|
|
xtype, depth, fingerprint, child_number, c, k = deserialize_xprv(xprv)
|
|
|
|
sequence = sequence[len(branch):]
|
|
|
|
for n in sequence.split('/'):
|
|
|
|
if n == '': continue
|
|
|
|
i = int(n[:-1]) + BIP32_PRIME if n[-1] == "'" else int(n)
|
|
|
|
parent_k = k
|
|
|
|
k, c = CKD_priv(k, c, i)
|
|
|
|
depth += 1
|
|
|
|
_, parent_cK = get_pubkeys_from_secret(parent_k)
|
|
|
|
fingerprint = hash_160(parent_cK)[0:4]
|
|
|
|
child_number = ("%08X"%i).decode('hex')
|
|
|
|
K, cK = get_pubkeys_from_secret(k)
|
|
|
|
xpub = serialize_xpub(xtype, c, cK, depth, fingerprint, child_number)
|
|
|
|
xprv = serialize_xprv(xtype, c, k, depth, fingerprint, child_number)
|
|
|
|
return xprv, xpub
|
|
|
|
|
|
|
|
|
|
|
|
def bip32_public_derivation(xpub, branch, sequence):
|
|
|
|
xtype, depth, fingerprint, child_number, c, cK = deserialize_xpub(xpub)
|
|
|
|
assert sequence.startswith(branch)
|
|
|
|
sequence = sequence[len(branch):]
|
|
|
|
for n in sequence.split('/'):
|
|
|
|
if n == '': continue
|
|
|
|
i = int(n)
|
|
|
|
parent_cK = cK
|
|
|
|
cK, c = CKD_pub(cK, c, i)
|
|
|
|
depth += 1
|
|
|
|
fingerprint = hash_160(parent_cK)[0:4]
|
|
|
|
child_number = ("%08X"%i).decode('hex')
|
|
|
|
return serialize_xpub(xtype, c, cK, depth, fingerprint, child_number)
|
|
|
|
|
|
|
|
|
|
|
|
def bip32_private_key(sequence, k, chain):
|
|
|
|
for i in sequence:
|
|
|
|
k, chain = CKD_priv(k, chain, i)
|
|
|
|
return SecretToASecret(k, True)
|
|
|
|
|
|
|
|
|
|
|
|
def xkeys_from_seed(seed, passphrase, derivation):
|
|
|
|
from mnemonic import Mnemonic
|
|
|
|
xprv, xpub = bip32_root(Mnemonic.mnemonic_to_seed(seed, passphrase), 0)
|
|
|
|
xprv, xpub = bip32_private_derivation(xprv, "m/", derivation)
|
|
|
|
return xprv, xpub
|