Browse Source
Remove ccan/hash (aka Jenkins lookup3) altogether. Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>ppa-0.6.1
Rusty Russell
9 years ago
10 changed files with 38 additions and 1734 deletions
@ -1 +0,0 @@ |
|||
../../licenses/CC0 |
@ -1,32 +0,0 @@ |
|||
#include "config.h" |
|||
#include <string.h> |
|||
#include <stdio.h> |
|||
|
|||
/** |
|||
* hash - routines for hashing bytes |
|||
* |
|||
* When creating a hash table it's important to have a hash function |
|||
* which mixes well and is fast. This package supplies such functions. |
|||
* |
|||
* The hash functions come in two flavors: the normal ones and the |
|||
* stable ones. The normal ones can vary from machine-to-machine and |
|||
* may change if we find better or faster hash algorithms in future. |
|||
* The stable ones will always give the same results on any computer, |
|||
* and on any version of this package. |
|||
* |
|||
* License: CC0 (Public domain) |
|||
* Maintainer: Rusty Russell <rusty@rustcorp.com.au> |
|||
* Author: Bob Jenkins <bob_jenkins@burtleburtle.net> |
|||
*/ |
|||
int main(int argc, char *argv[]) |
|||
{ |
|||
if (argc != 2) |
|||
return 1; |
|||
|
|||
if (strcmp(argv[1], "depends") == 0) { |
|||
printf("ccan/build_assert\n"); |
|||
return 0; |
|||
} |
|||
|
|||
return 1; |
|||
} |
@ -1,926 +0,0 @@ |
|||
/* CC0 (Public domain) - see LICENSE file for details */ |
|||
/*
|
|||
------------------------------------------------------------------------------- |
|||
lookup3.c, by Bob Jenkins, May 2006, Public Domain. |
|||
|
|||
These are functions for producing 32-bit hashes for hash table lookup. |
|||
hash_word(), hashlittle(), hashlittle2(), hashbig(), mix(), and final() |
|||
are externally useful functions. Routines to test the hash are included |
|||
if SELF_TEST is defined. You can use this free for any purpose. It's in |
|||
the public domain. It has no warranty. |
|||
|
|||
You probably want to use hashlittle(). hashlittle() and hashbig() |
|||
hash byte arrays. hashlittle() is is faster than hashbig() on |
|||
little-endian machines. Intel and AMD are little-endian machines. |
|||
On second thought, you probably want hashlittle2(), which is identical to |
|||
hashlittle() except it returns two 32-bit hashes for the price of one. |
|||
You could implement hashbig2() if you wanted but I haven't bothered here. |
|||
|
|||
If you want to find a hash of, say, exactly 7 integers, do |
|||
a = i1; b = i2; c = i3; |
|||
mix(a,b,c); |
|||
a += i4; b += i5; c += i6; |
|||
mix(a,b,c); |
|||
a += i7; |
|||
final(a,b,c); |
|||
then use c as the hash value. If you have a variable length array of |
|||
4-byte integers to hash, use hash_word(). If you have a byte array (like |
|||
a character string), use hashlittle(). If you have several byte arrays, or |
|||
a mix of things, see the comments above hashlittle(). |
|||
|
|||
Why is this so big? I read 12 bytes at a time into 3 4-byte integers, |
|||
then mix those integers. This is fast (you can do a lot more thorough |
|||
mixing with 12*3 instructions on 3 integers than you can with 3 instructions |
|||
on 1 byte), but shoehorning those bytes into integers efficiently is messy. |
|||
------------------------------------------------------------------------------- |
|||
*/ |
|||
//#define SELF_TEST 1
|
|||
|
|||
#if 0 |
|||
#include <stdio.h> /* defines printf for tests */ |
|||
#include <time.h> /* defines time_t for timings in the test */ |
|||
#include <stdint.h> /* defines uint32_t etc */ |
|||
#include <sys/param.h> /* attempt to define endianness */ |
|||
|
|||
#ifdef linux |
|||
# include <endian.h> /* attempt to define endianness */ |
|||
#endif |
|||
|
|||
/*
|
|||
* My best guess at if you are big-endian or little-endian. This may |
|||
* need adjustment. |
|||
*/ |
|||
#if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \ |
|||
__BYTE_ORDER == __LITTLE_ENDIAN) || \ |
|||
(defined(i386) || defined(__i386__) || defined(__i486__) || \ |
|||
defined(__i586__) || defined(__i686__) || defined(__x86_64) || \ |
|||
defined(vax) || defined(MIPSEL)) |
|||
# define HASH_LITTLE_ENDIAN 1 |
|||
# define HASH_BIG_ENDIAN 0 |
|||
#elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \ |
|||
__BYTE_ORDER == __BIG_ENDIAN) || \ |
|||
(defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel)) |
|||
# define HASH_LITTLE_ENDIAN 0 |
|||
# define HASH_BIG_ENDIAN 1 |
|||
#else |
|||
# error Unknown endian |
|||
#endif |
|||
#endif /* old hash.c headers. */ |
|||
|
|||
#include "hash.h" |
|||
|
|||
#if HAVE_LITTLE_ENDIAN |
|||
#define HASH_LITTLE_ENDIAN 1 |
|||
#define HASH_BIG_ENDIAN 0 |
|||
#elif HAVE_BIG_ENDIAN |
|||
#define HASH_LITTLE_ENDIAN 0 |
|||
#define HASH_BIG_ENDIAN 1 |
|||
#else |
|||
#error Unknown endian |
|||
#endif |
|||
|
|||
#define hashsize(n) ((uint32_t)1<<(n)) |
|||
#define hashmask(n) (hashsize(n)-1) |
|||
#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k)))) |
|||
|
|||
/*
|
|||
------------------------------------------------------------------------------- |
|||
mix -- mix 3 32-bit values reversibly. |
|||
|
|||
This is reversible, so any information in (a,b,c) before mix() is |
|||
still in (a,b,c) after mix(). |
|||
|
|||
If four pairs of (a,b,c) inputs are run through mix(), or through |
|||
mix() in reverse, there are at least 32 bits of the output that |
|||
are sometimes the same for one pair and different for another pair. |
|||
This was tested for: |
|||
* pairs that differed by one bit, by two bits, in any combination |
|||
of top bits of (a,b,c), or in any combination of bottom bits of |
|||
(a,b,c). |
|||
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed |
|||
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as |
|||
is commonly produced by subtraction) look like a single 1-bit |
|||
difference. |
|||
* the base values were pseudorandom, all zero but one bit set, or |
|||
all zero plus a counter that starts at zero. |
|||
|
|||
Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that |
|||
satisfy this are |
|||
4 6 8 16 19 4 |
|||
9 15 3 18 27 15 |
|||
14 9 3 7 17 3 |
|||
Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing |
|||
for "differ" defined as + with a one-bit base and a two-bit delta. I |
|||
used http://burtleburtle.net/bob/hash/avalanche.html to choose
|
|||
the operations, constants, and arrangements of the variables. |
|||
|
|||
This does not achieve avalanche. There are input bits of (a,b,c) |
|||
that fail to affect some output bits of (a,b,c), especially of a. The |
|||
most thoroughly mixed value is c, but it doesn't really even achieve |
|||
avalanche in c. |
|||
|
|||
This allows some parallelism. Read-after-writes are good at doubling |
|||
the number of bits affected, so the goal of mixing pulls in the opposite |
|||
direction as the goal of parallelism. I did what I could. Rotates |
|||
seem to cost as much as shifts on every machine I could lay my hands |
|||
on, and rotates are much kinder to the top and bottom bits, so I used |
|||
rotates. |
|||
------------------------------------------------------------------------------- |
|||
*/ |
|||
#define mix(a,b,c) \ |
|||
{ \ |
|||
a -= c; a ^= rot(c, 4); c += b; \ |
|||
b -= a; b ^= rot(a, 6); a += c; \ |
|||
c -= b; c ^= rot(b, 8); b += a; \ |
|||
a -= c; a ^= rot(c,16); c += b; \ |
|||
b -= a; b ^= rot(a,19); a += c; \ |
|||
c -= b; c ^= rot(b, 4); b += a; \ |
|||
} |
|||
|
|||
/*
|
|||
------------------------------------------------------------------------------- |
|||
final -- final mixing of 3 32-bit values (a,b,c) into c |
|||
|
|||
Pairs of (a,b,c) values differing in only a few bits will usually |
|||
produce values of c that look totally different. This was tested for |
|||
* pairs that differed by one bit, by two bits, in any combination |
|||
of top bits of (a,b,c), or in any combination of bottom bits of |
|||
(a,b,c). |
|||
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed |
|||
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as |
|||
is commonly produced by subtraction) look like a single 1-bit |
|||
difference. |
|||
* the base values were pseudorandom, all zero but one bit set, or |
|||
all zero plus a counter that starts at zero. |
|||
|
|||
These constants passed: |
|||
14 11 25 16 4 14 24 |
|||
12 14 25 16 4 14 24 |
|||
and these came close: |
|||
4 8 15 26 3 22 24 |
|||
10 8 15 26 3 22 24 |
|||
11 8 15 26 3 22 24 |
|||
------------------------------------------------------------------------------- |
|||
*/ |
|||
#define final(a,b,c) \ |
|||
{ \ |
|||
c ^= b; c -= rot(b,14); \ |
|||
a ^= c; a -= rot(c,11); \ |
|||
b ^= a; b -= rot(a,25); \ |
|||
c ^= b; c -= rot(b,16); \ |
|||
a ^= c; a -= rot(c,4); \ |
|||
b ^= a; b -= rot(a,14); \ |
|||
c ^= b; c -= rot(b,24); \ |
|||
} |
|||
|
|||
/*
|
|||
-------------------------------------------------------------------- |
|||
This works on all machines. To be useful, it requires |
|||
-- that the key be an array of uint32_t's, and |
|||
-- that the length be the number of uint32_t's in the key |
|||
|
|||
The function hash_word() is identical to hashlittle() on little-endian |
|||
machines, and identical to hashbig() on big-endian machines, |
|||
except that the length has to be measured in uint32_ts rather than in |
|||
bytes. hashlittle() is more complicated than hash_word() only because |
|||
hashlittle() has to dance around fitting the key bytes into registers. |
|||
-------------------------------------------------------------------- |
|||
*/ |
|||
uint32_t hash_u32( |
|||
const uint32_t *k, /* the key, an array of uint32_t values */ |
|||
size_t length, /* the length of the key, in uint32_ts */ |
|||
uint32_t initval) /* the previous hash, or an arbitrary value */ |
|||
{ |
|||
uint32_t a,b,c; |
|||
|
|||
/* Set up the internal state */ |
|||
a = b = c = 0xdeadbeef + (((uint32_t)length)<<2) + initval; |
|||
|
|||
/*------------------------------------------------- handle most of the key */ |
|||
while (length > 3) |
|||
{ |
|||
a += k[0]; |
|||
b += k[1]; |
|||
c += k[2]; |
|||
mix(a,b,c); |
|||
length -= 3; |
|||
k += 3; |
|||
} |
|||
|
|||
/*------------------------------------------- handle the last 3 uint32_t's */ |
|||
switch(length) /* all the case statements fall through */ |
|||
{ |
|||
case 3 : c+=k[2]; |
|||
case 2 : b+=k[1]; |
|||
case 1 : a+=k[0]; |
|||
final(a,b,c); |
|||
case 0: /* case 0: nothing left to add */ |
|||
break; |
|||
} |
|||
/*------------------------------------------------------ report the result */ |
|||
return c; |
|||
} |
|||
|
|||
/*
|
|||
------------------------------------------------------------------------------- |
|||
hashlittle() -- hash a variable-length key into a 32-bit value |
|||
k : the key (the unaligned variable-length array of bytes) |
|||
length : the length of the key, counting by bytes |
|||
val2 : IN: can be any 4-byte value OUT: second 32 bit hash. |
|||
Returns a 32-bit value. Every bit of the key affects every bit of |
|||
the return value. Two keys differing by one or two bits will have |
|||
totally different hash values. Note that the return value is better |
|||
mixed than val2, so use that first. |
|||
|
|||
The best hash table sizes are powers of 2. There is no need to do |
|||
mod a prime (mod is sooo slow!). If you need less than 32 bits, |
|||
use a bitmask. For example, if you need only 10 bits, do |
|||
h = (h & hashmask(10)); |
|||
In which case, the hash table should have hashsize(10) elements. |
|||
|
|||
If you are hashing n strings (uint8_t **)k, do it like this: |
|||
for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h); |
|||
|
|||
By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this |
|||
code any way you wish, private, educational, or commercial. It's free. |
|||
|
|||
Use for hash table lookup, or anything where one collision in 2^^32 is |
|||
acceptable. Do NOT use for cryptographic purposes. |
|||
------------------------------------------------------------------------------- |
|||
*/ |
|||
|
|||
static uint32_t hashlittle( const void *key, size_t length, uint32_t *val2 ) |
|||
{ |
|||
uint32_t a,b,c; /* internal state */ |
|||
union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */ |
|||
|
|||
/* Set up the internal state */ |
|||
a = b = c = 0xdeadbeef + ((uint32_t)length) + *val2; |
|||
|
|||
u.ptr = key; |
|||
if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { |
|||
const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ |
|||
const uint8_t *k8; |
|||
|
|||
/*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ |
|||
while (length > 12) |
|||
{ |
|||
a += k[0]; |
|||
b += k[1]; |
|||
c += k[2]; |
|||
mix(a,b,c); |
|||
length -= 12; |
|||
k += 3; |
|||
} |
|||
|
|||
/*----------------------------- handle the last (probably partial) block */ |
|||
/*
|
|||
* "k[2]&0xffffff" actually reads beyond the end of the string, but |
|||
* then masks off the part it's not allowed to read. Because the |
|||
* string is aligned, the masked-off tail is in the same word as the |
|||
* rest of the string. Every machine with memory protection I've seen |
|||
* does it on word boundaries, so is OK with this. But VALGRIND will |
|||
* still catch it and complain. The masking trick does make the hash |
|||
* noticably faster for short strings (like English words). |
|||
* |
|||
* Not on my testing with gcc 4.5 on an intel i5 CPU, at least --RR. |
|||
*/ |
|||
#if 0 |
|||
switch(length) |
|||
{ |
|||
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
|||
case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break; |
|||
case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break; |
|||
case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break; |
|||
case 8 : b+=k[1]; a+=k[0]; break; |
|||
case 7 : b+=k[1]&0xffffff; a+=k[0]; break; |
|||
case 6 : b+=k[1]&0xffff; a+=k[0]; break; |
|||
case 5 : b+=k[1]&0xff; a+=k[0]; break; |
|||
case 4 : a+=k[0]; break; |
|||
case 3 : a+=k[0]&0xffffff; break; |
|||
case 2 : a+=k[0]&0xffff; break; |
|||
case 1 : a+=k[0]&0xff; break; |
|||
case 0 : return c; /* zero length strings require no mixing */ |
|||
} |
|||
|
|||
#else /* make valgrind happy */ |
|||
|
|||
k8 = (const uint8_t *)k; |
|||
switch(length) |
|||
{ |
|||
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
|||
case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ |
|||
case 10: c+=((uint32_t)k8[9])<<8; /* fall through */ |
|||
case 9 : c+=k8[8]; /* fall through */ |
|||
case 8 : b+=k[1]; a+=k[0]; break; |
|||
case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ |
|||
case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */ |
|||
case 5 : b+=k8[4]; /* fall through */ |
|||
case 4 : a+=k[0]; break; |
|||
case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ |
|||
case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */ |
|||
case 1 : a+=k8[0]; break; |
|||
case 0 : return c; |
|||
} |
|||
|
|||
#endif /* !valgrind */ |
|||
|
|||
} else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { |
|||
const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */ |
|||
const uint8_t *k8; |
|||
|
|||
/*--------------- all but last block: aligned reads and different mixing */ |
|||
while (length > 12) |
|||
{ |
|||
a += k[0] + (((uint32_t)k[1])<<16); |
|||
b += k[2] + (((uint32_t)k[3])<<16); |
|||
c += k[4] + (((uint32_t)k[5])<<16); |
|||
mix(a,b,c); |
|||
length -= 12; |
|||
k += 6; |
|||
} |
|||
|
|||
/*----------------------------- handle the last (probably partial) block */ |
|||
k8 = (const uint8_t *)k; |
|||
switch(length) |
|||
{ |
|||
case 12: c+=k[4]+(((uint32_t)k[5])<<16); |
|||
b+=k[2]+(((uint32_t)k[3])<<16); |
|||
a+=k[0]+(((uint32_t)k[1])<<16); |
|||
break; |
|||
case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ |
|||
case 10: c+=k[4]; |
|||
b+=k[2]+(((uint32_t)k[3])<<16); |
|||
a+=k[0]+(((uint32_t)k[1])<<16); |
|||
break; |
|||
case 9 : c+=k8[8]; /* fall through */ |
|||
case 8 : b+=k[2]+(((uint32_t)k[3])<<16); |
|||
a+=k[0]+(((uint32_t)k[1])<<16); |
|||
break; |
|||
case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ |
|||
case 6 : b+=k[2]; |
|||
a+=k[0]+(((uint32_t)k[1])<<16); |
|||
break; |
|||
case 5 : b+=k8[4]; /* fall through */ |
|||
case 4 : a+=k[0]+(((uint32_t)k[1])<<16); |
|||
break; |
|||
case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ |
|||
case 2 : a+=k[0]; |
|||
break; |
|||
case 1 : a+=k8[0]; |
|||
break; |
|||
case 0 : return c; /* zero length requires no mixing */ |
|||
} |
|||
|
|||
} else { /* need to read the key one byte at a time */ |
|||
const uint8_t *k = (const uint8_t *)key; |
|||
|
|||
/*--------------- all but the last block: affect some 32 bits of (a,b,c) */ |
|||
while (length > 12) |
|||
{ |
|||
a += k[0]; |
|||
a += ((uint32_t)k[1])<<8; |
|||
a += ((uint32_t)k[2])<<16; |
|||
a += ((uint32_t)k[3])<<24; |
|||
b += k[4]; |
|||
b += ((uint32_t)k[5])<<8; |
|||
b += ((uint32_t)k[6])<<16; |
|||
b += ((uint32_t)k[7])<<24; |
|||
c += k[8]; |
|||
c += ((uint32_t)k[9])<<8; |
|||
c += ((uint32_t)k[10])<<16; |
|||
c += ((uint32_t)k[11])<<24; |
|||
mix(a,b,c); |
|||
length -= 12; |
|||
k += 12; |
|||
} |
|||
|
|||
/*-------------------------------- last block: affect all 32 bits of (c) */ |
|||
switch(length) /* all the case statements fall through */ |
|||
{ |
|||
case 12: c+=((uint32_t)k[11])<<24; |
|||
case 11: c+=((uint32_t)k[10])<<16; |
|||
case 10: c+=((uint32_t)k[9])<<8; |
|||
case 9 : c+=k[8]; |
|||
case 8 : b+=((uint32_t)k[7])<<24; |
|||
case 7 : b+=((uint32_t)k[6])<<16; |
|||
case 6 : b+=((uint32_t)k[5])<<8; |
|||
case 5 : b+=k[4]; |
|||
case 4 : a+=((uint32_t)k[3])<<24; |
|||
case 3 : a+=((uint32_t)k[2])<<16; |
|||
case 2 : a+=((uint32_t)k[1])<<8; |
|||
case 1 : a+=k[0]; |
|||
break; |
|||
case 0 : return c; |
|||
} |
|||
} |
|||
|
|||
final(a,b,c); |
|||
*val2 = b; |
|||
return c; |
|||
} |
|||
|
|||
/*
|
|||
* hashbig(): |
|||
* This is the same as hash_word() on big-endian machines. It is different |
|||
* from hashlittle() on all machines. hashbig() takes advantage of |
|||
* big-endian byte ordering. |
|||
*/ |
|||
static uint32_t hashbig( const void *key, size_t length, uint32_t *val2) |
|||
{ |
|||
uint32_t a,b,c; |
|||
union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */ |
|||
|
|||
/* Set up the internal state */ |
|||
a = b = c = 0xdeadbeef + ((uint32_t)length) + *val2; |
|||
|
|||
u.ptr = key; |
|||
if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) { |
|||
const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ |
|||
const uint8_t *k8; |
|||
|
|||
/*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ |
|||
while (length > 12) |
|||
{ |
|||
a += k[0]; |
|||
b += k[1]; |
|||
c += k[2]; |
|||
mix(a,b,c); |
|||
length -= 12; |
|||
k += 3; |
|||
} |
|||
|
|||
/*----------------------------- handle the last (probably partial) block */ |
|||
/*
|
|||
* "k[2]<<8" actually reads beyond the end of the string, but |
|||
* then shifts out the part it's not allowed to read. Because the |
|||
* string is aligned, the illegal read is in the same word as the |
|||
* rest of the string. Every machine with memory protection I've seen |
|||
* does it on word boundaries, so is OK with this. But VALGRIND will |
|||
* still catch it and complain. The masking trick does make the hash |
|||
* noticably faster for short strings (like English words). |
|||
* |
|||
* Not on my testing with gcc 4.5 on an intel i5 CPU, at least --RR. |
|||
*/ |
|||
#if 0 |
|||
switch(length) |
|||
{ |
|||
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
|||
case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break; |
|||
case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break; |
|||
case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break; |
|||
case 8 : b+=k[1]; a+=k[0]; break; |
|||
case 7 : b+=k[1]&0xffffff00; a+=k[0]; break; |
|||
case 6 : b+=k[1]&0xffff0000; a+=k[0]; break; |
|||
case 5 : b+=k[1]&0xff000000; a+=k[0]; break; |
|||
case 4 : a+=k[0]; break; |
|||
case 3 : a+=k[0]&0xffffff00; break; |
|||
case 2 : a+=k[0]&0xffff0000; break; |
|||
case 1 : a+=k[0]&0xff000000; break; |
|||
case 0 : return c; /* zero length strings require no mixing */ |
|||
} |
|||
|
|||
#else /* make valgrind happy */ |
|||
|
|||
k8 = (const uint8_t *)k; |
|||
switch(length) /* all the case statements fall through */ |
|||
{ |
|||
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
|||
case 11: c+=((uint32_t)k8[10])<<8; /* fall through */ |
|||
case 10: c+=((uint32_t)k8[9])<<16; /* fall through */ |
|||
case 9 : c+=((uint32_t)k8[8])<<24; /* fall through */ |
|||
case 8 : b+=k[1]; a+=k[0]; break; |
|||
case 7 : b+=((uint32_t)k8[6])<<8; /* fall through */ |
|||
case 6 : b+=((uint32_t)k8[5])<<16; /* fall through */ |
|||
case 5 : b+=((uint32_t)k8[4])<<24; /* fall through */ |
|||
case 4 : a+=k[0]; break; |
|||
case 3 : a+=((uint32_t)k8[2])<<8; /* fall through */ |
|||
case 2 : a+=((uint32_t)k8[1])<<16; /* fall through */ |
|||
case 1 : a+=((uint32_t)k8[0])<<24; break; |
|||
case 0 : return c; |
|||
} |
|||
|
|||
#endif /* !VALGRIND */ |
|||
|
|||
} else { /* need to read the key one byte at a time */ |
|||
const uint8_t *k = (const uint8_t *)key; |
|||
|
|||
/*--------------- all but the last block: affect some 32 bits of (a,b,c) */ |
|||
while (length > 12) |
|||
{ |
|||
a += ((uint32_t)k[0])<<24; |
|||
a += ((uint32_t)k[1])<<16; |
|||
a += ((uint32_t)k[2])<<8; |
|||
a += ((uint32_t)k[3]); |
|||
b += ((uint32_t)k[4])<<24; |
|||
b += ((uint32_t)k[5])<<16; |
|||
b += ((uint32_t)k[6])<<8; |
|||
b += ((uint32_t)k[7]); |
|||
c += ((uint32_t)k[8])<<24; |
|||
c += ((uint32_t)k[9])<<16; |
|||
c += ((uint32_t)k[10])<<8; |
|||
c += ((uint32_t)k[11]); |
|||
mix(a,b,c); |
|||
length -= 12; |
|||
k += 12; |
|||
} |
|||
|
|||
/*-------------------------------- last block: affect all 32 bits of (c) */ |
|||
switch(length) /* all the case statements fall through */ |
|||
{ |
|||
case 12: c+=k[11]; |
|||
case 11: c+=((uint32_t)k[10])<<8; |
|||
case 10: c+=((uint32_t)k[9])<<16; |
|||
case 9 : c+=((uint32_t)k[8])<<24; |
|||
case 8 : b+=k[7]; |
|||
case 7 : b+=((uint32_t)k[6])<<8; |
|||
case 6 : b+=((uint32_t)k[5])<<16; |
|||
case 5 : b+=((uint32_t)k[4])<<24; |
|||
case 4 : a+=k[3]; |
|||
case 3 : a+=((uint32_t)k[2])<<8; |
|||
case 2 : a+=((uint32_t)k[1])<<16; |
|||
case 1 : a+=((uint32_t)k[0])<<24; |
|||
break; |
|||
case 0 : return c; |
|||
} |
|||
} |
|||
|
|||
final(a,b,c); |
|||
*val2 = b; |
|||
return c; |
|||
} |
|||
|
|||
/* I basically use hashlittle here, but use native endian within each
|
|||
* element. This delivers least-surprise: hash such as "int arr[] = { |
|||
* 1, 2 }; hash_stable(arr, 2, 0);" will be the same on big and little |
|||
* endian machines, even though a bytewise hash wouldn't be. */ |
|||
uint64_t hash64_stable_64(const void *key, size_t n, uint64_t base) |
|||
{ |
|||
const uint64_t *k = key; |
|||
uint32_t a,b,c; |
|||
|
|||
/* Set up the internal state */ |
|||
a = b = c = 0xdeadbeef + ((uint32_t)n*8) + (base >> 32) + base; |
|||
|
|||
while (n > 3) { |
|||
a += (uint32_t)k[0]; |
|||
b += (uint32_t)(k[0] >> 32); |
|||
c += (uint32_t)k[1]; |
|||
mix(a,b,c); |
|||
a += (uint32_t)(k[1] >> 32); |
|||
b += (uint32_t)k[2]; |
|||
c += (uint32_t)(k[2] >> 32); |
|||
mix(a,b,c); |
|||
n -= 3; |
|||
k += 3; |
|||
} |
|||
switch (n) { |
|||
case 2: |
|||
a += (uint32_t)k[0]; |
|||
b += (uint32_t)(k[0] >> 32); |
|||
c += (uint32_t)k[1]; |
|||
mix(a,b,c); |
|||
a += (uint32_t)(k[1] >> 32); |
|||
break; |
|||
case 1: |
|||
a += (uint32_t)k[0]; |
|||
b += (uint32_t)(k[0] >> 32); |
|||
break; |
|||
case 0: |
|||
return c; |
|||
} |
|||
final(a,b,c); |
|||
return ((uint64_t)b << 32) | c; |
|||
} |
|||
|
|||
uint64_t hash64_stable_32(const void *key, size_t n, uint64_t base) |
|||
{ |
|||
const uint32_t *k = key; |
|||
uint32_t a,b,c; |
|||
|
|||
/* Set up the internal state */ |
|||
a = b = c = 0xdeadbeef + ((uint32_t)n*4) + (base >> 32) + base; |
|||
|
|||
while (n > 3) { |
|||
a += k[0]; |
|||
b += k[1]; |
|||
c += k[2]; |
|||
mix(a,b,c); |
|||
|
|||
n -= 3; |
|||
k += 3; |
|||
} |
|||
switch (n) { |
|||
case 2: |
|||
b += (uint32_t)k[1]; |
|||
case 1: |
|||
a += (uint32_t)k[0]; |
|||
break; |
|||
case 0: |
|||
return c; |
|||
} |
|||
final(a,b,c); |
|||
return ((uint64_t)b << 32) | c; |
|||
} |
|||
|
|||
uint64_t hash64_stable_16(const void *key, size_t n, uint64_t base) |
|||
{ |
|||
const uint16_t *k = key; |
|||
uint32_t a,b,c; |
|||
|
|||
/* Set up the internal state */ |
|||
a = b = c = 0xdeadbeef + ((uint32_t)n*2) + (base >> 32) + base; |
|||
|
|||
while (n > 6) { |
|||
a += (uint32_t)k[0] + ((uint32_t)k[1] << 16); |
|||
b += (uint32_t)k[2] + ((uint32_t)k[3] << 16); |
|||
c += (uint32_t)k[4] + ((uint32_t)k[5] << 16); |
|||
mix(a,b,c); |
|||
|
|||
n -= 6; |
|||
k += 6; |
|||
} |
|||
|
|||
switch (n) { |
|||
case 5: |
|||
c += (uint32_t)k[4]; |
|||
case 4: |
|||
b += ((uint32_t)k[3] << 16); |
|||
case 3: |
|||
b += (uint32_t)k[2]; |
|||
case 2: |
|||
a += ((uint32_t)k[1] << 16); |
|||
case 1: |
|||
a += (uint32_t)k[0]; |
|||
break; |
|||
case 0: |
|||
return c; |
|||
} |
|||
final(a,b,c); |
|||
return ((uint64_t)b << 32) | c; |
|||
} |
|||
|
|||
uint64_t hash64_stable_8(const void *key, size_t n, uint64_t base) |
|||
{ |
|||
uint32_t b32 = base + (base >> 32); |
|||
uint32_t lower = hashlittle(key, n, &b32); |
|||
|
|||
return ((uint64_t)b32 << 32) | lower; |
|||
} |
|||
|
|||
uint32_t hash_any(const void *key, size_t length, uint32_t base) |
|||
{ |
|||
if (HASH_BIG_ENDIAN) |
|||
return hashbig(key, length, &base); |
|||
else |
|||
return hashlittle(key, length, &base); |
|||
} |
|||
|
|||
uint32_t hash_stable_64(const void *key, size_t n, uint32_t base) |
|||
{ |
|||
return hash64_stable_64(key, n, base); |
|||
} |
|||
|
|||
uint32_t hash_stable_32(const void *key, size_t n, uint32_t base) |
|||
{ |
|||
return hash64_stable_32(key, n, base); |
|||
} |
|||
|
|||
uint32_t hash_stable_16(const void *key, size_t n, uint32_t base) |
|||
{ |
|||
return hash64_stable_16(key, n, base); |
|||
} |
|||
|
|||
uint32_t hash_stable_8(const void *key, size_t n, uint32_t base) |
|||
{ |
|||
return hashlittle(key, n, &base); |
|||
} |
|||
|
|||
/* Jenkins' lookup8 is a 64 bit hash, but he says it's obsolete. Use
|
|||
* the plain one and recombine into 64 bits. */ |
|||
uint64_t hash64_any(const void *key, size_t length, uint64_t base) |
|||
{ |
|||
uint32_t b32 = base + (base >> 32); |
|||
uint32_t lower; |
|||
|
|||
if (HASH_BIG_ENDIAN) |
|||
lower = hashbig(key, length, &b32); |
|||
else |
|||
lower = hashlittle(key, length, &b32); |
|||
|
|||
return ((uint64_t)b32 << 32) | lower; |
|||
} |
|||
|
|||
#ifdef SELF_TEST |
|||
|
|||
/* used for timings */ |
|||
void driver1() |
|||
{ |
|||
uint8_t buf[256]; |
|||
uint32_t i; |
|||
uint32_t h=0; |
|||
time_t a,z; |
|||
|
|||
time(&a); |
|||
for (i=0; i<256; ++i) buf[i] = 'x'; |
|||
for (i=0; i<1; ++i) |
|||
{ |
|||
h = hashlittle(&buf[0],1,h); |
|||
} |
|||
time(&z); |
|||
if (z-a > 0) printf("time %d %.8x\n", z-a, h); |
|||
} |
|||
|
|||
/* check that every input bit changes every output bit half the time */ |
|||
#define HASHSTATE 1 |
|||
#define HASHLEN 1 |
|||
#define MAXPAIR 60 |
|||
#define MAXLEN 70 |
|||
void driver2() |
|||
{ |
|||
uint8_t qa[MAXLEN+1], qb[MAXLEN+2], *a = &qa[0], *b = &qb[1]; |
|||
uint32_t c[HASHSTATE], d[HASHSTATE], i=0, j=0, k, l, m=0, z; |
|||
uint32_t e[HASHSTATE],f[HASHSTATE],g[HASHSTATE],h[HASHSTATE]; |
|||
uint32_t x[HASHSTATE],y[HASHSTATE]; |
|||
uint32_t hlen; |
|||
|
|||
printf("No more than %d trials should ever be needed \n",MAXPAIR/2); |
|||
for (hlen=0; hlen < MAXLEN; ++hlen) |
|||
{ |
|||
z=0; |
|||
for (i=0; i<hlen; ++i) /*----------------------- for each input byte, */ |
|||
{ |
|||
for (j=0; j<8; ++j) /*------------------------ for each input bit, */ |
|||
{ |
|||
for (m=1; m<8; ++m) /*------------ for several possible initvals, */ |
|||
{ |
|||
for (l=0; l<HASHSTATE; ++l) |
|||
e[l]=f[l]=g[l]=h[l]=x[l]=y[l]=~((uint32_t)0); |
|||
|
|||
/*---- check that every output bit is affected by that input bit */ |
|||
for (k=0; k<MAXPAIR; k+=2) |
|||
{ |
|||
uint32_t finished=1; |
|||
/* keys have one bit different */ |
|||
for (l=0; l<hlen+1; ++l) {a[l] = b[l] = (uint8_t)0;} |
|||
/* have a and b be two keys differing in only one bit */ |
|||
a[i] ^= (k<<j); |
|||
a[i] ^= (k>>(8-j)); |
|||
c[0] = hashlittle(a, hlen, m); |
|||
b[i] ^= ((k+1)<<j); |
|||
b[i] ^= ((k+1)>>(8-j)); |
|||
d[0] = hashlittle(b, hlen, m); |
|||
/* check every bit is 1, 0, set, and not set at least once */ |
|||
for (l=0; l<HASHSTATE; ++l) |
|||
{ |
|||
e[l] &= (c[l]^d[l]); |
|||
f[l] &= ~(c[l]^d[l]); |
|||
g[l] &= c[l]; |
|||
h[l] &= ~c[l]; |
|||
x[l] &= d[l]; |
|||
y[l] &= ~d[l]; |
|||
if (e[l]|f[l]|g[l]|h[l]|x[l]|y[l]) finished=0; |
|||
} |
|||
if (finished) break; |
|||
} |
|||
if (k>z) z=k; |
|||
if (k==MAXPAIR) |
|||
{ |
|||
printf("Some bit didn't change: "); |
|||
printf("%.8x %.8x %.8x %.8x %.8x %.8x ", |
|||
e[0],f[0],g[0],h[0],x[0],y[0]); |
|||
printf("i %d j %d m %d len %d\n", i, j, m, hlen); |
|||
} |
|||
if (z==MAXPAIR) goto done; |
|||
} |
|||
} |
|||
} |
|||
done: |
|||
if (z < MAXPAIR) |
|||
{ |
|||
printf("Mix success %2d bytes %2d initvals ",i,m); |
|||
printf("required %d trials\n", z/2); |
|||
} |
|||
} |
|||
printf("\n"); |
|||
} |
|||
|
|||
/* Check for reading beyond the end of the buffer and alignment problems */ |
|||
void driver3() |
|||
{ |
|||
uint8_t buf[MAXLEN+20], *b; |
|||
uint32_t len; |
|||
uint8_t q[] = "This is the time for all good men to come to the aid of their country..."; |
|||
uint32_t h; |
|||
uint8_t qq[] = "xThis is the time for all good men to come to the aid of their country..."; |
|||
uint32_t i; |
|||
uint8_t qqq[] = "xxThis is the time for all good men to come to the aid of their country..."; |
|||
uint32_t j; |
|||
uint8_t qqqq[] = "xxxThis is the time for all good men to come to the aid of their country..."; |
|||
uint32_t ref,x,y; |
|||
uint8_t *p; |
|||
|
|||
printf("Endianness. These lines should all be the same (for values filled in):\n"); |
|||
printf("%.8x %.8x %.8x\n", |
|||
hash_word((const uint32_t *)q, (sizeof(q)-1)/4, 13), |
|||
hash_word((const uint32_t *)q, (sizeof(q)-5)/4, 13), |
|||
hash_word((const uint32_t *)q, (sizeof(q)-9)/4, 13)); |
|||
p = q; |
|||
printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", |
|||
hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), |
|||
hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), |
|||
hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), |
|||
hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), |
|||
hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), |
|||
hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); |
|||
p = &qq[1]; |
|||
printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", |
|||
hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), |
|||
hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), |
|||
hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), |
|||
hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), |
|||
hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), |
|||
hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); |
|||
p = &qqq[2]; |
|||
printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", |
|||
hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), |
|||
hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), |
|||
hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), |
|||
hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), |
|||
hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), |
|||
hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); |
|||
p = &qqqq[3]; |
|||
printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", |
|||
hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), |
|||
hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), |
|||
hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), |
|||
hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), |
|||
hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), |
|||
hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); |
|||
printf("\n"); |
|||
|
|||
/* check that hashlittle2 and hashlittle produce the same results */ |
|||
i=47; j=0; |
|||
hashlittle2(q, sizeof(q), &i, &j); |
|||
if (hashlittle(q, sizeof(q), 47) != i) |
|||
printf("hashlittle2 and hashlittle mismatch\n"); |
|||
|
|||
/* check that hash_word2 and hash_word produce the same results */ |
|||
len = 0xdeadbeef; |
|||
i=47, j=0; |
|||
hash_word2(&len, 1, &i, &j); |
|||
if (hash_word(&len, 1, 47) != i) |
|||
printf("hash_word2 and hash_word mismatch %x %x\n", |
|||
i, hash_word(&len, 1, 47)); |
|||
|
|||
/* check hashlittle doesn't read before or after the ends of the string */ |
|||
for (h=0, b=buf+1; h<8; ++h, ++b) |
|||
{ |
|||
for (i=0; i<MAXLEN; ++i) |
|||
{ |
|||
len = i; |
|||
for (j=0; j<i; ++j) *(b+j)=0; |
|||
|
|||
/* these should all be equal */ |
|||
ref = hashlittle(b, len, (uint32_t)1); |
|||
*(b+i)=(uint8_t)~0; |
|||
*(b-1)=(uint8_t)~0; |
|||
x = hashlittle(b, len, (uint32_t)1); |
|||
y = hashlittle(b, len, (uint32_t)1); |
|||
if ((ref != x) || (ref != y)) |
|||
{ |
|||
printf("alignment error: %.8x %.8x %.8x %d %d\n",ref,x,y, |
|||
h, i); |
|||
} |
|||
} |
|||
} |
|||
} |
|||
|
|||
/* check for problems with nulls */ |
|||
void driver4() |
|||
{ |
|||
uint8_t buf[1]; |
|||
uint32_t h,i,state[HASHSTATE]; |
|||
|
|||
|
|||
buf[0] = ~0; |
|||
for (i=0; i<HASHSTATE; ++i) state[i] = 1; |
|||
printf("These should all be different\n"); |
|||
for (i=0, h=0; i<8; ++i) |
|||
{ |
|||
h = hashlittle(buf, 0, h); |
|||
printf("%2ld 0-byte strings, hash is %.8x\n", i, h); |
|||
} |
|||
} |
|||
|
|||
|
|||
int main() |
|||
{ |
|||
driver1(); /* test that the key is hashed: used for timings */ |
|||
driver2(); /* test that whole key is hashed thoroughly */ |
|||
driver3(); /* test that nothing but the key is hashed */ |
|||
driver4(); /* test hashing multiple buffers (all buffers are null) */ |
|||
return 1; |
|||
} |
|||
|
|||
#endif /* SELF_TEST */ |
@ -1,313 +0,0 @@ |
|||
/* CC0 (Public domain) - see LICENSE file for details */ |
|||
#ifndef CCAN_HASH_H |
|||
#define CCAN_HASH_H |
|||
#include "config.h" |
|||
#include <stdint.h> |
|||
#include <stdlib.h> |
|||
#include <ccan/build_assert/build_assert.h> |
|||
|
|||
/* Stolen mostly from: lookup3.c, by Bob Jenkins, May 2006, Public Domain.
|
|||
* |
|||
* http://burtleburtle.net/bob/c/lookup3.c
|
|||
*/ |
|||
|
|||
/**
|
|||
* hash - fast hash of an array for internal use |
|||
* @p: the array or pointer to first element |
|||
* @num: the number of elements to hash |
|||
* @base: the base number to roll into the hash (usually 0) |
|||
* |
|||
* The memory region pointed to by p is combined with the base to form |
|||
* a 32-bit hash. |
|||
* |
|||
* This hash will have different results on different machines, so is |
|||
* only useful for internal hashes (ie. not hashes sent across the |
|||
* network or saved to disk). |
|||
* |
|||
* It may also change with future versions: it could even detect at runtime |
|||
* what the fastest hash to use is. |
|||
* |
|||
* See also: hash64, hash_stable. |
|||
* |
|||
* Example: |
|||
* #include <ccan/hash/hash.h> |
|||
* #include <err.h> |
|||
* #include <stdio.h> |
|||
* #include <string.h> |
|||
* |
|||
* // Simple demonstration: idential strings will have the same hash, but
|
|||
* // two different strings will probably not.
|
|||
* int main(int argc, char *argv[]) |
|||
* { |
|||
* uint32_t hash1, hash2; |
|||
* |
|||
* if (argc != 3) |
|||
* err(1, "Usage: %s <string1> <string2>", argv[0]); |
|||
* |
|||
* hash1 = hash(argv[1], strlen(argv[1]), 0); |
|||
* hash2 = hash(argv[2], strlen(argv[2]), 0); |
|||
* printf("Hash is %s\n", hash1 == hash2 ? "same" : "different"); |
|||
* return 0; |
|||
* } |
|||
*/ |
|||
#define hash(p, num, base) hash_any((p), (num)*sizeof(*(p)), (base)) |
|||
|
|||
/**
|
|||
* hash_stable - hash of an array for external use |
|||
* @p: the array or pointer to first element |
|||
* @num: the number of elements to hash |
|||
* @base: the base number to roll into the hash (usually 0) |
|||
* |
|||
* The array of simple integer types pointed to by p is combined with |
|||
* the base to form a 32-bit hash. |
|||
* |
|||
* This hash will have the same results on different machines, so can |
|||
* be used for external hashes (ie. hashes sent across the network or |
|||
* saved to disk). The results will not change in future versions of |
|||
* this module. |
|||
* |
|||
* Note that it is only legal to hand an array of simple integer types |
|||
* to this hash (ie. char, uint16_t, int64_t, etc). In these cases, |
|||
* the same values will have the same hash result, even though the |
|||
* memory representations of integers depend on the machine |
|||
* endianness. |
|||
* |
|||
* See also: |
|||
* hash64_stable |
|||
* |
|||
* Example: |
|||
* #include <ccan/hash/hash.h> |
|||
* #include <err.h> |
|||
* #include <stdio.h> |
|||
* #include <string.h> |
|||
* |
|||
* int main(int argc, char *argv[]) |
|||
* { |
|||
* if (argc != 2) |
|||
* err(1, "Usage: %s <string-to-hash>", argv[0]); |
|||
* |
|||
* printf("Hash stable result is %u\n", |
|||
* hash_stable(argv[1], strlen(argv[1]), 0)); |
|||
* return 0; |
|||
* } |
|||
*/ |
|||
#define hash_stable(p, num, base) \ |
|||
(BUILD_ASSERT_OR_ZERO(sizeof(*(p)) == 8 || sizeof(*(p)) == 4 \ |
|||
|| sizeof(*(p)) == 2 || sizeof(*(p)) == 1) + \ |
|||
sizeof(*(p)) == 8 ? hash_stable_64((p), (num), (base)) \ |
|||
: sizeof(*(p)) == 4 ? hash_stable_32((p), (num), (base)) \ |
|||
: sizeof(*(p)) == 2 ? hash_stable_16((p), (num), (base)) \ |
|||
: hash_stable_8((p), (num), (base))) |
|||
|
|||
/**
|
|||
* hash_u32 - fast hash an array of 32-bit values for internal use |
|||
* @key: the array of uint32_t |
|||
* @num: the number of elements to hash |
|||
* @base: the base number to roll into the hash (usually 0) |
|||
* |
|||
* The array of uint32_t pointed to by @key is combined with the base |
|||
* to form a 32-bit hash. This is 2-3 times faster than hash() on small |
|||
* arrays, but the advantage vanishes over large hashes. |
|||
* |
|||
* This hash will have different results on different machines, so is |
|||
* only useful for internal hashes (ie. not hashes sent across the |
|||
* network or saved to disk). |
|||
*/ |
|||
uint32_t hash_u32(const uint32_t *key, size_t num, uint32_t base); |
|||
|
|||
/**
|
|||
* hash_string - very fast hash of an ascii string |
|||
* @str: the nul-terminated string |
|||
* |
|||
* The string is hashed, using a hash function optimized for ASCII and |
|||
* similar strings. It's weaker than the other hash functions. |
|||
* |
|||
* This hash may have different results on different machines, so is |
|||
* only useful for internal hashes (ie. not hashes sent across the |
|||
* network or saved to disk). The results will be different from the |
|||
* other hash functions in this module, too. |
|||
*/ |
|||
static inline uint32_t hash_string(const char *string) |
|||
{ |
|||
/* This is Karl Nelson <kenelson@ece.ucdavis.edu>'s X31 hash.
|
|||
* It's a little faster than the (much better) lookup3 hash(): 56ns vs |
|||
* 84ns on my 2GHz Intel Core Duo 2 laptop for a 10 char string. */ |
|||
uint32_t ret; |
|||
|
|||
for (ret = 0; *string; string++) |
|||
ret = (ret << 5) - ret + *string; |
|||
|
|||
return ret; |
|||
} |
|||
|
|||
/**
|
|||
* hash64 - fast 64-bit hash of an array for internal use |
|||
* @p: the array or pointer to first element |
|||
* @num: the number of elements to hash |
|||
* @base: the 64-bit base number to roll into the hash (usually 0) |
|||
* |
|||
* The memory region pointed to by p is combined with the base to form |
|||
* a 64-bit hash. |
|||
* |
|||
* This hash will have different results on different machines, so is |
|||
* only useful for internal hashes (ie. not hashes sent across the |
|||
* network or saved to disk). |
|||
* |
|||
* It may also change with future versions: it could even detect at runtime |
|||
* what the fastest hash to use is. |
|||
* |
|||
* See also: hash. |
|||
* |
|||
* Example: |
|||
* #include <ccan/hash/hash.h> |
|||
* #include <err.h> |
|||
* #include <stdio.h> |
|||
* #include <string.h> |
|||
* |
|||
* // Simple demonstration: idential strings will have the same hash, but
|
|||
* // two different strings will probably not.
|
|||
* int main(int argc, char *argv[]) |
|||
* { |
|||
* uint64_t hash1, hash2; |
|||
* |
|||
* if (argc != 3) |
|||
* err(1, "Usage: %s <string1> <string2>", argv[0]); |
|||
* |
|||
* hash1 = hash64(argv[1], strlen(argv[1]), 0); |
|||
* hash2 = hash64(argv[2], strlen(argv[2]), 0); |
|||
* printf("Hash is %s\n", hash1 == hash2 ? "same" : "different"); |
|||
* return 0; |
|||
* } |
|||
*/ |
|||
#define hash64(p, num, base) hash64_any((p), (num)*sizeof(*(p)), (base)) |
|||
|
|||
/**
|
|||
* hash64_stable - 64 bit hash of an array for external use |
|||
* @p: the array or pointer to first element |
|||
* @num: the number of elements to hash |
|||
* @base: the base number to roll into the hash (usually 0) |
|||
* |
|||
* The array of simple integer types pointed to by p is combined with |
|||
* the base to form a 64-bit hash. |
|||
* |
|||
* This hash will have the same results on different machines, so can |
|||
* be used for external hashes (ie. hashes sent across the network or |
|||
* saved to disk). The results will not change in future versions of |
|||
* this module. |
|||
* |
|||
* Note that it is only legal to hand an array of simple integer types |
|||
* to this hash (ie. char, uint16_t, int64_t, etc). In these cases, |
|||
* the same values will have the same hash result, even though the |
|||
* memory representations of integers depend on the machine |
|||
* endianness. |
|||
* |
|||
* See also: |
|||
* hash_stable |
|||
* |
|||
* Example: |
|||
* #include <ccan/hash/hash.h> |
|||
* #include <err.h> |
|||
* #include <stdio.h> |
|||
* #include <string.h> |
|||
* |
|||
* int main(int argc, char *argv[]) |
|||
* { |
|||
* if (argc != 2) |
|||
* err(1, "Usage: %s <string-to-hash>", argv[0]); |
|||
* |
|||
* printf("Hash stable result is %llu\n", |
|||
* (long long)hash64_stable(argv[1], strlen(argv[1]), 0)); |
|||
* return 0; |
|||
* } |
|||
*/ |
|||
#define hash64_stable(p, num, base) \ |
|||
(BUILD_ASSERT_OR_ZERO(sizeof(*(p)) == 8 || sizeof(*(p)) == 4 \ |
|||
|| sizeof(*(p)) == 2 || sizeof(*(p)) == 1) + \ |
|||
sizeof(*(p)) == 8 ? hash64_stable_64((p), (num), (base)) \ |
|||
: sizeof(*(p)) == 4 ? hash64_stable_32((p), (num), (base)) \ |
|||
: sizeof(*(p)) == 2 ? hash64_stable_16((p), (num), (base)) \ |
|||
: hash64_stable_8((p), (num), (base))) |
|||
|
|||
|
|||
/**
|
|||
* hashl - fast 32/64-bit hash of an array for internal use |
|||
* @p: the array or pointer to first element |
|||
* @num: the number of elements to hash |
|||
* @base: the base number to roll into the hash (usually 0) |
|||
* |
|||
* This is either hash() or hash64(), on 32/64 bit long machines. |
|||
*/ |
|||
#define hashl(p, num, base) \ |
|||
(BUILD_ASSERT_OR_ZERO(sizeof(long) == sizeof(uint32_t) \ |
|||
|| sizeof(long) == sizeof(uint64_t)) + \ |
|||
(sizeof(long) == sizeof(uint64_t) \ |
|||
? hash64((p), (num), (base)) : hash((p), (num), (base)))) |
|||
|
|||
/* Our underlying operations. */ |
|||
uint32_t hash_any(const void *key, size_t length, uint32_t base); |
|||
uint32_t hash_stable_64(const void *key, size_t n, uint32_t base); |
|||
uint32_t hash_stable_32(const void *key, size_t n, uint32_t base); |
|||
uint32_t hash_stable_16(const void *key, size_t n, uint32_t base); |
|||
uint32_t hash_stable_8(const void *key, size_t n, uint32_t base); |
|||
uint64_t hash64_any(const void *key, size_t length, uint64_t base); |
|||
uint64_t hash64_stable_64(const void *key, size_t n, uint64_t base); |
|||
uint64_t hash64_stable_32(const void *key, size_t n, uint64_t base); |
|||
uint64_t hash64_stable_16(const void *key, size_t n, uint64_t base); |
|||
uint64_t hash64_stable_8(const void *key, size_t n, uint64_t base); |
|||
|
|||
/**
|
|||
* hash_pointer - hash a pointer for internal use |
|||
* @p: the pointer value to hash |
|||
* @base: the base number to roll into the hash (usually 0) |
|||
* |
|||
* The pointer p (not what p points to!) is combined with the base to form |
|||
* a 32-bit hash. |
|||
* |
|||
* This hash will have different results on different machines, so is |
|||
* only useful for internal hashes (ie. not hashes sent across the |
|||
* network or saved to disk). |
|||
* |
|||
* Example: |
|||
* #include <ccan/hash/hash.h> |
|||
* |
|||
* // Code to keep track of memory regions.
|
|||
* struct region { |
|||
* struct region *chain; |
|||
* void *start; |
|||
* unsigned int size; |
|||
* }; |
|||
* // We keep a simple hash table.
|
|||
* static struct region *region_hash[128]; |
|||
* |
|||
* static void add_region(struct region *r) |
|||
* { |
|||
* unsigned int h = hash_pointer(r->start, 0); |
|||
* |
|||
* r->chain = region_hash[h]; |
|||
* region_hash[h] = r->chain; |
|||
* } |
|||
* |
|||
* static struct region *find_region(const void *start) |
|||
* { |
|||
* struct region *r; |
|||
* |
|||
* for (r = region_hash[hash_pointer(start, 0)]; r; r = r->chain) |
|||
* if (r->start == start) |
|||
* return r; |
|||
* return NULL; |
|||
* } |
|||
*/ |
|||
static inline uint32_t hash_pointer(const void *p, uint32_t base) |
|||
{ |
|||
if (sizeof(p) % sizeof(uint32_t) == 0) { |
|||
/* This convoluted union is the right way of aliasing. */ |
|||
union { |
|||
uint32_t a[sizeof(p) / sizeof(uint32_t)]; |
|||
const void *p; |
|||
} u; |
|||
u.p = p; |
|||
return hash_u32(u.a, sizeof(p) / sizeof(uint32_t), base); |
|||
} else |
|||
return hash(&p, 1, base); |
|||
} |
|||
#endif /* HASH_H */ |
@ -1,300 +0,0 @@ |
|||
#include <ccan/hash/hash.h> |
|||
#include <ccan/tap/tap.h> |
|||
#include <stdbool.h> |
|||
#include <string.h> |
|||
|
|||
#define ARRAY_WORDS 5 |
|||
|
|||
int main(int argc, char *argv[]) |
|||
{ |
|||
unsigned int i; |
|||
uint8_t u8array[ARRAY_WORDS]; |
|||
uint16_t u16array[ARRAY_WORDS]; |
|||
uint32_t u32array[ARRAY_WORDS]; |
|||
uint64_t u64array[ARRAY_WORDS]; |
|||
|
|||
/* Initialize arrays. */ |
|||
for (i = 0; i < ARRAY_WORDS; i++) { |
|||
u8array[i] = i; |
|||
u16array[i] = i; |
|||
u32array[i] = i; |
|||
u64array[i] = i; |
|||
} |
|||
|
|||
plan_tests(264); |
|||
|
|||
/* hash_stable is API-guaranteed. */ |
|||
ok1(hash_stable(u8array, ARRAY_WORDS, 0) == 0x1d4833cc); |
|||
ok1(hash_stable(u8array, ARRAY_WORDS, 1) == 0x37125e2 ); |
|||
ok1(hash_stable(u8array, ARRAY_WORDS, 2) == 0x330a007a); |
|||
ok1(hash_stable(u8array, ARRAY_WORDS, 4) == 0x7b0df29b); |
|||
ok1(hash_stable(u8array, ARRAY_WORDS, 8) == 0xe7e5d741); |
|||
ok1(hash_stable(u8array, ARRAY_WORDS, 16) == 0xaae57471); |
|||
ok1(hash_stable(u8array, ARRAY_WORDS, 32) == 0xc55399e5); |
|||
ok1(hash_stable(u8array, ARRAY_WORDS, 64) == 0x67f21f7 ); |
|||
ok1(hash_stable(u8array, ARRAY_WORDS, 128) == 0x1d795b71); |
|||
ok1(hash_stable(u8array, ARRAY_WORDS, 256) == 0xeb961671); |
|||
ok1(hash_stable(u8array, ARRAY_WORDS, 512) == 0xc2597247); |
|||
ok1(hash_stable(u8array, ARRAY_WORDS, 1024) == 0x3f5c4d75); |
|||
ok1(hash_stable(u8array, ARRAY_WORDS, 2048) == 0xe65cf4f9); |
|||
ok1(hash_stable(u8array, ARRAY_WORDS, 4096) == 0xf2cd06cb); |
|||
ok1(hash_stable(u8array, ARRAY_WORDS, 8192) == 0x443041e1); |
|||
ok1(hash_stable(u8array, ARRAY_WORDS, 16384) == 0xdfc618f5); |
|||
ok1(hash_stable(u8array, ARRAY_WORDS, 32768) == 0x5e3d5b97); |
|||
ok1(hash_stable(u8array, ARRAY_WORDS, 65536) == 0xd5f64730); |
|||
ok1(hash_stable(u8array, ARRAY_WORDS, 131072) == 0x372bbecc); |
|||
ok1(hash_stable(u8array, ARRAY_WORDS, 262144) == 0x7c194c8d); |
|||
ok1(hash_stable(u8array, ARRAY_WORDS, 524288) == 0x16cbb416); |
|||
ok1(hash_stable(u8array, ARRAY_WORDS, 1048576) == 0x53e99222); |
|||
ok1(hash_stable(u8array, ARRAY_WORDS, 2097152) == 0x6394554a); |
|||
ok1(hash_stable(u8array, ARRAY_WORDS, 4194304) == 0xd83a506d); |
|||
ok1(hash_stable(u8array, ARRAY_WORDS, 8388608) == 0x7619d9a4); |
|||
ok1(hash_stable(u8array, ARRAY_WORDS, 16777216) == 0xfe98e5f6); |
|||
ok1(hash_stable(u8array, ARRAY_WORDS, 33554432) == 0x6c262927); |
|||
ok1(hash_stable(u8array, ARRAY_WORDS, 67108864) == 0x3f0106fd); |
|||
ok1(hash_stable(u8array, ARRAY_WORDS, 134217728) == 0xc91e3a28); |
|||
ok1(hash_stable(u8array, ARRAY_WORDS, 268435456) == 0x14229579); |
|||
ok1(hash_stable(u8array, ARRAY_WORDS, 536870912) == 0x9dbefa76); |
|||
ok1(hash_stable(u8array, ARRAY_WORDS, 1073741824) == 0xb05c0c78); |
|||
ok1(hash_stable(u8array, ARRAY_WORDS, 2147483648U) == 0x88f24d81); |
|||
|
|||
ok1(hash_stable(u16array, ARRAY_WORDS, 0) == 0xecb5f507); |
|||
ok1(hash_stable(u16array, ARRAY_WORDS, 1) == 0xadd666e6); |
|||
ok1(hash_stable(u16array, ARRAY_WORDS, 2) == 0xea0f214c); |
|||
ok1(hash_stable(u16array, ARRAY_WORDS, 4) == 0xae4051ba); |
|||
ok1(hash_stable(u16array, ARRAY_WORDS, 8) == 0x6ed28026); |
|||
ok1(hash_stable(u16array, ARRAY_WORDS, 16) == 0xa3917a19); |
|||
ok1(hash_stable(u16array, ARRAY_WORDS, 32) == 0xf370f32b); |
|||
ok1(hash_stable(u16array, ARRAY_WORDS, 64) == 0x807af460); |
|||
ok1(hash_stable(u16array, ARRAY_WORDS, 128) == 0xb4c8cd83); |
|||
ok1(hash_stable(u16array, ARRAY_WORDS, 256) == 0xa10cb5b0); |
|||
ok1(hash_stable(u16array, ARRAY_WORDS, 512) == 0x8b7d7387); |
|||
ok1(hash_stable(u16array, ARRAY_WORDS, 1024) == 0x9e49d1c ); |
|||
ok1(hash_stable(u16array, ARRAY_WORDS, 2048) == 0x288830d1); |
|||
ok1(hash_stable(u16array, ARRAY_WORDS, 4096) == 0xbe078a43); |
|||
ok1(hash_stable(u16array, ARRAY_WORDS, 8192) == 0xa16d5d88); |
|||
ok1(hash_stable(u16array, ARRAY_WORDS, 16384) == 0x46839fcd); |
|||
ok1(hash_stable(u16array, ARRAY_WORDS, 32768) == 0x9db9bd4f); |
|||
ok1(hash_stable(u16array, ARRAY_WORDS, 65536) == 0xedff58f8); |
|||
ok1(hash_stable(u16array, ARRAY_WORDS, 131072) == 0x95ecef18); |
|||
ok1(hash_stable(u16array, ARRAY_WORDS, 262144) == 0x23c31b7d); |
|||
ok1(hash_stable(u16array, ARRAY_WORDS, 524288) == 0x1d85c7d0); |
|||
ok1(hash_stable(u16array, ARRAY_WORDS, 1048576) == 0x25218842); |
|||
ok1(hash_stable(u16array, ARRAY_WORDS, 2097152) == 0x711d985c); |
|||
ok1(hash_stable(u16array, ARRAY_WORDS, 4194304) == 0x85470eca); |
|||
ok1(hash_stable(u16array, ARRAY_WORDS, 8388608) == 0x99ed4ceb); |
|||
ok1(hash_stable(u16array, ARRAY_WORDS, 16777216) == 0x67b3710c); |
|||
ok1(hash_stable(u16array, ARRAY_WORDS, 33554432) == 0x77f1ab35); |
|||
ok1(hash_stable(u16array, ARRAY_WORDS, 67108864) == 0x81f688aa); |
|||
ok1(hash_stable(u16array, ARRAY_WORDS, 134217728) == 0x27b56ca5); |
|||
ok1(hash_stable(u16array, ARRAY_WORDS, 268435456) == 0xf21ba203); |
|||
ok1(hash_stable(u16array, ARRAY_WORDS, 536870912) == 0xd48d1d1 ); |
|||
ok1(hash_stable(u16array, ARRAY_WORDS, 1073741824) == 0xa542b62d); |
|||
ok1(hash_stable(u16array, ARRAY_WORDS, 2147483648U) == 0xa04c7058); |
|||
|
|||
ok1(hash_stable(u32array, ARRAY_WORDS, 0) == 0x13305f8c); |
|||
ok1(hash_stable(u32array, ARRAY_WORDS, 1) == 0x171abf74); |
|||
ok1(hash_stable(u32array, ARRAY_WORDS, 2) == 0x7646fcc7); |
|||
ok1(hash_stable(u32array, ARRAY_WORDS, 4) == 0xa758ed5); |
|||
ok1(hash_stable(u32array, ARRAY_WORDS, 8) == 0x2dedc2e4); |
|||
ok1(hash_stable(u32array, ARRAY_WORDS, 16) == 0x28e2076b); |
|||
ok1(hash_stable(u32array, ARRAY_WORDS, 32) == 0xb73091c5); |
|||
ok1(hash_stable(u32array, ARRAY_WORDS, 64) == 0x87daf5db); |
|||
ok1(hash_stable(u32array, ARRAY_WORDS, 128) == 0xa16dfe20); |
|||
ok1(hash_stable(u32array, ARRAY_WORDS, 256) == 0x300c63c3); |
|||
ok1(hash_stable(u32array, ARRAY_WORDS, 512) == 0x255c91fc); |
|||
ok1(hash_stable(u32array, ARRAY_WORDS, 1024) == 0x6357b26); |
|||
ok1(hash_stable(u32array, ARRAY_WORDS, 2048) == 0x4bc5f339); |
|||
ok1(hash_stable(u32array, ARRAY_WORDS, 4096) == 0x1301617c); |
|||
ok1(hash_stable(u32array, ARRAY_WORDS, 8192) == 0x506792c9); |
|||
ok1(hash_stable(u32array, ARRAY_WORDS, 16384) == 0xcd596705); |
|||
ok1(hash_stable(u32array, ARRAY_WORDS, 32768) == 0xa8713cac); |
|||
ok1(hash_stable(u32array, ARRAY_WORDS, 65536) == 0x94d9794); |
|||
ok1(hash_stable(u32array, ARRAY_WORDS, 131072) == 0xac753e8); |
|||
ok1(hash_stable(u32array, ARRAY_WORDS, 262144) == 0xcd8bdd20); |
|||
ok1(hash_stable(u32array, ARRAY_WORDS, 524288) == 0xd44faf80); |
|||
ok1(hash_stable(u32array, ARRAY_WORDS, 1048576) == 0x2547ccbe); |
|||
ok1(hash_stable(u32array, ARRAY_WORDS, 2097152) == 0xbab06dbc); |
|||
ok1(hash_stable(u32array, ARRAY_WORDS, 4194304) == 0xaac0e882); |
|||
ok1(hash_stable(u32array, ARRAY_WORDS, 8388608) == 0x443f48d0); |
|||
ok1(hash_stable(u32array, ARRAY_WORDS, 16777216) == 0xdff49fcc); |
|||
ok1(hash_stable(u32array, ARRAY_WORDS, 33554432) == 0x9ce0fd65); |
|||
ok1(hash_stable(u32array, ARRAY_WORDS, 67108864) == 0x9ddb1def); |
|||
ok1(hash_stable(u32array, ARRAY_WORDS, 134217728) == 0x86096f25); |
|||
ok1(hash_stable(u32array, ARRAY_WORDS, 268435456) == 0xe713b7b5); |
|||
ok1(hash_stable(u32array, ARRAY_WORDS, 536870912) == 0x5baeffc5); |
|||
ok1(hash_stable(u32array, ARRAY_WORDS, 1073741824) == 0xde874f52); |
|||
ok1(hash_stable(u32array, ARRAY_WORDS, 2147483648U) == 0xeca13b4e); |
|||
|
|||
ok1(hash_stable(u64array, ARRAY_WORDS, 0) == 0x12ef6302); |
|||
ok1(hash_stable(u64array, ARRAY_WORDS, 1) == 0xe9aeb406); |
|||
ok1(hash_stable(u64array, ARRAY_WORDS, 2) == 0xc4218ceb); |
|||
ok1(hash_stable(u64array, ARRAY_WORDS, 4) == 0xb3d11412); |
|||
ok1(hash_stable(u64array, ARRAY_WORDS, 8) == 0xdafbd654); |
|||
ok1(hash_stable(u64array, ARRAY_WORDS, 16) == 0x9c336cba); |
|||
ok1(hash_stable(u64array, ARRAY_WORDS, 32) == 0x65059721); |
|||
ok1(hash_stable(u64array, ARRAY_WORDS, 64) == 0x95b5bbe6); |
|||
ok1(hash_stable(u64array, ARRAY_WORDS, 128) == 0xe7596b84); |
|||
ok1(hash_stable(u64array, ARRAY_WORDS, 256) == 0x503622a2); |
|||
ok1(hash_stable(u64array, ARRAY_WORDS, 512) == 0xecdcc5ca); |
|||
ok1(hash_stable(u64array, ARRAY_WORDS, 1024) == 0xc40d0513); |
|||
ok1(hash_stable(u64array, ARRAY_WORDS, 2048) == 0xaab25e4d); |
|||
ok1(hash_stable(u64array, ARRAY_WORDS, 4096) == 0xcc353fb9); |
|||
ok1(hash_stable(u64array, ARRAY_WORDS, 8192) == 0x18e2319f); |
|||
ok1(hash_stable(u64array, ARRAY_WORDS, 16384) == 0xfddaae8d); |
|||
ok1(hash_stable(u64array, ARRAY_WORDS, 32768) == 0xef7976f2); |
|||
ok1(hash_stable(u64array, ARRAY_WORDS, 65536) == 0x86359fc9); |
|||
ok1(hash_stable(u64array, ARRAY_WORDS, 131072) == 0x8b5af385); |
|||
ok1(hash_stable(u64array, ARRAY_WORDS, 262144) == 0x80d4ee31); |
|||
ok1(hash_stable(u64array, ARRAY_WORDS, 524288) == 0x42f5f85b); |
|||
ok1(hash_stable(u64array, ARRAY_WORDS, 1048576) == 0x9a6920e1); |
|||
ok1(hash_stable(u64array, ARRAY_WORDS, 2097152) == 0x7b7c9850); |
|||
ok1(hash_stable(u64array, ARRAY_WORDS, 4194304) == 0x69573e09); |
|||
ok1(hash_stable(u64array, ARRAY_WORDS, 8388608) == 0xc942bc0e); |
|||
ok1(hash_stable(u64array, ARRAY_WORDS, 16777216) == 0x7a89f0f1); |
|||
ok1(hash_stable(u64array, ARRAY_WORDS, 33554432) == 0x2dd641ca); |
|||
ok1(hash_stable(u64array, ARRAY_WORDS, 67108864) == 0x89bbd391); |
|||
ok1(hash_stable(u64array, ARRAY_WORDS, 134217728) == 0xbcf88e31); |
|||
ok1(hash_stable(u64array, ARRAY_WORDS, 268435456) == 0xfa7a3460); |
|||
ok1(hash_stable(u64array, ARRAY_WORDS, 536870912) == 0x49a37be0); |
|||
ok1(hash_stable(u64array, ARRAY_WORDS, 1073741824) == 0x1b346394); |
|||
ok1(hash_stable(u64array, ARRAY_WORDS, 2147483648U) == 0x6c3a1592); |
|||
|
|||
ok1(hash64_stable(u8array, ARRAY_WORDS, 0) == 16887282882572727244ULL); |
|||
ok1(hash64_stable(u8array, ARRAY_WORDS, 1) == 12032777473133454818ULL); |
|||
ok1(hash64_stable(u8array, ARRAY_WORDS, 2) == 18183407363221487738ULL); |
|||
ok1(hash64_stable(u8array, ARRAY_WORDS, 4) == 17860764172704150171ULL); |
|||
ok1(hash64_stable(u8array, ARRAY_WORDS, 8) == 18076051600675559233ULL); |
|||
ok1(hash64_stable(u8array, ARRAY_WORDS, 16) == 9909361918431556721ULL); |
|||
ok1(hash64_stable(u8array, ARRAY_WORDS, 32) == 12937969888744675813ULL); |
|||
ok1(hash64_stable(u8array, ARRAY_WORDS, 64) == 5245669057381736951ULL); |
|||
ok1(hash64_stable(u8array, ARRAY_WORDS, 128) == 4376874646406519665ULL); |
|||
ok1(hash64_stable(u8array, ARRAY_WORDS, 256) == 14219974419871569521ULL); |
|||
ok1(hash64_stable(u8array, ARRAY_WORDS, 512) == 2263415354134458951ULL); |
|||
ok1(hash64_stable(u8array, ARRAY_WORDS, 1024) == 4953859694526221685ULL); |
|||
ok1(hash64_stable(u8array, ARRAY_WORDS, 2048) == 3432228642067641593ULL); |
|||
ok1(hash64_stable(u8array, ARRAY_WORDS, 4096) == 1219647244417697483ULL); |
|||
ok1(hash64_stable(u8array, ARRAY_WORDS, 8192) == 7629939424585859553ULL); |
|||
ok1(hash64_stable(u8array, ARRAY_WORDS, 16384) == 10041660531376789749ULL); |
|||
ok1(hash64_stable(u8array, ARRAY_WORDS, 32768) == 13859885793922603927ULL); |
|||
ok1(hash64_stable(u8array, ARRAY_WORDS, 65536) == 15069060338344675120ULL); |
|||
ok1(hash64_stable(u8array, ARRAY_WORDS, 131072) == 818163430835601100ULL); |
|||
ok1(hash64_stable(u8array, ARRAY_WORDS, 262144) == 14914314323019517069ULL); |
|||
ok1(hash64_stable(u8array, ARRAY_WORDS, 524288) == 17518437749769352214ULL); |
|||
ok1(hash64_stable(u8array, ARRAY_WORDS, 1048576) == 14920048004901212706ULL); |
|||
ok1(hash64_stable(u8array, ARRAY_WORDS, 2097152) == 8758567366332536138ULL); |
|||
ok1(hash64_stable(u8array, ARRAY_WORDS, 4194304) == 6226655736088907885ULL); |
|||
ok1(hash64_stable(u8array, ARRAY_WORDS, 8388608) == 13716650013685832100ULL); |
|||
ok1(hash64_stable(u8array, ARRAY_WORDS, 16777216) == 305325651636315638ULL); |
|||
ok1(hash64_stable(u8array, ARRAY_WORDS, 33554432) == 16784147606583781671ULL); |
|||
ok1(hash64_stable(u8array, ARRAY_WORDS, 67108864) == 16509467555140798205ULL); |
|||
ok1(hash64_stable(u8array, ARRAY_WORDS, 134217728) == 8717281234694060584ULL); |
|||
ok1(hash64_stable(u8array, ARRAY_WORDS, 268435456) == 8098476701725660537ULL); |
|||
ok1(hash64_stable(u8array, ARRAY_WORDS, 536870912) == 16345871539461094006ULL); |
|||
ok1(hash64_stable(u8array, ARRAY_WORDS, 1073741824) == 3755557000429964408ULL); |
|||
ok1(hash64_stable(u8array, ARRAY_WORDS, 2147483648U) == 15017348801959710081ULL); |
|||
|
|||
ok1(hash64_stable(u16array, ARRAY_WORDS, 0) == 1038028831307724039ULL); |
|||
ok1(hash64_stable(u16array, ARRAY_WORDS, 1) == 10155473272642627302ULL); |
|||
ok1(hash64_stable(u16array, ARRAY_WORDS, 2) == 5714751190106841420ULL); |
|||
ok1(hash64_stable(u16array, ARRAY_WORDS, 4) == 3923885607767527866ULL); |
|||
ok1(hash64_stable(u16array, ARRAY_WORDS, 8) == 3931017318293995558ULL); |
|||
ok1(hash64_stable(u16array, ARRAY_WORDS, 16) == 1469696588339313177ULL); |
|||
ok1(hash64_stable(u16array, ARRAY_WORDS, 32) == 11522218526952715051ULL); |
|||
ok1(hash64_stable(u16array, ARRAY_WORDS, 64) == 6953517591561958496ULL); |
|||
ok1(hash64_stable(u16array, ARRAY_WORDS, 128) == 7406689491740052867ULL); |
|||
ok1(hash64_stable(u16array, ARRAY_WORDS, 256) == 10101844489704093104ULL); |
|||
ok1(hash64_stable(u16array, ARRAY_WORDS, 512) == 12511348870707245959ULL); |
|||
ok1(hash64_stable(u16array, ARRAY_WORDS, 1024) == 1614019938016861468ULL); |
|||
ok1(hash64_stable(u16array, ARRAY_WORDS, 2048) == 5294796182374592721ULL); |
|||
ok1(hash64_stable(u16array, ARRAY_WORDS, 4096) == 16089570706643716675ULL); |
|||
ok1(hash64_stable(u16array, ARRAY_WORDS, 8192) == 1689302638424579464ULL); |
|||
ok1(hash64_stable(u16array, ARRAY_WORDS, 16384) == 1446340172370386893ULL); |
|||
ok1(hash64_stable(u16array, ARRAY_WORDS, 32768) == 16535503506744393039ULL); |
|||
ok1(hash64_stable(u16array, ARRAY_WORDS, 65536) == 3496794142527150328ULL); |
|||
ok1(hash64_stable(u16array, ARRAY_WORDS, 131072) == 6568245367474548504ULL); |
|||
ok1(hash64_stable(u16array, ARRAY_WORDS, 262144) == 9487676460765485949ULL); |
|||
ok1(hash64_stable(u16array, ARRAY_WORDS, 524288) == 4519762130966530000ULL); |
|||
ok1(hash64_stable(u16array, ARRAY_WORDS, 1048576) == 15623412069215340610ULL); |
|||
ok1(hash64_stable(u16array, ARRAY_WORDS, 2097152) == 544013388676438108ULL); |
|||
ok1(hash64_stable(u16array, ARRAY_WORDS, 4194304) == 5594904760290840266ULL); |
|||
ok1(hash64_stable(u16array, ARRAY_WORDS, 8388608) == 18098755780041592043ULL); |
|||
ok1(hash64_stable(u16array, ARRAY_WORDS, 16777216) == 6389168672387330316ULL); |
|||
ok1(hash64_stable(u16array, ARRAY_WORDS, 33554432) == 896986127732419381ULL); |
|||
ok1(hash64_stable(u16array, ARRAY_WORDS, 67108864) == 13232626471143901354ULL); |
|||
ok1(hash64_stable(u16array, ARRAY_WORDS, 134217728) == 53378562890493093ULL); |
|||
ok1(hash64_stable(u16array, ARRAY_WORDS, 268435456) == 10072361400297824771ULL); |
|||
ok1(hash64_stable(u16array, ARRAY_WORDS, 536870912) == 14511948118285144529ULL); |
|||
ok1(hash64_stable(u16array, ARRAY_WORDS, 1073741824) == 6981033484844447277ULL); |
|||
ok1(hash64_stable(u16array, ARRAY_WORDS, 2147483648U) == 5619339091684126808ULL); |
|||
|
|||
ok1(hash64_stable(u32array, ARRAY_WORDS, 0) == 3037571077312110476ULL); |
|||
ok1(hash64_stable(u32array, ARRAY_WORDS, 1) == 14732398743825071988ULL); |
|||
ok1(hash64_stable(u32array, ARRAY_WORDS, 2) == 14949132158206672071ULL); |
|||
ok1(hash64_stable(u32array, ARRAY_WORDS, 4) == 1291370080511561429ULL); |
|||
ok1(hash64_stable(u32array, ARRAY_WORDS, 8) == 10792665964172133092ULL); |
|||
ok1(hash64_stable(u32array, ARRAY_WORDS, 16) == 14250138032054339435ULL); |
|||
ok1(hash64_stable(u32array, ARRAY_WORDS, 32) == 17136741522078732741ULL); |
|||
ok1(hash64_stable(u32array, ARRAY_WORDS, 64) == 3260193403318236635ULL); |
|||
ok1(hash64_stable(u32array, ARRAY_WORDS, 128) == 10526616652205653536ULL); |
|||
ok1(hash64_stable(u32array, ARRAY_WORDS, 256) == 9019690373358576579ULL); |
|||
ok1(hash64_stable(u32array, ARRAY_WORDS, 512) == 6997491436599677436ULL); |
|||
ok1(hash64_stable(u32array, ARRAY_WORDS, 1024) == 18302783371416533798ULL); |
|||
ok1(hash64_stable(u32array, ARRAY_WORDS, 2048) == 10149320644446516025ULL); |
|||
ok1(hash64_stable(u32array, ARRAY_WORDS, 4096) == 7073759949410623868ULL); |
|||
ok1(hash64_stable(u32array, ARRAY_WORDS, 8192) == 17442399482223760073ULL); |
|||
ok1(hash64_stable(u32array, ARRAY_WORDS, 16384) == 2983906194216281861ULL); |
|||
ok1(hash64_stable(u32array, ARRAY_WORDS, 32768) == 4975845419129060524ULL); |
|||
ok1(hash64_stable(u32array, ARRAY_WORDS, 65536) == 594019910205413268ULL); |
|||
ok1(hash64_stable(u32array, ARRAY_WORDS, 131072) == 11903010186073691112ULL); |
|||
ok1(hash64_stable(u32array, ARRAY_WORDS, 262144) == 7339636527154847008ULL); |
|||
ok1(hash64_stable(u32array, ARRAY_WORDS, 524288) == 15243305400579108736ULL); |
|||
ok1(hash64_stable(u32array, ARRAY_WORDS, 1048576) == 16737926245392043198ULL); |
|||
ok1(hash64_stable(u32array, ARRAY_WORDS, 2097152) == 15725083267699862972ULL); |
|||
ok1(hash64_stable(u32array, ARRAY_WORDS, 4194304) == 12527834265678833794ULL); |
|||
ok1(hash64_stable(u32array, ARRAY_WORDS, 8388608) == 13908436455987824848ULL); |
|||
ok1(hash64_stable(u32array, ARRAY_WORDS, 16777216) == 9672773345173872588ULL); |
|||
ok1(hash64_stable(u32array, ARRAY_WORDS, 33554432) == 2305314279896710501ULL); |
|||
ok1(hash64_stable(u32array, ARRAY_WORDS, 67108864) == 1866733780381408751ULL); |
|||
ok1(hash64_stable(u32array, ARRAY_WORDS, 134217728) == 11906263969465724709ULL); |
|||
ok1(hash64_stable(u32array, ARRAY_WORDS, 268435456) == 5501594918093830069ULL); |
|||
ok1(hash64_stable(u32array, ARRAY_WORDS, 536870912) == 15823785789276225477ULL); |
|||
ok1(hash64_stable(u32array, ARRAY_WORDS, 1073741824) == 17353000723889475410ULL); |
|||
ok1(hash64_stable(u32array, ARRAY_WORDS, 2147483648U) == 7494736910655503182ULL); |
|||
|
|||
ok1(hash64_stable(u64array, ARRAY_WORDS, 0) == 9765419389786481410ULL); |
|||
ok1(hash64_stable(u64array, ARRAY_WORDS, 1) == 11182806172127114246ULL); |
|||
ok1(hash64_stable(u64array, ARRAY_WORDS, 2) == 2559155171395472619ULL); |
|||
ok1(hash64_stable(u64array, ARRAY_WORDS, 4) == 3311692033324815378ULL); |
|||
ok1(hash64_stable(u64array, ARRAY_WORDS, 8) == 1297175419505333844ULL); |
|||
ok1(hash64_stable(u64array, ARRAY_WORDS, 16) == 617896928653569210ULL); |
|||
ok1(hash64_stable(u64array, ARRAY_WORDS, 32) == 1517398559958603553ULL); |
|||
ok1(hash64_stable(u64array, ARRAY_WORDS, 64) == 4504821917445110758ULL); |
|||
ok1(hash64_stable(u64array, ARRAY_WORDS, 128) == 1971743331114904452ULL); |
|||
ok1(hash64_stable(u64array, ARRAY_WORDS, 256) == 6177667912354374306ULL); |
|||
ok1(hash64_stable(u64array, ARRAY_WORDS, 512) == 15570521289777792458ULL); |
|||
ok1(hash64_stable(u64array, ARRAY_WORDS, 1024) == 9204559632415917331ULL); |
|||
ok1(hash64_stable(u64array, ARRAY_WORDS, 2048) == 9008982669760028237ULL); |
|||
ok1(hash64_stable(u64array, ARRAY_WORDS, 4096) == 14803537660281700281ULL); |
|||
ok1(hash64_stable(u64array, ARRAY_WORDS, 8192) == 2873966517448487327ULL); |
|||
ok1(hash64_stable(u64array, ARRAY_WORDS, 16384) == 5859277625928363661ULL); |
|||
ok1(hash64_stable(u64array, ARRAY_WORDS, 32768) == 15520461285618185970ULL); |
|||
ok1(hash64_stable(u64array, ARRAY_WORDS, 65536) == 16746489793331175369ULL); |
|||
ok1(hash64_stable(u64array, ARRAY_WORDS, 131072) == 514952025484227461ULL); |
|||
ok1(hash64_stable(u64array, ARRAY_WORDS, 262144) == 10867212269810675249ULL); |
|||
ok1(hash64_stable(u64array, ARRAY_WORDS, 524288) == 9822204377278314587ULL); |
|||
ok1(hash64_stable(u64array, ARRAY_WORDS, 1048576) == 3295088921987850465ULL); |
|||
ok1(hash64_stable(u64array, ARRAY_WORDS, 2097152) == 7559197431498053712ULL); |
|||
ok1(hash64_stable(u64array, ARRAY_WORDS, 4194304) == 1667267269116771849ULL); |
|||
ok1(hash64_stable(u64array, ARRAY_WORDS, 8388608) == 2916804068951374862ULL); |
|||
ok1(hash64_stable(u64array, ARRAY_WORDS, 16777216) == 14422558383125688561ULL); |
|||
ok1(hash64_stable(u64array, ARRAY_WORDS, 33554432) == 10083112683694342602ULL); |
|||
ok1(hash64_stable(u64array, ARRAY_WORDS, 67108864) == 7222777647078298513ULL); |
|||
ok1(hash64_stable(u64array, ARRAY_WORDS, 134217728) == 18424513674048212529ULL); |
|||
ok1(hash64_stable(u64array, ARRAY_WORDS, 268435456) == 14913668581101810784ULL); |
|||
ok1(hash64_stable(u64array, ARRAY_WORDS, 536870912) == 14377721174297902048ULL); |
|||
ok1(hash64_stable(u64array, ARRAY_WORDS, 1073741824) == 6031715005667500948ULL); |
|||
ok1(hash64_stable(u64array, ARRAY_WORDS, 2147483648U) == 4827100319722378642ULL); |
|||
|
|||
return exit_status(); |
|||
} |
@ -1,149 +0,0 @@ |
|||
#include <ccan/hash/hash.h> |
|||
#include <ccan/tap/tap.h> |
|||
#include <ccan/hash/hash.c> |
|||
#include <stdbool.h> |
|||
#include <string.h> |
|||
|
|||
#define ARRAY_WORDS 5 |
|||
|
|||
int main(int argc, char *argv[]) |
|||
{ |
|||
unsigned int i, j, k; |
|||
uint32_t array[ARRAY_WORDS], val; |
|||
char array2[sizeof(array) + sizeof(uint32_t)]; |
|||
uint32_t results[256]; |
|||
|
|||
/* Initialize array. */ |
|||
for (i = 0; i < ARRAY_WORDS; i++) |
|||
array[i] = i; |
|||
|
|||
plan_tests(39); |
|||
/* Hash should be the same, indep of memory alignment. */ |
|||
val = hash(array, ARRAY_WORDS, 0); |
|||
for (i = 0; i < sizeof(uint32_t); i++) { |
|||
memcpy(array2 + i, array, sizeof(array)); |
|||
ok(hash(array2 + i, ARRAY_WORDS, 0) != val, |
|||
"hash matched at offset %i", i); |
|||
} |
|||
|
|||
/* Hash of random values should have random distribution:
|
|||
* check one byte at a time. */ |
|||
for (i = 0; i < sizeof(uint32_t); i++) { |
|||
unsigned int lowest = -1U, highest = 0; |
|||
|
|||
memset(results, 0, sizeof(results)); |
|||
|
|||
for (j = 0; j < 256000; j++) { |
|||
for (k = 0; k < ARRAY_WORDS; k++) |
|||
array[k] = random(); |
|||
results[(hash(array, ARRAY_WORDS, 0) >> i*8)&0xFF]++; |
|||
} |
|||
|
|||
for (j = 0; j < 256; j++) { |
|||
if (results[j] < lowest) |
|||
lowest = results[j]; |
|||
if (results[j] > highest) |
|||
highest = results[j]; |
|||
} |
|||
/* Expect within 20% */ |
|||
ok(lowest > 800, "Byte %i lowest %i", i, lowest); |
|||
ok(highest < 1200, "Byte %i highest %i", i, highest); |
|||
diag("Byte %i, range %u-%u", i, lowest, highest); |
|||
} |
|||
|
|||
/* Hash of random values should have random distribution:
|
|||
* check one byte at a time. */ |
|||
for (i = 0; i < sizeof(uint64_t); i++) { |
|||
unsigned int lowest = -1U, highest = 0; |
|||
|
|||
memset(results, 0, sizeof(results)); |
|||
|
|||
for (j = 0; j < 256000; j++) { |
|||
for (k = 0; k < ARRAY_WORDS; k++) |
|||
array[k] = random(); |
|||
results[(hash64(array, sizeof(array)/sizeof(uint64_t), |
|||
0) >> i*8)&0xFF]++; |
|||
} |
|||
|
|||
for (j = 0; j < 256; j++) { |
|||
if (results[j] < lowest) |
|||
lowest = results[j]; |
|||
if (results[j] > highest) |
|||
highest = results[j]; |
|||
} |
|||
/* Expect within 20% */ |
|||
ok(lowest > 800, "Byte %i lowest %i", i, lowest); |
|||
ok(highest < 1200, "Byte %i highest %i", i, highest); |
|||
diag("Byte %i, range %u-%u", i, lowest, highest); |
|||
} |
|||
|
|||
/* Hash of pointer values should also have random distribution. */ |
|||
for (i = 0; i < sizeof(uint32_t); i++) { |
|||
unsigned int lowest = -1U, highest = 0; |
|||
char *p = malloc(256000); |
|||
|
|||
memset(results, 0, sizeof(results)); |
|||
|
|||
for (j = 0; j < 256000; j++) |
|||
results[(hash_pointer(p + j, 0) >> i*8)&0xFF]++; |
|||
free(p); |
|||
|
|||
for (j = 0; j < 256; j++) { |
|||
if (results[j] < lowest) |
|||
lowest = results[j]; |
|||
if (results[j] > highest) |
|||
highest = results[j]; |
|||
} |
|||
/* Expect within 20% */ |
|||
ok(lowest > 800, "hash_pointer byte %i lowest %i", i, lowest); |
|||
ok(highest < 1200, "hash_pointer byte %i highest %i", |
|||
i, highest); |
|||
diag("hash_pointer byte %i, range %u-%u", i, lowest, highest); |
|||
} |
|||
|
|||
if (sizeof(long) == sizeof(uint32_t)) |
|||
ok1(hashl(array, ARRAY_WORDS, 0) |
|||
== hash(array, ARRAY_WORDS, 0)); |
|||
else |
|||
ok1(hashl(array, ARRAY_WORDS, 0) |
|||
== hash64(array, ARRAY_WORDS, 0)); |
|||
|
|||
/* String hash: weak, so only test bottom byte */ |
|||
for (i = 0; i < 1; i++) { |
|||
unsigned int num = 0, cursor, lowest = -1U, highest = 0; |
|||
char p[5]; |
|||
|
|||
memset(results, 0, sizeof(results)); |
|||
|
|||
memset(p, 'A', sizeof(p)); |
|||
p[sizeof(p)-1] = '\0'; |
|||
|
|||
for (;;) { |
|||
for (cursor = 0; cursor < sizeof(p)-1; cursor++) { |
|||
p[cursor]++; |
|||
if (p[cursor] <= 'z') |
|||
break; |
|||
p[cursor] = 'A'; |
|||
} |
|||
if (cursor == sizeof(p)-1) |
|||
break; |
|||
|
|||
results[(hash_string(p) >> i*8)&0xFF]++; |
|||
num++; |
|||
} |
|||
|
|||
for (j = 0; j < 256; j++) { |
|||
if (results[j] < lowest) |
|||
lowest = results[j]; |
|||
if (results[j] > highest) |
|||
highest = results[j]; |
|||
} |
|||
/* Expect within 20% */ |
|||
ok(lowest > 35000, "hash_pointer byte %i lowest %i", i, lowest); |
|||
ok(highest < 53000, "hash_pointer byte %i highest %i", |
|||
i, highest); |
|||
diag("hash_pointer byte %i, range %u-%u", i, lowest, highest); |
|||
} |
|||
|
|||
return exit_status(); |
|||
} |
@ -1,28 +1,42 @@ |
|||
#include "pseudorand.h" |
|||
#include <assert.h> |
|||
#include <ccan/crypto/siphash24/siphash24.h> |
|||
#include <ccan/err/err.h> |
|||
#include <ccan/isaac/isaac64.h> |
|||
#include <ccan/likely/likely.h> |
|||
#include <openssl/err.h> |
|||
#include <openssl/rand.h> |
|||
#include <sodium/randombytes.h> |
|||
#include <stdbool.h> |
|||
#include <string.h> |
|||
|
|||
static struct isaac64_ctx isaac64; |
|||
static struct siphash_seed siphashseed; |
|||
static bool pseudorand_initted = false; |
|||
|
|||
uint64_t pseudorand(uint64_t max) |
|||
static void init_if_needed(void) |
|||
{ |
|||
if (unlikely(!pseudorand_initted)) { |
|||
unsigned char seedbuf[16]; |
|||
|
|||
/* PRNG */ |
|||
if (RAND_bytes(seedbuf, sizeof(seedbuf)) != 1) |
|||
errx(1, "Could not seed PRNG: %s", |
|||
ERR_error_string(ERR_get_error(), NULL)); |
|||
randombytes_buf(seedbuf, sizeof(seedbuf)); |
|||
|
|||
isaac64_init(&isaac64, seedbuf, sizeof(seedbuf)); |
|||
memcpy(&siphashseed, seedbuf, sizeof(siphashseed)); |
|||
pseudorand_initted = true; |
|||
} |
|||
} |
|||
|
|||
uint64_t pseudorand(uint64_t max) |
|||
{ |
|||
init_if_needed(); |
|||
|
|||
assert(max); |
|||
return isaac64_next_uint(&isaac64, max); |
|||
} |
|||
|
|||
const struct siphash_seed *siphash_seed(void) |
|||
{ |
|||
init_if_needed(); |
|||
|
|||
return &siphashseed; |
|||
} |
|||
|
|||
|
Loading…
Reference in new issue