|
|
|
/*
|
|
|
|
This file is part of cpp-ethereum.
|
|
|
|
|
|
|
|
cpp-ethereum is free software: you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
cpp-ethereum is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
/** @file State.h
|
|
|
|
* @author Gav Wood <i@gavwood.com>
|
|
|
|
* @date 2014
|
|
|
|
*/
|
|
|
|
|
|
|
|
#pragma once
|
|
|
|
|
|
|
|
#include <array>
|
|
|
|
#include <map>
|
|
|
|
#include <unordered_map>
|
|
|
|
#include <libdevcore/Common.h>
|
|
|
|
#include <libdevcore/RLP.h>
|
|
|
|
#include <libdevcrypto/TrieDB.h>
|
|
|
|
#include <libethcore/Exceptions.h>
|
|
|
|
#include <libethcore/BlockInfo.h>
|
|
|
|
#include <libethcore/ProofOfWork.h>
|
|
|
|
#include <libevm/FeeStructure.h>
|
|
|
|
#include <libevm/ExtVMFace.h>
|
|
|
|
#include "TransactionQueue.h"
|
|
|
|
#include "Account.h"
|
|
|
|
#include "Transaction.h"
|
|
|
|
#include "TransactionReceipt.h"
|
|
|
|
#include "AccountDiff.h"
|
|
|
|
|
|
|
|
namespace dev
|
|
|
|
{
|
|
|
|
|
|
|
|
namespace test { class ImportTest; }
|
|
|
|
|
|
|
|
namespace eth
|
|
|
|
{
|
|
|
|
|
|
|
|
class BlockChain;
|
|
|
|
|
|
|
|
struct StateChat: public LogChannel { static const char* name() { return "-S-"; } static const int verbosity = 4; };
|
|
|
|
struct StateTrace: public LogChannel { static const char* name() { return "=S="; } static const int verbosity = 7; };
|
|
|
|
struct StateDetail: public LogChannel { static const char* name() { return "/S/"; } static const int verbosity = 14; };
|
|
|
|
struct StateSafeExceptions: public LogChannel { static const char* name() { return "(S)"; } static const int verbosity = 21; };
|
|
|
|
|
|
|
|
enum class BaseState { Empty, CanonGenesis };
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Model of the current state of the ledger.
|
|
|
|
* Maintains current ledger (m_current) as a fast hash-map. This is hashed only when required (i.e. to create or verify a block).
|
|
|
|
* Should maintain ledger as of last N blocks, also, in case we end up on the wrong branch.
|
|
|
|
*/
|
|
|
|
class State
|
|
|
|
{
|
|
|
|
friend class ExtVM;
|
|
|
|
friend class dev::test::ImportTest;
|
|
|
|
friend class Executive;
|
|
|
|
|
|
|
|
public:
|
|
|
|
/// Construct state object.
|
|
|
|
State(Address _coinbaseAddress = Address(), OverlayDB const& _db = OverlayDB(), BaseState _bs = BaseState::CanonGenesis);
|
|
|
|
|
|
|
|
/// Construct state object from arbitrary point in blockchain.
|
|
|
|
State(OverlayDB const& _db, BlockChain const& _bc, h256 _hash);
|
|
|
|
|
|
|
|
/// Copy state object.
|
|
|
|
State(State const& _s);
|
|
|
|
|
|
|
|
/// Copy state object.
|
|
|
|
State& operator=(State const& _s);
|
|
|
|
|
|
|
|
~State();
|
|
|
|
|
|
|
|
/// Set the coinbase address for any transactions we do.
|
|
|
|
/// This causes a complete reset of current block.
|
|
|
|
void setAddress(Address _coinbaseAddress) { m_ourAddress = _coinbaseAddress; resetCurrent(); }
|
|
|
|
Address address() const { return m_ourAddress; }
|
|
|
|
|
|
|
|
/// Open a DB - useful for passing into the constructor & keeping for other states that are necessary.
|
|
|
|
static OverlayDB openDB(std::string _path, bool _killExisting = false);
|
|
|
|
static OverlayDB openDB(bool _killExisting = false) { return openDB(std::string(), _killExisting); }
|
|
|
|
OverlayDB const& db() const { return m_db; }
|
|
|
|
|
|
|
|
/// @returns the set containing all addresses currently in use in Ethereum.
|
|
|
|
std::map<Address, u256> addresses() const;
|
|
|
|
|
|
|
|
/// Get the header information on the present block.
|
|
|
|
BlockInfo const& info() const { return m_currentBlock; }
|
|
|
|
|
|
|
|
/// @brief Checks that mining the current object will result in a valid block.
|
|
|
|
/// Effectively attempts to import the serialised block.
|
|
|
|
/// @returns true if all is ok. If it's false, worry.
|
|
|
|
bool amIJustParanoid(BlockChain const& _bc);
|
|
|
|
|
|
|
|
/// Prepares the current state for mining.
|
|
|
|
/// Commits all transactions into the trie, compiles uncles and transactions list, applies all
|
|
|
|
/// rewards and populates the current block header with the appropriate hashes.
|
|
|
|
/// The only thing left to do after this is to actually mine().
|
|
|
|
///
|
|
|
|
/// This may be called multiple times and without issue.
|
|
|
|
void commitToMine(BlockChain const& _bc);
|
|
|
|
|
|
|
|
/// Pass in a solution to the proof-of-work.
|
|
|
|
/// @returns true iff the given nonce is a proof-of-work for this State's block.
|
|
|
|
bool completeMine(h256 const& _nonce);
|
|
|
|
|
|
|
|
/// Attempt to find valid nonce for block that this state represents.
|
|
|
|
/// This function is thread-safe. You can safely have other interactions with this object while it is happening.
|
|
|
|
/// @param _msTimeout Timeout before return in milliseconds.
|
|
|
|
/// @returns Information on the mining.
|
|
|
|
MineInfo mine(unsigned _msTimeout = 1000, bool _turbo = false);
|
|
|
|
|
|
|
|
/** Commit to DB and build the final block if the previous call to mine()'s result is completion.
|
|
|
|
* Typically looks like:
|
|
|
|
* @code
|
|
|
|
* while (notYetMined)
|
|
|
|
* {
|
|
|
|
* // lock
|
|
|
|
* commitToMine(_blockChain); // will call uncommitToMine if a repeat.
|
|
|
|
* // unlock
|
|
|
|
* MineInfo info;
|
|
|
|
* for (info.completed = false; !info.completed; info = mine()) {}
|
|
|
|
* }
|
|
|
|
* // lock
|
|
|
|
* completeMine();
|
|
|
|
* // unlock
|
|
|
|
* @endcode
|
|
|
|
*/
|
|
|
|
void completeMine();
|
|
|
|
|
|
|
|
/// Get the complete current block, including valid nonce.
|
|
|
|
/// Only valid after mine() returns true.
|
|
|
|
bytes const& blockData() const { return m_currentBytes; }
|
|
|
|
|
|
|
|
// TODO: Cleaner interface.
|
|
|
|
/// Sync our transactions, killing those from the queue that we have and assimilating those that we don't.
|
|
|
|
/// @returns a list of receipts one for each transaction placed from the queue into the state.
|
|
|
|
/// @a o_transactionQueueChanged boolean pointer, the value of which will be set to true if the transaction queue
|
|
|
|
/// changed and the pointer is non-null
|
|
|
|
TransactionReceipts sync(BlockChain const& _bc, TransactionQueue& _tq, bool* o_transactionQueueChanged = nullptr);
|
|
|
|
/// Like sync but only operate on _tq, killing the invalid/old ones.
|
|
|
|
bool cull(TransactionQueue& _tq) const;
|
|
|
|
|
|
|
|
LastHashes getLastHashes(BlockChain const& _bc, unsigned _n) const;
|
|
|
|
|
|
|
|
/// Execute a given transaction.
|
|
|
|
/// This will append @a _t to the transaction list and change the state accordingly.
|
|
|
|
u256 execute(BlockChain const& _bc, bytes const& _rlp, bytes* o_output = nullptr, bool _commit = true);
|
|
|
|
u256 execute(BlockChain const& _bc, bytesConstRef _rlp, bytes* o_output = nullptr, bool _commit = true);
|
|
|
|
u256 execute(LastHashes const& _lh, bytes const& _rlp, bytes* o_output = nullptr, bool _commit = true) { return execute(_lh, &_rlp, o_output, _commit); }
|
|
|
|
u256 execute(LastHashes const& _lh, bytesConstRef _rlp, bytes* o_output = nullptr, bool _commit = true);
|
|
|
|
|
|
|
|
/// Get the remaining gas limit in this block.
|
|
|
|
u256 gasLimitRemaining() const { return m_currentBlock.gasLimit - gasUsed(); }
|
|
|
|
|
|
|
|
/// Check if the address is in use.
|
|
|
|
bool addressInUse(Address _address) const;
|
|
|
|
|
|
|
|
/// Check if the address contains executable code.
|
|
|
|
bool addressHasCode(Address _address) const;
|
|
|
|
|
|
|
|
/// Get an account's balance.
|
|
|
|
/// @returns 0 if the address has never been used.
|
|
|
|
u256 balance(Address _id) const;
|
|
|
|
|
|
|
|
/// Add some amount to balance.
|
|
|
|
/// Will initialise the address if it has never been used.
|
|
|
|
void addBalance(Address _id, u256 _amount);
|
|
|
|
|
|
|
|
/** Subtract some amount from balance.
|
|
|
|
* @throws NotEnoughCash if balance of @a _id is less than @a _value (or has never been used).
|
|
|
|
* @note We use bigint here as we don't want any accidental problems with negative numbers.
|
|
|
|
*/
|
|
|
|
void subBalance(Address _id, bigint _value);
|
|
|
|
|
|
|
|
/// Get the root of the storage of an account.
|
|
|
|
h256 storageRoot(Address _contract) const;
|
|
|
|
|
|
|
|
/// Get the value of a storage position of an account.
|
|
|
|
/// @returns 0 if no account exists at that address.
|
|
|
|
u256 storage(Address _contract, u256 _memory) const;
|
|
|
|
|
|
|
|
/// Set the value of a storage position of an account.
|
|
|
|
void setStorage(Address _contract, u256 _location, u256 _value) { m_cache[_contract].setStorage(_location, _value); }
|
|
|
|
|
|
|
|
/// Create a new contract.
|
|
|
|
Address newContract(u256 _balance, bytes const& _code);
|
|
|
|
|
|
|
|
/// Get the storage of an account.
|
|
|
|
/// @note This is expensive. Don't use it unless you need to.
|
|
|
|
/// @returns std::map<u256, u256> if no account exists at that address.
|
|
|
|
std::map<u256, u256> storage(Address _contract) const;
|
|
|
|
|
|
|
|
/// Get the code of an account.
|
|
|
|
/// @returns bytes() if no account exists at that address.
|
|
|
|
bytes const& code(Address _contract) const;
|
|
|
|
|
|
|
|
/// Get the code hash of an account.
|
|
|
|
/// @returns EmptySHA3 if no account exists at that address or if there is no code associated with the address.
|
|
|
|
h256 codeHash(Address _contract) const;
|
|
|
|
|
|
|
|
/// Note that the given address is sending a transaction and thus increment the associated ticker.
|
|
|
|
void noteSending(Address _id);
|
|
|
|
|
|
|
|
/// Get the number of transactions a particular address has sent (used for the transaction nonce).
|
|
|
|
/// @returns 0 if the address has never been used.
|
|
|
|
u256 transactionsFrom(Address _address) const;
|
|
|
|
|
|
|
|
/// The hash of the root of our state tree.
|
|
|
|
h256 rootHash() const { return m_state.root(); }
|
|
|
|
|
|
|
|
/// Get the list of pending transactions.
|
|
|
|
Transactions const& pending() const { return m_transactions; }
|
|
|
|
|
|
|
|
/// Get the transaction receipt for the transaction of the given index.
|
|
|
|
TransactionReceipt const& receipt(unsigned _i) const { return m_receipts[_i]; }
|
|
|
|
|
|
|
|
/// Get the list of pending transactions.
|
|
|
|
LogEntries const& log(unsigned _i) const { return m_receipts[_i].log(); }
|
|
|
|
|
|
|
|
/// Get the bloom filter of all logs that happened in the block.
|
|
|
|
LogBloom logBloom() const;
|
|
|
|
|
|
|
|
/// Get the bloom filter of a particular transaction that happened in the block.
|
|
|
|
LogBloom const& logBloom(unsigned _i) const { return m_receipts[_i].bloom(); }
|
|
|
|
|
|
|
|
/// Get the State immediately after the given number of pending transactions have been applied.
|
|
|
|
/// If (_i == 0) returns the initial state of the block.
|
|
|
|
/// If (_i == pending().size()) returns the final state of the block, prior to rewards.
|
|
|
|
State fromPending(unsigned _i) const;
|
|
|
|
|
|
|
|
/// @returns the StateDiff caused by the pending transaction of index @a _i.
|
|
|
|
StateDiff pendingDiff(unsigned _i) const { return fromPending(_i).diff(fromPending(_i + 1)); }
|
|
|
|
|
|
|
|
/// @return the difference between this state (origin) and @a _c (destination).
|
|
|
|
StateDiff diff(State const& _c) const;
|
|
|
|
|
|
|
|
/// Sync our state with the block chain.
|
|
|
|
/// This basically involves wiping ourselves if we've been superceded and rebuilding from the transaction queue.
|
|
|
|
bool sync(BlockChain const& _bc);
|
|
|
|
|
|
|
|
/// Sync with the block chain, but rather than synching to the latest block, instead sync to the given block.
|
|
|
|
bool sync(BlockChain const& _bc, h256 _blockHash, BlockInfo const& _bi = BlockInfo());
|
|
|
|
|
|
|
|
/// Execute all transactions within a given block.
|
|
|
|
/// @returns the additional total difficulty.
|
|
|
|
u256 enactOn(bytesConstRef _block, BlockInfo const& _bi, BlockChain const& _bc);
|
|
|
|
|
|
|
|
/// Returns back to a pristine state after having done a playback.
|
|
|
|
/// @arg _fullCommit if true flush everything out to disk. If false, this effectively only validates
|
|
|
|
/// the block since all state changes are ultimately reversed.
|
|
|
|
void cleanup(bool _fullCommit);
|
|
|
|
|
|
|
|
/// Commit all changes waiting in the address cache to the DB.
|
|
|
|
void commit();
|
|
|
|
|
|
|
|
/// Sets m_currentBlock to a clean state, (i.e. no change from m_previousBlock).
|
|
|
|
void resetCurrent();
|
|
|
|
|
|
|
|
private:
|
|
|
|
/// Undo the changes to the state for committing to mine.
|
|
|
|
void uncommitToMine();
|
|
|
|
|
|
|
|
/// Retrieve all information about a given address into the cache.
|
|
|
|
/// If _requireMemory is true, grab the full memory should it be a contract item.
|
|
|
|
/// If _forceCreate is true, then insert a default item into the cache, in the case it doesn't
|
|
|
|
/// exist in the DB.
|
|
|
|
void ensureCached(Address _a, bool _requireCode, bool _forceCreate) const;
|
|
|
|
|
|
|
|
/// Retrieve all information about a given address into a cache.
|
|
|
|
void ensureCached(std::map<Address, Account>& _cache, Address _a, bool _requireCode, bool _forceCreate) const;
|
|
|
|
|
|
|
|
/// Execute the given block, assuming it corresponds to m_currentBlock.
|
|
|
|
/// Throws on failure.
|
|
|
|
u256 enact(bytesConstRef _block, BlockChain const& _bc, bool _checkNonce = true);
|
|
|
|
|
|
|
|
/// Finalise the block, applying the earned rewards.
|
|
|
|
void applyRewards(Addresses const& _uncleAddresses);
|
|
|
|
|
|
|
|
/// @returns gas used by transactions thus far executed.
|
|
|
|
u256 gasUsed() const { return m_receipts.size() ? m_receipts.back().gasUsed() : 0; }
|
|
|
|
|
|
|
|
/// Debugging only. Good for checking the Trie is in shape.
|
|
|
|
bool isTrieGood(bool _enforceRefs, bool _requireNoLeftOvers) const;
|
|
|
|
/// Debugging only. Good for checking the Trie is in shape.
|
|
|
|
void paranoia(std::string const& _when, bool _enforceRefs = false) const;
|
|
|
|
|
|
|
|
OverlayDB m_db; ///< Our overlay for the state tree.
|
|
|
|
SecureTrieDB<Address, OverlayDB> m_state; ///< Our state tree, as an OverlayDB DB.
|
|
|
|
Transactions m_transactions; ///< The current list of transactions that we've included in the state.
|
|
|
|
TransactionReceipts m_receipts; ///< The corresponding list of transaction receipts.
|
|
|
|
std::set<h256> m_transactionSet; ///< The set of transaction hashes that we've included in the state.
|
|
|
|
OverlayDB m_lastTx;
|
|
|
|
|
|
|
|
mutable std::map<Address, Account> m_cache; ///< Our address cache. This stores the states of each address that has (or at least might have) been changed.
|
|
|
|
|
|
|
|
BlockInfo m_previousBlock; ///< The previous block's information.
|
|
|
|
BlockInfo m_currentBlock; ///< The current block's information.
|
|
|
|
bytes m_currentBytes; ///< The current block.
|
|
|
|
|
|
|
|
bytes m_currentTxs; ///< The RLP-encoded block of transactions.
|
|
|
|
bytes m_currentUncles; ///< The RLP-encoded block of uncles.
|
|
|
|
|
|
|
|
Address m_ourAddress; ///< Our address (i.e. the address to which fees go).
|
|
|
|
|
|
|
|
ProofOfWork m_pow; ///< The PoW mining class.
|
|
|
|
|
|
|
|
u256 m_blockReward;
|
|
|
|
|
|
|
|
static std::string c_defaultPath;
|
|
|
|
|
|
|
|
friend std::ostream& operator<<(std::ostream& _out, State const& _s);
|
|
|
|
};
|
|
|
|
|
|
|
|
std::ostream& operator<<(std::ostream& _out, State const& _s);
|
|
|
|
|
|
|
|
template <class DB>
|
|
|
|
void commit(std::map<Address, Account> const& _cache, DB& _db, SecureTrieDB<Address, DB>& _state)
|
|
|
|
{
|
|
|
|
for (auto const& i: _cache)
|
|
|
|
if (!i.second.isAlive())
|
|
|
|
_state.remove(i.first);
|
|
|
|
else
|
|
|
|
{
|
|
|
|
RLPStream s(4);
|
|
|
|
s << i.second.nonce() << i.second.balance();
|
|
|
|
|
|
|
|
if (i.second.storageOverlay().empty())
|
|
|
|
{
|
|
|
|
assert(i.second.baseRoot());
|
|
|
|
s.append(i.second.baseRoot());
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
SecureTrieDB<h256, DB> storageDB(&_db, i.second.baseRoot());
|
|
|
|
for (auto const& j: i.second.storageOverlay())
|
|
|
|
if (j.second)
|
|
|
|
storageDB.insert(j.first, rlp(j.second));
|
|
|
|
else
|
|
|
|
storageDB.remove(j.first);
|
|
|
|
assert(storageDB.root());
|
|
|
|
s.append(storageDB.root());
|
|
|
|
}
|
|
|
|
|
|
|
|
if (i.second.isFreshCode())
|
|
|
|
{
|
|
|
|
h256 ch = sha3(i.second.code());
|
|
|
|
_db.insert(ch, &i.second.code());
|
|
|
|
s << ch;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
s << i.second.codeHash();
|
|
|
|
|
|
|
|
_state.insert(i.first, &s.out());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|