Browse Source

daemon: use siphash for hashes.

Remove ccan/hash (aka Jenkins lookup3) altogether.

Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
ppa-0.6.1
Rusty Russell 9 years ago
parent
commit
04b3e8f91d
  1. 6
      Makefile
  2. 1
      ccan/ccan/hash/LICENSE
  3. 32
      ccan/ccan/hash/_info
  4. 926
      ccan/ccan/hash/hash.c
  5. 313
      ccan/ccan/hash/hash.h
  6. 300
      ccan/ccan/hash/test/api-hash_stable.c
  7. 149
      ccan/ccan/hash/test/run.c
  8. 28
      daemon/pseudorand.c
  9. 6
      daemon/pseudorand.h
  10. 11
      daemon/watch.c

6
Makefile

@ -58,8 +58,8 @@ CCAN_OBJS := \
ccan-crypto-sha256.o \
ccan-crypto-shachain.o \
ccan-asort.o \
ccan-crypto-siphash24.o \
ccan-err.o \
ccan-hash.o \
ccan-htable.o \
ccan-ilog.o \
ccan-io-io.o \
@ -99,9 +99,9 @@ CCAN_HEADERS := \
$(CCANDIR)/ccan/crypto/ripemd160/ripemd160.h \
$(CCANDIR)/ccan/crypto/sha256/sha256.h \
$(CCANDIR)/ccan/crypto/shachain/shachain.h \
$(CCANDIR)/ccan/crypto/siphash24/siphash24.h \
$(CCANDIR)/ccan/endian/endian.h \
$(CCANDIR)/ccan/err/err.h \
$(CCANDIR)/ccan/hash/hash.h \
$(CCANDIR)/ccan/htable/htable.h \
$(CCANDIR)/ccan/htable/htable_type.h \
$(CCANDIR)/ccan/ilog/ilog.h \
@ -389,7 +389,7 @@ ccan-cdump.o: $(CCANDIR)/ccan/cdump/cdump.c
$(CC) $(CFLAGS) -c -o $@ $<
ccan-strmap.o: $(CCANDIR)/ccan/strmap/strmap.c
$(CC) $(CFLAGS) -c -o $@ $<
ccan-hash.o: $(CCANDIR)/ccan/hash/hash.c
ccan-crypto-siphash24.o: $(CCANDIR)/ccan/crypto/siphash24/siphash24.c
$(CC) $(CFLAGS) -c -o $@ $<
ccan-htable.o: $(CCANDIR)/ccan/htable/htable.c
$(CC) $(CFLAGS) -c -o $@ $<

1
ccan/ccan/hash/LICENSE

@ -1 +0,0 @@
../../licenses/CC0

32
ccan/ccan/hash/_info

@ -1,32 +0,0 @@
#include "config.h"
#include <string.h>
#include <stdio.h>
/**
* hash - routines for hashing bytes
*
* When creating a hash table it's important to have a hash function
* which mixes well and is fast. This package supplies such functions.
*
* The hash functions come in two flavors: the normal ones and the
* stable ones. The normal ones can vary from machine-to-machine and
* may change if we find better or faster hash algorithms in future.
* The stable ones will always give the same results on any computer,
* and on any version of this package.
*
* License: CC0 (Public domain)
* Maintainer: Rusty Russell <rusty@rustcorp.com.au>
* Author: Bob Jenkins <bob_jenkins@burtleburtle.net>
*/
int main(int argc, char *argv[])
{
if (argc != 2)
return 1;
if (strcmp(argv[1], "depends") == 0) {
printf("ccan/build_assert\n");
return 0;
}
return 1;
}

926
ccan/ccan/hash/hash.c

@ -1,926 +0,0 @@
/* CC0 (Public domain) - see LICENSE file for details */
/*
-------------------------------------------------------------------------------
lookup3.c, by Bob Jenkins, May 2006, Public Domain.
These are functions for producing 32-bit hashes for hash table lookup.
hash_word(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
are externally useful functions. Routines to test the hash are included
if SELF_TEST is defined. You can use this free for any purpose. It's in
the public domain. It has no warranty.
You probably want to use hashlittle(). hashlittle() and hashbig()
hash byte arrays. hashlittle() is is faster than hashbig() on
little-endian machines. Intel and AMD are little-endian machines.
On second thought, you probably want hashlittle2(), which is identical to
hashlittle() except it returns two 32-bit hashes for the price of one.
You could implement hashbig2() if you wanted but I haven't bothered here.
If you want to find a hash of, say, exactly 7 integers, do
a = i1; b = i2; c = i3;
mix(a,b,c);
a += i4; b += i5; c += i6;
mix(a,b,c);
a += i7;
final(a,b,c);
then use c as the hash value. If you have a variable length array of
4-byte integers to hash, use hash_word(). If you have a byte array (like
a character string), use hashlittle(). If you have several byte arrays, or
a mix of things, see the comments above hashlittle().
Why is this so big? I read 12 bytes at a time into 3 4-byte integers,
then mix those integers. This is fast (you can do a lot more thorough
mixing with 12*3 instructions on 3 integers than you can with 3 instructions
on 1 byte), but shoehorning those bytes into integers efficiently is messy.
-------------------------------------------------------------------------------
*/
//#define SELF_TEST 1
#if 0
#include <stdio.h> /* defines printf for tests */
#include <time.h> /* defines time_t for timings in the test */
#include <stdint.h> /* defines uint32_t etc */
#include <sys/param.h> /* attempt to define endianness */
#ifdef linux
# include <endian.h> /* attempt to define endianness */
#endif
/*
* My best guess at if you are big-endian or little-endian. This may
* need adjustment.
*/
#if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \
__BYTE_ORDER == __LITTLE_ENDIAN) || \
(defined(i386) || defined(__i386__) || defined(__i486__) || \
defined(__i586__) || defined(__i686__) || defined(__x86_64) || \
defined(vax) || defined(MIPSEL))
# define HASH_LITTLE_ENDIAN 1
# define HASH_BIG_ENDIAN 0
#elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \
__BYTE_ORDER == __BIG_ENDIAN) || \
(defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel))
# define HASH_LITTLE_ENDIAN 0
# define HASH_BIG_ENDIAN 1
#else
# error Unknown endian
#endif
#endif /* old hash.c headers. */
#include "hash.h"
#if HAVE_LITTLE_ENDIAN
#define HASH_LITTLE_ENDIAN 1
#define HASH_BIG_ENDIAN 0
#elif HAVE_BIG_ENDIAN
#define HASH_LITTLE_ENDIAN 0
#define HASH_BIG_ENDIAN 1
#else
#error Unknown endian
#endif
#define hashsize(n) ((uint32_t)1<<(n))
#define hashmask(n) (hashsize(n)-1)
#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
/*
-------------------------------------------------------------------------------
mix -- mix 3 32-bit values reversibly.
This is reversible, so any information in (a,b,c) before mix() is
still in (a,b,c) after mix().
If four pairs of (a,b,c) inputs are run through mix(), or through
mix() in reverse, there are at least 32 bits of the output that
are sometimes the same for one pair and different for another pair.
This was tested for:
* pairs that differed by one bit, by two bits, in any combination
of top bits of (a,b,c), or in any combination of bottom bits of
(a,b,c).
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
is commonly produced by subtraction) look like a single 1-bit
difference.
* the base values were pseudorandom, all zero but one bit set, or
all zero plus a counter that starts at zero.
Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
satisfy this are
4 6 8 16 19 4
9 15 3 18 27 15
14 9 3 7 17 3
Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
for "differ" defined as + with a one-bit base and a two-bit delta. I
used http://burtleburtle.net/bob/hash/avalanche.html to choose
the operations, constants, and arrangements of the variables.
This does not achieve avalanche. There are input bits of (a,b,c)
that fail to affect some output bits of (a,b,c), especially of a. The
most thoroughly mixed value is c, but it doesn't really even achieve
avalanche in c.
This allows some parallelism. Read-after-writes are good at doubling
the number of bits affected, so the goal of mixing pulls in the opposite
direction as the goal of parallelism. I did what I could. Rotates
seem to cost as much as shifts on every machine I could lay my hands
on, and rotates are much kinder to the top and bottom bits, so I used
rotates.
-------------------------------------------------------------------------------
*/
#define mix(a,b,c) \
{ \
a -= c; a ^= rot(c, 4); c += b; \
b -= a; b ^= rot(a, 6); a += c; \
c -= b; c ^= rot(b, 8); b += a; \
a -= c; a ^= rot(c,16); c += b; \
b -= a; b ^= rot(a,19); a += c; \
c -= b; c ^= rot(b, 4); b += a; \
}
/*
-------------------------------------------------------------------------------
final -- final mixing of 3 32-bit values (a,b,c) into c
Pairs of (a,b,c) values differing in only a few bits will usually
produce values of c that look totally different. This was tested for
* pairs that differed by one bit, by two bits, in any combination
of top bits of (a,b,c), or in any combination of bottom bits of
(a,b,c).
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
is commonly produced by subtraction) look like a single 1-bit
difference.
* the base values were pseudorandom, all zero but one bit set, or
all zero plus a counter that starts at zero.
These constants passed:
14 11 25 16 4 14 24
12 14 25 16 4 14 24
and these came close:
4 8 15 26 3 22 24
10 8 15 26 3 22 24
11 8 15 26 3 22 24
-------------------------------------------------------------------------------
*/
#define final(a,b,c) \
{ \
c ^= b; c -= rot(b,14); \
a ^= c; a -= rot(c,11); \
b ^= a; b -= rot(a,25); \
c ^= b; c -= rot(b,16); \
a ^= c; a -= rot(c,4); \
b ^= a; b -= rot(a,14); \
c ^= b; c -= rot(b,24); \
}
/*
--------------------------------------------------------------------
This works on all machines. To be useful, it requires
-- that the key be an array of uint32_t's, and
-- that the length be the number of uint32_t's in the key
The function hash_word() is identical to hashlittle() on little-endian
machines, and identical to hashbig() on big-endian machines,
except that the length has to be measured in uint32_ts rather than in
bytes. hashlittle() is more complicated than hash_word() only because
hashlittle() has to dance around fitting the key bytes into registers.
--------------------------------------------------------------------
*/
uint32_t hash_u32(
const uint32_t *k, /* the key, an array of uint32_t values */
size_t length, /* the length of the key, in uint32_ts */
uint32_t initval) /* the previous hash, or an arbitrary value */
{
uint32_t a,b,c;
/* Set up the internal state */
a = b = c = 0xdeadbeef + (((uint32_t)length)<<2) + initval;
/*------------------------------------------------- handle most of the key */
while (length > 3)
{
a += k[0];
b += k[1];
c += k[2];
mix(a,b,c);
length -= 3;
k += 3;
}
/*------------------------------------------- handle the last 3 uint32_t's */
switch(length) /* all the case statements fall through */
{
case 3 : c+=k[2];
case 2 : b+=k[1];
case 1 : a+=k[0];
final(a,b,c);
case 0: /* case 0: nothing left to add */
break;
}
/*------------------------------------------------------ report the result */
return c;
}
/*
-------------------------------------------------------------------------------
hashlittle() -- hash a variable-length key into a 32-bit value
k : the key (the unaligned variable-length array of bytes)
length : the length of the key, counting by bytes
val2 : IN: can be any 4-byte value OUT: second 32 bit hash.
Returns a 32-bit value. Every bit of the key affects every bit of
the return value. Two keys differing by one or two bits will have
totally different hash values. Note that the return value is better
mixed than val2, so use that first.
The best hash table sizes are powers of 2. There is no need to do
mod a prime (mod is sooo slow!). If you need less than 32 bits,
use a bitmask. For example, if you need only 10 bits, do
h = (h & hashmask(10));
In which case, the hash table should have hashsize(10) elements.
If you are hashing n strings (uint8_t **)k, do it like this:
for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this
code any way you wish, private, educational, or commercial. It's free.
Use for hash table lookup, or anything where one collision in 2^^32 is
acceptable. Do NOT use for cryptographic purposes.
-------------------------------------------------------------------------------
*/
static uint32_t hashlittle( const void *key, size_t length, uint32_t *val2 )
{
uint32_t a,b,c; /* internal state */
union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
/* Set up the internal state */
a = b = c = 0xdeadbeef + ((uint32_t)length) + *val2;
u.ptr = key;
if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
const uint8_t *k8;
/*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
while (length > 12)
{
a += k[0];
b += k[1];
c += k[2];
mix(a,b,c);
length -= 12;
k += 3;
}
/*----------------------------- handle the last (probably partial) block */
/*
* "k[2]&0xffffff" actually reads beyond the end of the string, but
* then masks off the part it's not allowed to read. Because the
* string is aligned, the masked-off tail is in the same word as the
* rest of the string. Every machine with memory protection I've seen
* does it on word boundaries, so is OK with this. But VALGRIND will
* still catch it and complain. The masking trick does make the hash
* noticably faster for short strings (like English words).
*
* Not on my testing with gcc 4.5 on an intel i5 CPU, at least --RR.
*/
#if 0
switch(length)
{
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
case 8 : b+=k[1]; a+=k[0]; break;
case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
case 6 : b+=k[1]&0xffff; a+=k[0]; break;
case 5 : b+=k[1]&0xff; a+=k[0]; break;
case 4 : a+=k[0]; break;
case 3 : a+=k[0]&0xffffff; break;
case 2 : a+=k[0]&0xffff; break;
case 1 : a+=k[0]&0xff; break;
case 0 : return c; /* zero length strings require no mixing */
}
#else /* make valgrind happy */
k8 = (const uint8_t *)k;
switch(length)
{
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
case 10: c+=((uint32_t)k8[9])<<8; /* fall through */
case 9 : c+=k8[8]; /* fall through */
case 8 : b+=k[1]; a+=k[0]; break;
case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */
case 5 : b+=k8[4]; /* fall through */
case 4 : a+=k[0]; break;
case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */
case 1 : a+=k8[0]; break;
case 0 : return c;
}
#endif /* !valgrind */
} else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
const uint8_t *k8;
/*--------------- all but last block: aligned reads and different mixing */
while (length > 12)
{
a += k[0] + (((uint32_t)k[1])<<16);
b += k[2] + (((uint32_t)k[3])<<16);
c += k[4] + (((uint32_t)k[5])<<16);
mix(a,b,c);
length -= 12;
k += 6;
}
/*----------------------------- handle the last (probably partial) block */
k8 = (const uint8_t *)k;
switch(length)
{
case 12: c+=k[4]+(((uint32_t)k[5])<<16);
b+=k[2]+(((uint32_t)k[3])<<16);
a+=k[0]+(((uint32_t)k[1])<<16);
break;
case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
case 10: c+=k[4];
b+=k[2]+(((uint32_t)k[3])<<16);
a+=k[0]+(((uint32_t)k[1])<<16);
break;
case 9 : c+=k8[8]; /* fall through */
case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
a+=k[0]+(((uint32_t)k[1])<<16);
break;
case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
case 6 : b+=k[2];
a+=k[0]+(((uint32_t)k[1])<<16);
break;
case 5 : b+=k8[4]; /* fall through */
case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
break;
case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
case 2 : a+=k[0];
break;
case 1 : a+=k8[0];
break;
case 0 : return c; /* zero length requires no mixing */
}
} else { /* need to read the key one byte at a time */
const uint8_t *k = (const uint8_t *)key;
/*--------------- all but the last block: affect some 32 bits of (a,b,c) */
while (length > 12)
{
a += k[0];
a += ((uint32_t)k[1])<<8;
a += ((uint32_t)k[2])<<16;
a += ((uint32_t)k[3])<<24;
b += k[4];
b += ((uint32_t)k[5])<<8;
b += ((uint32_t)k[6])<<16;
b += ((uint32_t)k[7])<<24;
c += k[8];
c += ((uint32_t)k[9])<<8;
c += ((uint32_t)k[10])<<16;
c += ((uint32_t)k[11])<<24;
mix(a,b,c);
length -= 12;
k += 12;
}
/*-------------------------------- last block: affect all 32 bits of (c) */
switch(length) /* all the case statements fall through */
{
case 12: c+=((uint32_t)k[11])<<24;
case 11: c+=((uint32_t)k[10])<<16;
case 10: c+=((uint32_t)k[9])<<8;
case 9 : c+=k[8];
case 8 : b+=((uint32_t)k[7])<<24;
case 7 : b+=((uint32_t)k[6])<<16;
case 6 : b+=((uint32_t)k[5])<<8;
case 5 : b+=k[4];
case 4 : a+=((uint32_t)k[3])<<24;
case 3 : a+=((uint32_t)k[2])<<16;
case 2 : a+=((uint32_t)k[1])<<8;
case 1 : a+=k[0];
break;
case 0 : return c;
}
}
final(a,b,c);
*val2 = b;
return c;
}
/*
* hashbig():
* This is the same as hash_word() on big-endian machines. It is different
* from hashlittle() on all machines. hashbig() takes advantage of
* big-endian byte ordering.
*/
static uint32_t hashbig( const void *key, size_t length, uint32_t *val2)
{
uint32_t a,b,c;
union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */
/* Set up the internal state */
a = b = c = 0xdeadbeef + ((uint32_t)length) + *val2;
u.ptr = key;
if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) {
const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
const uint8_t *k8;
/*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
while (length > 12)
{
a += k[0];
b += k[1];
c += k[2];
mix(a,b,c);
length -= 12;
k += 3;
}
/*----------------------------- handle the last (probably partial) block */
/*
* "k[2]<<8" actually reads beyond the end of the string, but
* then shifts out the part it's not allowed to read. Because the
* string is aligned, the illegal read is in the same word as the
* rest of the string. Every machine with memory protection I've seen
* does it on word boundaries, so is OK with this. But VALGRIND will
* still catch it and complain. The masking trick does make the hash
* noticably faster for short strings (like English words).
*
* Not on my testing with gcc 4.5 on an intel i5 CPU, at least --RR.
*/
#if 0
switch(length)
{
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break;
case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break;
case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break;
case 8 : b+=k[1]; a+=k[0]; break;
case 7 : b+=k[1]&0xffffff00; a+=k[0]; break;
case 6 : b+=k[1]&0xffff0000; a+=k[0]; break;
case 5 : b+=k[1]&0xff000000; a+=k[0]; break;
case 4 : a+=k[0]; break;
case 3 : a+=k[0]&0xffffff00; break;
case 2 : a+=k[0]&0xffff0000; break;
case 1 : a+=k[0]&0xff000000; break;
case 0 : return c; /* zero length strings require no mixing */
}
#else /* make valgrind happy */
k8 = (const uint8_t *)k;
switch(length) /* all the case statements fall through */
{
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
case 11: c+=((uint32_t)k8[10])<<8; /* fall through */
case 10: c+=((uint32_t)k8[9])<<16; /* fall through */
case 9 : c+=((uint32_t)k8[8])<<24; /* fall through */
case 8 : b+=k[1]; a+=k[0]; break;
case 7 : b+=((uint32_t)k8[6])<<8; /* fall through */
case 6 : b+=((uint32_t)k8[5])<<16; /* fall through */
case 5 : b+=((uint32_t)k8[4])<<24; /* fall through */
case 4 : a+=k[0]; break;
case 3 : a+=((uint32_t)k8[2])<<8; /* fall through */
case 2 : a+=((uint32_t)k8[1])<<16; /* fall through */
case 1 : a+=((uint32_t)k8[0])<<24; break;
case 0 : return c;
}
#endif /* !VALGRIND */
} else { /* need to read the key one byte at a time */
const uint8_t *k = (const uint8_t *)key;
/*--------------- all but the last block: affect some 32 bits of (a,b,c) */
while (length > 12)
{
a += ((uint32_t)k[0])<<24;
a += ((uint32_t)k[1])<<16;
a += ((uint32_t)k[2])<<8;
a += ((uint32_t)k[3]);
b += ((uint32_t)k[4])<<24;
b += ((uint32_t)k[5])<<16;
b += ((uint32_t)k[6])<<8;
b += ((uint32_t)k[7]);
c += ((uint32_t)k[8])<<24;
c += ((uint32_t)k[9])<<16;
c += ((uint32_t)k[10])<<8;
c += ((uint32_t)k[11]);
mix(a,b,c);
length -= 12;
k += 12;
}
/*-------------------------------- last block: affect all 32 bits of (c) */
switch(length) /* all the case statements fall through */
{
case 12: c+=k[11];
case 11: c+=((uint32_t)k[10])<<8;
case 10: c+=((uint32_t)k[9])<<16;
case 9 : c+=((uint32_t)k[8])<<24;
case 8 : b+=k[7];
case 7 : b+=((uint32_t)k[6])<<8;
case 6 : b+=((uint32_t)k[5])<<16;
case 5 : b+=((uint32_t)k[4])<<24;
case 4 : a+=k[3];
case 3 : a+=((uint32_t)k[2])<<8;
case 2 : a+=((uint32_t)k[1])<<16;
case 1 : a+=((uint32_t)k[0])<<24;
break;
case 0 : return c;
}
}
final(a,b,c);
*val2 = b;
return c;
}
/* I basically use hashlittle here, but use native endian within each
* element. This delivers least-surprise: hash such as "int arr[] = {
* 1, 2 }; hash_stable(arr, 2, 0);" will be the same on big and little
* endian machines, even though a bytewise hash wouldn't be. */
uint64_t hash64_stable_64(const void *key, size_t n, uint64_t base)
{
const uint64_t *k = key;
uint32_t a,b,c;
/* Set up the internal state */
a = b = c = 0xdeadbeef + ((uint32_t)n*8) + (base >> 32) + base;
while (n > 3) {
a += (uint32_t)k[0];
b += (uint32_t)(k[0] >> 32);
c += (uint32_t)k[1];
mix(a,b,c);
a += (uint32_t)(k[1] >> 32);
b += (uint32_t)k[2];
c += (uint32_t)(k[2] >> 32);
mix(a,b,c);
n -= 3;
k += 3;
}
switch (n) {
case 2:
a += (uint32_t)k[0];
b += (uint32_t)(k[0] >> 32);
c += (uint32_t)k[1];
mix(a,b,c);
a += (uint32_t)(k[1] >> 32);
break;
case 1:
a += (uint32_t)k[0];
b += (uint32_t)(k[0] >> 32);
break;
case 0:
return c;
}
final(a,b,c);
return ((uint64_t)b << 32) | c;
}
uint64_t hash64_stable_32(const void *key, size_t n, uint64_t base)
{
const uint32_t *k = key;
uint32_t a,b,c;
/* Set up the internal state */
a = b = c = 0xdeadbeef + ((uint32_t)n*4) + (base >> 32) + base;
while (n > 3) {
a += k[0];
b += k[1];
c += k[2];
mix(a,b,c);
n -= 3;
k += 3;
}
switch (n) {
case 2:
b += (uint32_t)k[1];
case 1:
a += (uint32_t)k[0];
break;
case 0:
return c;
}
final(a,b,c);
return ((uint64_t)b << 32) | c;
}
uint64_t hash64_stable_16(const void *key, size_t n, uint64_t base)
{
const uint16_t *k = key;
uint32_t a,b,c;
/* Set up the internal state */
a = b = c = 0xdeadbeef + ((uint32_t)n*2) + (base >> 32) + base;
while (n > 6) {
a += (uint32_t)k[0] + ((uint32_t)k[1] << 16);
b += (uint32_t)k[2] + ((uint32_t)k[3] << 16);
c += (uint32_t)k[4] + ((uint32_t)k[5] << 16);
mix(a,b,c);
n -= 6;
k += 6;
}
switch (n) {
case 5:
c += (uint32_t)k[4];
case 4:
b += ((uint32_t)k[3] << 16);
case 3:
b += (uint32_t)k[2];
case 2:
a += ((uint32_t)k[1] << 16);
case 1:
a += (uint32_t)k[0];
break;
case 0:
return c;
}
final(a,b,c);
return ((uint64_t)b << 32) | c;
}
uint64_t hash64_stable_8(const void *key, size_t n, uint64_t base)
{
uint32_t b32 = base + (base >> 32);
uint32_t lower = hashlittle(key, n, &b32);
return ((uint64_t)b32 << 32) | lower;
}
uint32_t hash_any(const void *key, size_t length, uint32_t base)
{
if (HASH_BIG_ENDIAN)
return hashbig(key, length, &base);
else
return hashlittle(key, length, &base);
}
uint32_t hash_stable_64(const void *key, size_t n, uint32_t base)
{
return hash64_stable_64(key, n, base);
}
uint32_t hash_stable_32(const void *key, size_t n, uint32_t base)
{
return hash64_stable_32(key, n, base);
}
uint32_t hash_stable_16(const void *key, size_t n, uint32_t base)
{
return hash64_stable_16(key, n, base);
}
uint32_t hash_stable_8(const void *key, size_t n, uint32_t base)
{
return hashlittle(key, n, &base);
}
/* Jenkins' lookup8 is a 64 bit hash, but he says it's obsolete. Use
* the plain one and recombine into 64 bits. */
uint64_t hash64_any(const void *key, size_t length, uint64_t base)
{
uint32_t b32 = base + (base >> 32);
uint32_t lower;
if (HASH_BIG_ENDIAN)
lower = hashbig(key, length, &b32);
else
lower = hashlittle(key, length, &b32);
return ((uint64_t)b32 << 32) | lower;
}
#ifdef SELF_TEST
/* used for timings */
void driver1()
{
uint8_t buf[256];
uint32_t i;
uint32_t h=0;
time_t a,z;
time(&a);
for (i=0; i<256; ++i) buf[i] = 'x';
for (i=0; i<1; ++i)
{
h = hashlittle(&buf[0],1,h);
}
time(&z);
if (z-a > 0) printf("time %d %.8x\n", z-a, h);
}
/* check that every input bit changes every output bit half the time */
#define HASHSTATE 1
#define HASHLEN 1
#define MAXPAIR 60
#define MAXLEN 70
void driver2()
{
uint8_t qa[MAXLEN+1], qb[MAXLEN+2], *a = &qa[0], *b = &qb[1];
uint32_t c[HASHSTATE], d[HASHSTATE], i=0, j=0, k, l, m=0, z;
uint32_t e[HASHSTATE],f[HASHSTATE],g[HASHSTATE],h[HASHSTATE];
uint32_t x[HASHSTATE],y[HASHSTATE];
uint32_t hlen;
printf("No more than %d trials should ever be needed \n",MAXPAIR/2);
for (hlen=0; hlen < MAXLEN; ++hlen)
{
z=0;
for (i=0; i<hlen; ++i) /*----------------------- for each input byte, */
{
for (j=0; j<8; ++j) /*------------------------ for each input bit, */
{
for (m=1; m<8; ++m) /*------------ for several possible initvals, */
{
for (l=0; l<HASHSTATE; ++l)
e[l]=f[l]=g[l]=h[l]=x[l]=y[l]=~((uint32_t)0);
/*---- check that every output bit is affected by that input bit */
for (k=0; k<MAXPAIR; k+=2)
{
uint32_t finished=1;
/* keys have one bit different */
for (l=0; l<hlen+1; ++l) {a[l] = b[l] = (uint8_t)0;}
/* have a and b be two keys differing in only one bit */
a[i] ^= (k<<j);
a[i] ^= (k>>(8-j));
c[0] = hashlittle(a, hlen, m);
b[i] ^= ((k+1)<<j);
b[i] ^= ((k+1)>>(8-j));
d[0] = hashlittle(b, hlen, m);
/* check every bit is 1, 0, set, and not set at least once */
for (l=0; l<HASHSTATE; ++l)
{
e[l] &= (c[l]^d[l]);
f[l] &= ~(c[l]^d[l]);
g[l] &= c[l];
h[l] &= ~c[l];
x[l] &= d[l];
y[l] &= ~d[l];
if (e[l]|f[l]|g[l]|h[l]|x[l]|y[l]) finished=0;
}
if (finished) break;
}
if (k>z) z=k;
if (k==MAXPAIR)
{
printf("Some bit didn't change: ");
printf("%.8x %.8x %.8x %.8x %.8x %.8x ",
e[0],f[0],g[0],h[0],x[0],y[0]);
printf("i %d j %d m %d len %d\n", i, j, m, hlen);
}
if (z==MAXPAIR) goto done;
}
}
}
done:
if (z < MAXPAIR)
{
printf("Mix success %2d bytes %2d initvals ",i,m);
printf("required %d trials\n", z/2);
}
}
printf("\n");
}
/* Check for reading beyond the end of the buffer and alignment problems */
void driver3()
{
uint8_t buf[MAXLEN+20], *b;
uint32_t len;
uint8_t q[] = "This is the time for all good men to come to the aid of their country...";
uint32_t h;
uint8_t qq[] = "xThis is the time for all good men to come to the aid of their country...";
uint32_t i;
uint8_t qqq[] = "xxThis is the time for all good men to come to the aid of their country...";
uint32_t j;
uint8_t qqqq[] = "xxxThis is the time for all good men to come to the aid of their country...";
uint32_t ref,x,y;
uint8_t *p;
printf("Endianness. These lines should all be the same (for values filled in):\n");
printf("%.8x %.8x %.8x\n",
hash_word((const uint32_t *)q, (sizeof(q)-1)/4, 13),
hash_word((const uint32_t *)q, (sizeof(q)-5)/4, 13),
hash_word((const uint32_t *)q, (sizeof(q)-9)/4, 13));
p = q;
printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
p = &qq[1];
printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
p = &qqq[2];
printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
p = &qqqq[3];
printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
printf("\n");
/* check that hashlittle2 and hashlittle produce the same results */
i=47; j=0;
hashlittle2(q, sizeof(q), &i, &j);
if (hashlittle(q, sizeof(q), 47) != i)
printf("hashlittle2 and hashlittle mismatch\n");
/* check that hash_word2 and hash_word produce the same results */
len = 0xdeadbeef;
i=47, j=0;
hash_word2(&len, 1, &i, &j);
if (hash_word(&len, 1, 47) != i)
printf("hash_word2 and hash_word mismatch %x %x\n",
i, hash_word(&len, 1, 47));
/* check hashlittle doesn't read before or after the ends of the string */
for (h=0, b=buf+1; h<8; ++h, ++b)
{
for (i=0; i<MAXLEN; ++i)
{
len = i;
for (j=0; j<i; ++j) *(b+j)=0;
/* these should all be equal */
ref = hashlittle(b, len, (uint32_t)1);
*(b+i)=(uint8_t)~0;
*(b-1)=(uint8_t)~0;
x = hashlittle(b, len, (uint32_t)1);
y = hashlittle(b, len, (uint32_t)1);
if ((ref != x) || (ref != y))
{
printf("alignment error: %.8x %.8x %.8x %d %d\n",ref,x,y,
h, i);
}
}
}
}
/* check for problems with nulls */
void driver4()
{
uint8_t buf[1];
uint32_t h,i,state[HASHSTATE];
buf[0] = ~0;
for (i=0; i<HASHSTATE; ++i) state[i] = 1;
printf("These should all be different\n");
for (i=0, h=0; i<8; ++i)
{
h = hashlittle(buf, 0, h);
printf("%2ld 0-byte strings, hash is %.8x\n", i, h);
}
}
int main()
{
driver1(); /* test that the key is hashed: used for timings */
driver2(); /* test that whole key is hashed thoroughly */
driver3(); /* test that nothing but the key is hashed */
driver4(); /* test hashing multiple buffers (all buffers are null) */
return 1;
}
#endif /* SELF_TEST */

313
ccan/ccan/hash/hash.h

@ -1,313 +0,0 @@
/* CC0 (Public domain) - see LICENSE file for details */
#ifndef CCAN_HASH_H
#define CCAN_HASH_H
#include "config.h"
#include <stdint.h>
#include <stdlib.h>
#include <ccan/build_assert/build_assert.h>
/* Stolen mostly from: lookup3.c, by Bob Jenkins, May 2006, Public Domain.
*
* http://burtleburtle.net/bob/c/lookup3.c
*/
/**
* hash - fast hash of an array for internal use
* @p: the array or pointer to first element
* @num: the number of elements to hash
* @base: the base number to roll into the hash (usually 0)
*
* The memory region pointed to by p is combined with the base to form
* a 32-bit hash.
*
* This hash will have different results on different machines, so is
* only useful for internal hashes (ie. not hashes sent across the
* network or saved to disk).
*
* It may also change with future versions: it could even detect at runtime
* what the fastest hash to use is.
*
* See also: hash64, hash_stable.
*
* Example:
* #include <ccan/hash/hash.h>
* #include <err.h>
* #include <stdio.h>
* #include <string.h>
*
* // Simple demonstration: idential strings will have the same hash, but
* // two different strings will probably not.
* int main(int argc, char *argv[])
* {
* uint32_t hash1, hash2;
*
* if (argc != 3)
* err(1, "Usage: %s <string1> <string2>", argv[0]);
*
* hash1 = hash(argv[1], strlen(argv[1]), 0);
* hash2 = hash(argv[2], strlen(argv[2]), 0);
* printf("Hash is %s\n", hash1 == hash2 ? "same" : "different");
* return 0;
* }
*/
#define hash(p, num, base) hash_any((p), (num)*sizeof(*(p)), (base))
/**
* hash_stable - hash of an array for external use
* @p: the array or pointer to first element
* @num: the number of elements to hash
* @base: the base number to roll into the hash (usually 0)
*
* The array of simple integer types pointed to by p is combined with
* the base to form a 32-bit hash.
*
* This hash will have the same results on different machines, so can
* be used for external hashes (ie. hashes sent across the network or
* saved to disk). The results will not change in future versions of
* this module.
*
* Note that it is only legal to hand an array of simple integer types
* to this hash (ie. char, uint16_t, int64_t, etc). In these cases,
* the same values will have the same hash result, even though the
* memory representations of integers depend on the machine
* endianness.
*
* See also:
* hash64_stable
*
* Example:
* #include <ccan/hash/hash.h>
* #include <err.h>
* #include <stdio.h>
* #include <string.h>
*
* int main(int argc, char *argv[])
* {
* if (argc != 2)
* err(1, "Usage: %s <string-to-hash>", argv[0]);
*
* printf("Hash stable result is %u\n",
* hash_stable(argv[1], strlen(argv[1]), 0));
* return 0;
* }
*/
#define hash_stable(p, num, base) \
(BUILD_ASSERT_OR_ZERO(sizeof(*(p)) == 8 || sizeof(*(p)) == 4 \
|| sizeof(*(p)) == 2 || sizeof(*(p)) == 1) + \
sizeof(*(p)) == 8 ? hash_stable_64((p), (num), (base)) \
: sizeof(*(p)) == 4 ? hash_stable_32((p), (num), (base)) \
: sizeof(*(p)) == 2 ? hash_stable_16((p), (num), (base)) \
: hash_stable_8((p), (num), (base)))
/**
* hash_u32 - fast hash an array of 32-bit values for internal use
* @key: the array of uint32_t
* @num: the number of elements to hash
* @base: the base number to roll into the hash (usually 0)
*
* The array of uint32_t pointed to by @key is combined with the base
* to form a 32-bit hash. This is 2-3 times faster than hash() on small
* arrays, but the advantage vanishes over large hashes.
*
* This hash will have different results on different machines, so is
* only useful for internal hashes (ie. not hashes sent across the
* network or saved to disk).
*/
uint32_t hash_u32(const uint32_t *key, size_t num, uint32_t base);
/**
* hash_string - very fast hash of an ascii string
* @str: the nul-terminated string
*
* The string is hashed, using a hash function optimized for ASCII and
* similar strings. It's weaker than the other hash functions.
*
* This hash may have different results on different machines, so is
* only useful for internal hashes (ie. not hashes sent across the
* network or saved to disk). The results will be different from the
* other hash functions in this module, too.
*/
static inline uint32_t hash_string(const char *string)
{
/* This is Karl Nelson <kenelson@ece.ucdavis.edu>'s X31 hash.
* It's a little faster than the (much better) lookup3 hash(): 56ns vs
* 84ns on my 2GHz Intel Core Duo 2 laptop for a 10 char string. */
uint32_t ret;
for (ret = 0; *string; string++)
ret = (ret << 5) - ret + *string;
return ret;
}
/**
* hash64 - fast 64-bit hash of an array for internal use
* @p: the array or pointer to first element
* @num: the number of elements to hash
* @base: the 64-bit base number to roll into the hash (usually 0)
*
* The memory region pointed to by p is combined with the base to form
* a 64-bit hash.
*
* This hash will have different results on different machines, so is
* only useful for internal hashes (ie. not hashes sent across the
* network or saved to disk).
*
* It may also change with future versions: it could even detect at runtime
* what the fastest hash to use is.
*
* See also: hash.
*
* Example:
* #include <ccan/hash/hash.h>
* #include <err.h>
* #include <stdio.h>
* #include <string.h>
*
* // Simple demonstration: idential strings will have the same hash, but
* // two different strings will probably not.
* int main(int argc, char *argv[])
* {
* uint64_t hash1, hash2;
*
* if (argc != 3)
* err(1, "Usage: %s <string1> <string2>", argv[0]);
*
* hash1 = hash64(argv[1], strlen(argv[1]), 0);
* hash2 = hash64(argv[2], strlen(argv[2]), 0);
* printf("Hash is %s\n", hash1 == hash2 ? "same" : "different");
* return 0;
* }
*/
#define hash64(p, num, base) hash64_any((p), (num)*sizeof(*(p)), (base))
/**
* hash64_stable - 64 bit hash of an array for external use
* @p: the array or pointer to first element
* @num: the number of elements to hash
* @base: the base number to roll into the hash (usually 0)
*
* The array of simple integer types pointed to by p is combined with
* the base to form a 64-bit hash.
*
* This hash will have the same results on different machines, so can
* be used for external hashes (ie. hashes sent across the network or
* saved to disk). The results will not change in future versions of
* this module.
*
* Note that it is only legal to hand an array of simple integer types
* to this hash (ie. char, uint16_t, int64_t, etc). In these cases,
* the same values will have the same hash result, even though the
* memory representations of integers depend on the machine
* endianness.
*
* See also:
* hash_stable
*
* Example:
* #include <ccan/hash/hash.h>
* #include <err.h>
* #include <stdio.h>
* #include <string.h>
*
* int main(int argc, char *argv[])
* {
* if (argc != 2)
* err(1, "Usage: %s <string-to-hash>", argv[0]);
*
* printf("Hash stable result is %llu\n",
* (long long)hash64_stable(argv[1], strlen(argv[1]), 0));
* return 0;
* }
*/
#define hash64_stable(p, num, base) \
(BUILD_ASSERT_OR_ZERO(sizeof(*(p)) == 8 || sizeof(*(p)) == 4 \
|| sizeof(*(p)) == 2 || sizeof(*(p)) == 1) + \
sizeof(*(p)) == 8 ? hash64_stable_64((p), (num), (base)) \
: sizeof(*(p)) == 4 ? hash64_stable_32((p), (num), (base)) \
: sizeof(*(p)) == 2 ? hash64_stable_16((p), (num), (base)) \
: hash64_stable_8((p), (num), (base)))
/**
* hashl - fast 32/64-bit hash of an array for internal use
* @p: the array or pointer to first element
* @num: the number of elements to hash
* @base: the base number to roll into the hash (usually 0)
*
* This is either hash() or hash64(), on 32/64 bit long machines.
*/
#define hashl(p, num, base) \
(BUILD_ASSERT_OR_ZERO(sizeof(long) == sizeof(uint32_t) \
|| sizeof(long) == sizeof(uint64_t)) + \
(sizeof(long) == sizeof(uint64_t) \
? hash64((p), (num), (base)) : hash((p), (num), (base))))
/* Our underlying operations. */
uint32_t hash_any(const void *key, size_t length, uint32_t base);
uint32_t hash_stable_64(const void *key, size_t n, uint32_t base);
uint32_t hash_stable_32(const void *key, size_t n, uint32_t base);
uint32_t hash_stable_16(const void *key, size_t n, uint32_t base);
uint32_t hash_stable_8(const void *key, size_t n, uint32_t base);
uint64_t hash64_any(const void *key, size_t length, uint64_t base);
uint64_t hash64_stable_64(const void *key, size_t n, uint64_t base);
uint64_t hash64_stable_32(const void *key, size_t n, uint64_t base);
uint64_t hash64_stable_16(const void *key, size_t n, uint64_t base);
uint64_t hash64_stable_8(const void *key, size_t n, uint64_t base);
/**
* hash_pointer - hash a pointer for internal use
* @p: the pointer value to hash
* @base: the base number to roll into the hash (usually 0)
*
* The pointer p (not what p points to!) is combined with the base to form
* a 32-bit hash.
*
* This hash will have different results on different machines, so is
* only useful for internal hashes (ie. not hashes sent across the
* network or saved to disk).
*
* Example:
* #include <ccan/hash/hash.h>
*
* // Code to keep track of memory regions.
* struct region {
* struct region *chain;
* void *start;
* unsigned int size;
* };
* // We keep a simple hash table.
* static struct region *region_hash[128];
*
* static void add_region(struct region *r)
* {
* unsigned int h = hash_pointer(r->start, 0);
*
* r->chain = region_hash[h];
* region_hash[h] = r->chain;
* }
*
* static struct region *find_region(const void *start)
* {
* struct region *r;
*
* for (r = region_hash[hash_pointer(start, 0)]; r; r = r->chain)
* if (r->start == start)
* return r;
* return NULL;
* }
*/
static inline uint32_t hash_pointer(const void *p, uint32_t base)
{
if (sizeof(p) % sizeof(uint32_t) == 0) {
/* This convoluted union is the right way of aliasing. */
union {
uint32_t a[sizeof(p) / sizeof(uint32_t)];
const void *p;
} u;
u.p = p;
return hash_u32(u.a, sizeof(p) / sizeof(uint32_t), base);
} else
return hash(&p, 1, base);
}
#endif /* HASH_H */

300
ccan/ccan/hash/test/api-hash_stable.c

@ -1,300 +0,0 @@
#include <ccan/hash/hash.h>
#include <ccan/tap/tap.h>
#include <stdbool.h>
#include <string.h>
#define ARRAY_WORDS 5
int main(int argc, char *argv[])
{
unsigned int i;
uint8_t u8array[ARRAY_WORDS];
uint16_t u16array[ARRAY_WORDS];
uint32_t u32array[ARRAY_WORDS];
uint64_t u64array[ARRAY_WORDS];
/* Initialize arrays. */
for (i = 0; i < ARRAY_WORDS; i++) {
u8array[i] = i;
u16array[i] = i;
u32array[i] = i;
u64array[i] = i;
}
plan_tests(264);
/* hash_stable is API-guaranteed. */
ok1(hash_stable(u8array, ARRAY_WORDS, 0) == 0x1d4833cc);
ok1(hash_stable(u8array, ARRAY_WORDS, 1) == 0x37125e2 );
ok1(hash_stable(u8array, ARRAY_WORDS, 2) == 0x330a007a);
ok1(hash_stable(u8array, ARRAY_WORDS, 4) == 0x7b0df29b);
ok1(hash_stable(u8array, ARRAY_WORDS, 8) == 0xe7e5d741);
ok1(hash_stable(u8array, ARRAY_WORDS, 16) == 0xaae57471);
ok1(hash_stable(u8array, ARRAY_WORDS, 32) == 0xc55399e5);
ok1(hash_stable(u8array, ARRAY_WORDS, 64) == 0x67f21f7 );
ok1(hash_stable(u8array, ARRAY_WORDS, 128) == 0x1d795b71);
ok1(hash_stable(u8array, ARRAY_WORDS, 256) == 0xeb961671);
ok1(hash_stable(u8array, ARRAY_WORDS, 512) == 0xc2597247);
ok1(hash_stable(u8array, ARRAY_WORDS, 1024) == 0x3f5c4d75);
ok1(hash_stable(u8array, ARRAY_WORDS, 2048) == 0xe65cf4f9);
ok1(hash_stable(u8array, ARRAY_WORDS, 4096) == 0xf2cd06cb);
ok1(hash_stable(u8array, ARRAY_WORDS, 8192) == 0x443041e1);
ok1(hash_stable(u8array, ARRAY_WORDS, 16384) == 0xdfc618f5);
ok1(hash_stable(u8array, ARRAY_WORDS, 32768) == 0x5e3d5b97);
ok1(hash_stable(u8array, ARRAY_WORDS, 65536) == 0xd5f64730);
ok1(hash_stable(u8array, ARRAY_WORDS, 131072) == 0x372bbecc);
ok1(hash_stable(u8array, ARRAY_WORDS, 262144) == 0x7c194c8d);
ok1(hash_stable(u8array, ARRAY_WORDS, 524288) == 0x16cbb416);
ok1(hash_stable(u8array, ARRAY_WORDS, 1048576) == 0x53e99222);
ok1(hash_stable(u8array, ARRAY_WORDS, 2097152) == 0x6394554a);
ok1(hash_stable(u8array, ARRAY_WORDS, 4194304) == 0xd83a506d);
ok1(hash_stable(u8array, ARRAY_WORDS, 8388608) == 0x7619d9a4);
ok1(hash_stable(u8array, ARRAY_WORDS, 16777216) == 0xfe98e5f6);
ok1(hash_stable(u8array, ARRAY_WORDS, 33554432) == 0x6c262927);
ok1(hash_stable(u8array, ARRAY_WORDS, 67108864) == 0x3f0106fd);
ok1(hash_stable(u8array, ARRAY_WORDS, 134217728) == 0xc91e3a28);
ok1(hash_stable(u8array, ARRAY_WORDS, 268435456) == 0x14229579);
ok1(hash_stable(u8array, ARRAY_WORDS, 536870912) == 0x9dbefa76);
ok1(hash_stable(u8array, ARRAY_WORDS, 1073741824) == 0xb05c0c78);
ok1(hash_stable(u8array, ARRAY_WORDS, 2147483648U) == 0x88f24d81);
ok1(hash_stable(u16array, ARRAY_WORDS, 0) == 0xecb5f507);
ok1(hash_stable(u16array, ARRAY_WORDS, 1) == 0xadd666e6);
ok1(hash_stable(u16array, ARRAY_WORDS, 2) == 0xea0f214c);
ok1(hash_stable(u16array, ARRAY_WORDS, 4) == 0xae4051ba);
ok1(hash_stable(u16array, ARRAY_WORDS, 8) == 0x6ed28026);
ok1(hash_stable(u16array, ARRAY_WORDS, 16) == 0xa3917a19);
ok1(hash_stable(u16array, ARRAY_WORDS, 32) == 0xf370f32b);
ok1(hash_stable(u16array, ARRAY_WORDS, 64) == 0x807af460);
ok1(hash_stable(u16array, ARRAY_WORDS, 128) == 0xb4c8cd83);
ok1(hash_stable(u16array, ARRAY_WORDS, 256) == 0xa10cb5b0);
ok1(hash_stable(u16array, ARRAY_WORDS, 512) == 0x8b7d7387);
ok1(hash_stable(u16array, ARRAY_WORDS, 1024) == 0x9e49d1c );
ok1(hash_stable(u16array, ARRAY_WORDS, 2048) == 0x288830d1);
ok1(hash_stable(u16array, ARRAY_WORDS, 4096) == 0xbe078a43);
ok1(hash_stable(u16array, ARRAY_WORDS, 8192) == 0xa16d5d88);
ok1(hash_stable(u16array, ARRAY_WORDS, 16384) == 0x46839fcd);
ok1(hash_stable(u16array, ARRAY_WORDS, 32768) == 0x9db9bd4f);
ok1(hash_stable(u16array, ARRAY_WORDS, 65536) == 0xedff58f8);
ok1(hash_stable(u16array, ARRAY_WORDS, 131072) == 0x95ecef18);
ok1(hash_stable(u16array, ARRAY_WORDS, 262144) == 0x23c31b7d);
ok1(hash_stable(u16array, ARRAY_WORDS, 524288) == 0x1d85c7d0);
ok1(hash_stable(u16array, ARRAY_WORDS, 1048576) == 0x25218842);
ok1(hash_stable(u16array, ARRAY_WORDS, 2097152) == 0x711d985c);
ok1(hash_stable(u16array, ARRAY_WORDS, 4194304) == 0x85470eca);
ok1(hash_stable(u16array, ARRAY_WORDS, 8388608) == 0x99ed4ceb);
ok1(hash_stable(u16array, ARRAY_WORDS, 16777216) == 0x67b3710c);
ok1(hash_stable(u16array, ARRAY_WORDS, 33554432) == 0x77f1ab35);
ok1(hash_stable(u16array, ARRAY_WORDS, 67108864) == 0x81f688aa);
ok1(hash_stable(u16array, ARRAY_WORDS, 134217728) == 0x27b56ca5);
ok1(hash_stable(u16array, ARRAY_WORDS, 268435456) == 0xf21ba203);
ok1(hash_stable(u16array, ARRAY_WORDS, 536870912) == 0xd48d1d1 );
ok1(hash_stable(u16array, ARRAY_WORDS, 1073741824) == 0xa542b62d);
ok1(hash_stable(u16array, ARRAY_WORDS, 2147483648U) == 0xa04c7058);
ok1(hash_stable(u32array, ARRAY_WORDS, 0) == 0x13305f8c);
ok1(hash_stable(u32array, ARRAY_WORDS, 1) == 0x171abf74);
ok1(hash_stable(u32array, ARRAY_WORDS, 2) == 0x7646fcc7);
ok1(hash_stable(u32array, ARRAY_WORDS, 4) == 0xa758ed5);
ok1(hash_stable(u32array, ARRAY_WORDS, 8) == 0x2dedc2e4);
ok1(hash_stable(u32array, ARRAY_WORDS, 16) == 0x28e2076b);
ok1(hash_stable(u32array, ARRAY_WORDS, 32) == 0xb73091c5);
ok1(hash_stable(u32array, ARRAY_WORDS, 64) == 0x87daf5db);
ok1(hash_stable(u32array, ARRAY_WORDS, 128) == 0xa16dfe20);
ok1(hash_stable(u32array, ARRAY_WORDS, 256) == 0x300c63c3);
ok1(hash_stable(u32array, ARRAY_WORDS, 512) == 0x255c91fc);
ok1(hash_stable(u32array, ARRAY_WORDS, 1024) == 0x6357b26);
ok1(hash_stable(u32array, ARRAY_WORDS, 2048) == 0x4bc5f339);
ok1(hash_stable(u32array, ARRAY_WORDS, 4096) == 0x1301617c);
ok1(hash_stable(u32array, ARRAY_WORDS, 8192) == 0x506792c9);
ok1(hash_stable(u32array, ARRAY_WORDS, 16384) == 0xcd596705);
ok1(hash_stable(u32array, ARRAY_WORDS, 32768) == 0xa8713cac);
ok1(hash_stable(u32array, ARRAY_WORDS, 65536) == 0x94d9794);
ok1(hash_stable(u32array, ARRAY_WORDS, 131072) == 0xac753e8);
ok1(hash_stable(u32array, ARRAY_WORDS, 262144) == 0xcd8bdd20);
ok1(hash_stable(u32array, ARRAY_WORDS, 524288) == 0xd44faf80);
ok1(hash_stable(u32array, ARRAY_WORDS, 1048576) == 0x2547ccbe);
ok1(hash_stable(u32array, ARRAY_WORDS, 2097152) == 0xbab06dbc);
ok1(hash_stable(u32array, ARRAY_WORDS, 4194304) == 0xaac0e882);
ok1(hash_stable(u32array, ARRAY_WORDS, 8388608) == 0x443f48d0);
ok1(hash_stable(u32array, ARRAY_WORDS, 16777216) == 0xdff49fcc);
ok1(hash_stable(u32array, ARRAY_WORDS, 33554432) == 0x9ce0fd65);
ok1(hash_stable(u32array, ARRAY_WORDS, 67108864) == 0x9ddb1def);
ok1(hash_stable(u32array, ARRAY_WORDS, 134217728) == 0x86096f25);
ok1(hash_stable(u32array, ARRAY_WORDS, 268435456) == 0xe713b7b5);
ok1(hash_stable(u32array, ARRAY_WORDS, 536870912) == 0x5baeffc5);
ok1(hash_stable(u32array, ARRAY_WORDS, 1073741824) == 0xde874f52);
ok1(hash_stable(u32array, ARRAY_WORDS, 2147483648U) == 0xeca13b4e);
ok1(hash_stable(u64array, ARRAY_WORDS, 0) == 0x12ef6302);
ok1(hash_stable(u64array, ARRAY_WORDS, 1) == 0xe9aeb406);
ok1(hash_stable(u64array, ARRAY_WORDS, 2) == 0xc4218ceb);
ok1(hash_stable(u64array, ARRAY_WORDS, 4) == 0xb3d11412);
ok1(hash_stable(u64array, ARRAY_WORDS, 8) == 0xdafbd654);
ok1(hash_stable(u64array, ARRAY_WORDS, 16) == 0x9c336cba);
ok1(hash_stable(u64array, ARRAY_WORDS, 32) == 0x65059721);
ok1(hash_stable(u64array, ARRAY_WORDS, 64) == 0x95b5bbe6);
ok1(hash_stable(u64array, ARRAY_WORDS, 128) == 0xe7596b84);
ok1(hash_stable(u64array, ARRAY_WORDS, 256) == 0x503622a2);
ok1(hash_stable(u64array, ARRAY_WORDS, 512) == 0xecdcc5ca);
ok1(hash_stable(u64array, ARRAY_WORDS, 1024) == 0xc40d0513);
ok1(hash_stable(u64array, ARRAY_WORDS, 2048) == 0xaab25e4d);
ok1(hash_stable(u64array, ARRAY_WORDS, 4096) == 0xcc353fb9);
ok1(hash_stable(u64array, ARRAY_WORDS, 8192) == 0x18e2319f);
ok1(hash_stable(u64array, ARRAY_WORDS, 16384) == 0xfddaae8d);
ok1(hash_stable(u64array, ARRAY_WORDS, 32768) == 0xef7976f2);
ok1(hash_stable(u64array, ARRAY_WORDS, 65536) == 0x86359fc9);
ok1(hash_stable(u64array, ARRAY_WORDS, 131072) == 0x8b5af385);
ok1(hash_stable(u64array, ARRAY_WORDS, 262144) == 0x80d4ee31);
ok1(hash_stable(u64array, ARRAY_WORDS, 524288) == 0x42f5f85b);
ok1(hash_stable(u64array, ARRAY_WORDS, 1048576) == 0x9a6920e1);
ok1(hash_stable(u64array, ARRAY_WORDS, 2097152) == 0x7b7c9850);
ok1(hash_stable(u64array, ARRAY_WORDS, 4194304) == 0x69573e09);
ok1(hash_stable(u64array, ARRAY_WORDS, 8388608) == 0xc942bc0e);
ok1(hash_stable(u64array, ARRAY_WORDS, 16777216) == 0x7a89f0f1);
ok1(hash_stable(u64array, ARRAY_WORDS, 33554432) == 0x2dd641ca);
ok1(hash_stable(u64array, ARRAY_WORDS, 67108864) == 0x89bbd391);
ok1(hash_stable(u64array, ARRAY_WORDS, 134217728) == 0xbcf88e31);
ok1(hash_stable(u64array, ARRAY_WORDS, 268435456) == 0xfa7a3460);
ok1(hash_stable(u64array, ARRAY_WORDS, 536870912) == 0x49a37be0);
ok1(hash_stable(u64array, ARRAY_WORDS, 1073741824) == 0x1b346394);
ok1(hash_stable(u64array, ARRAY_WORDS, 2147483648U) == 0x6c3a1592);
ok1(hash64_stable(u8array, ARRAY_WORDS, 0) == 16887282882572727244ULL);
ok1(hash64_stable(u8array, ARRAY_WORDS, 1) == 12032777473133454818ULL);
ok1(hash64_stable(u8array, ARRAY_WORDS, 2) == 18183407363221487738ULL);
ok1(hash64_stable(u8array, ARRAY_WORDS, 4) == 17860764172704150171ULL);
ok1(hash64_stable(u8array, ARRAY_WORDS, 8) == 18076051600675559233ULL);
ok1(hash64_stable(u8array, ARRAY_WORDS, 16) == 9909361918431556721ULL);
ok1(hash64_stable(u8array, ARRAY_WORDS, 32) == 12937969888744675813ULL);
ok1(hash64_stable(u8array, ARRAY_WORDS, 64) == 5245669057381736951ULL);
ok1(hash64_stable(u8array, ARRAY_WORDS, 128) == 4376874646406519665ULL);
ok1(hash64_stable(u8array, ARRAY_WORDS, 256) == 14219974419871569521ULL);
ok1(hash64_stable(u8array, ARRAY_WORDS, 512) == 2263415354134458951ULL);
ok1(hash64_stable(u8array, ARRAY_WORDS, 1024) == 4953859694526221685ULL);
ok1(hash64_stable(u8array, ARRAY_WORDS, 2048) == 3432228642067641593ULL);
ok1(hash64_stable(u8array, ARRAY_WORDS, 4096) == 1219647244417697483ULL);
ok1(hash64_stable(u8array, ARRAY_WORDS, 8192) == 7629939424585859553ULL);
ok1(hash64_stable(u8array, ARRAY_WORDS, 16384) == 10041660531376789749ULL);
ok1(hash64_stable(u8array, ARRAY_WORDS, 32768) == 13859885793922603927ULL);
ok1(hash64_stable(u8array, ARRAY_WORDS, 65536) == 15069060338344675120ULL);
ok1(hash64_stable(u8array, ARRAY_WORDS, 131072) == 818163430835601100ULL);
ok1(hash64_stable(u8array, ARRAY_WORDS, 262144) == 14914314323019517069ULL);
ok1(hash64_stable(u8array, ARRAY_WORDS, 524288) == 17518437749769352214ULL);
ok1(hash64_stable(u8array, ARRAY_WORDS, 1048576) == 14920048004901212706ULL);
ok1(hash64_stable(u8array, ARRAY_WORDS, 2097152) == 8758567366332536138ULL);
ok1(hash64_stable(u8array, ARRAY_WORDS, 4194304) == 6226655736088907885ULL);
ok1(hash64_stable(u8array, ARRAY_WORDS, 8388608) == 13716650013685832100ULL);
ok1(hash64_stable(u8array, ARRAY_WORDS, 16777216) == 305325651636315638ULL);
ok1(hash64_stable(u8array, ARRAY_WORDS, 33554432) == 16784147606583781671ULL);
ok1(hash64_stable(u8array, ARRAY_WORDS, 67108864) == 16509467555140798205ULL);
ok1(hash64_stable(u8array, ARRAY_WORDS, 134217728) == 8717281234694060584ULL);
ok1(hash64_stable(u8array, ARRAY_WORDS, 268435456) == 8098476701725660537ULL);
ok1(hash64_stable(u8array, ARRAY_WORDS, 536870912) == 16345871539461094006ULL);
ok1(hash64_stable(u8array, ARRAY_WORDS, 1073741824) == 3755557000429964408ULL);
ok1(hash64_stable(u8array, ARRAY_WORDS, 2147483648U) == 15017348801959710081ULL);
ok1(hash64_stable(u16array, ARRAY_WORDS, 0) == 1038028831307724039ULL);
ok1(hash64_stable(u16array, ARRAY_WORDS, 1) == 10155473272642627302ULL);
ok1(hash64_stable(u16array, ARRAY_WORDS, 2) == 5714751190106841420ULL);
ok1(hash64_stable(u16array, ARRAY_WORDS, 4) == 3923885607767527866ULL);
ok1(hash64_stable(u16array, ARRAY_WORDS, 8) == 3931017318293995558ULL);
ok1(hash64_stable(u16array, ARRAY_WORDS, 16) == 1469696588339313177ULL);
ok1(hash64_stable(u16array, ARRAY_WORDS, 32) == 11522218526952715051ULL);
ok1(hash64_stable(u16array, ARRAY_WORDS, 64) == 6953517591561958496ULL);
ok1(hash64_stable(u16array, ARRAY_WORDS, 128) == 7406689491740052867ULL);
ok1(hash64_stable(u16array, ARRAY_WORDS, 256) == 10101844489704093104ULL);
ok1(hash64_stable(u16array, ARRAY_WORDS, 512) == 12511348870707245959ULL);
ok1(hash64_stable(u16array, ARRAY_WORDS, 1024) == 1614019938016861468ULL);
ok1(hash64_stable(u16array, ARRAY_WORDS, 2048) == 5294796182374592721ULL);
ok1(hash64_stable(u16array, ARRAY_WORDS, 4096) == 16089570706643716675ULL);
ok1(hash64_stable(u16array, ARRAY_WORDS, 8192) == 1689302638424579464ULL);
ok1(hash64_stable(u16array, ARRAY_WORDS, 16384) == 1446340172370386893ULL);
ok1(hash64_stable(u16array, ARRAY_WORDS, 32768) == 16535503506744393039ULL);
ok1(hash64_stable(u16array, ARRAY_WORDS, 65536) == 3496794142527150328ULL);
ok1(hash64_stable(u16array, ARRAY_WORDS, 131072) == 6568245367474548504ULL);
ok1(hash64_stable(u16array, ARRAY_WORDS, 262144) == 9487676460765485949ULL);
ok1(hash64_stable(u16array, ARRAY_WORDS, 524288) == 4519762130966530000ULL);
ok1(hash64_stable(u16array, ARRAY_WORDS, 1048576) == 15623412069215340610ULL);
ok1(hash64_stable(u16array, ARRAY_WORDS, 2097152) == 544013388676438108ULL);
ok1(hash64_stable(u16array, ARRAY_WORDS, 4194304) == 5594904760290840266ULL);
ok1(hash64_stable(u16array, ARRAY_WORDS, 8388608) == 18098755780041592043ULL);
ok1(hash64_stable(u16array, ARRAY_WORDS, 16777216) == 6389168672387330316ULL);
ok1(hash64_stable(u16array, ARRAY_WORDS, 33554432) == 896986127732419381ULL);
ok1(hash64_stable(u16array, ARRAY_WORDS, 67108864) == 13232626471143901354ULL);
ok1(hash64_stable(u16array, ARRAY_WORDS, 134217728) == 53378562890493093ULL);
ok1(hash64_stable(u16array, ARRAY_WORDS, 268435456) == 10072361400297824771ULL);
ok1(hash64_stable(u16array, ARRAY_WORDS, 536870912) == 14511948118285144529ULL);
ok1(hash64_stable(u16array, ARRAY_WORDS, 1073741824) == 6981033484844447277ULL);
ok1(hash64_stable(u16array, ARRAY_WORDS, 2147483648U) == 5619339091684126808ULL);
ok1(hash64_stable(u32array, ARRAY_WORDS, 0) == 3037571077312110476ULL);
ok1(hash64_stable(u32array, ARRAY_WORDS, 1) == 14732398743825071988ULL);
ok1(hash64_stable(u32array, ARRAY_WORDS, 2) == 14949132158206672071ULL);
ok1(hash64_stable(u32array, ARRAY_WORDS, 4) == 1291370080511561429ULL);
ok1(hash64_stable(u32array, ARRAY_WORDS, 8) == 10792665964172133092ULL);
ok1(hash64_stable(u32array, ARRAY_WORDS, 16) == 14250138032054339435ULL);
ok1(hash64_stable(u32array, ARRAY_WORDS, 32) == 17136741522078732741ULL);
ok1(hash64_stable(u32array, ARRAY_WORDS, 64) == 3260193403318236635ULL);
ok1(hash64_stable(u32array, ARRAY_WORDS, 128) == 10526616652205653536ULL);
ok1(hash64_stable(u32array, ARRAY_WORDS, 256) == 9019690373358576579ULL);
ok1(hash64_stable(u32array, ARRAY_WORDS, 512) == 6997491436599677436ULL);
ok1(hash64_stable(u32array, ARRAY_WORDS, 1024) == 18302783371416533798ULL);
ok1(hash64_stable(u32array, ARRAY_WORDS, 2048) == 10149320644446516025ULL);
ok1(hash64_stable(u32array, ARRAY_WORDS, 4096) == 7073759949410623868ULL);
ok1(hash64_stable(u32array, ARRAY_WORDS, 8192) == 17442399482223760073ULL);
ok1(hash64_stable(u32array, ARRAY_WORDS, 16384) == 2983906194216281861ULL);
ok1(hash64_stable(u32array, ARRAY_WORDS, 32768) == 4975845419129060524ULL);
ok1(hash64_stable(u32array, ARRAY_WORDS, 65536) == 594019910205413268ULL);
ok1(hash64_stable(u32array, ARRAY_WORDS, 131072) == 11903010186073691112ULL);
ok1(hash64_stable(u32array, ARRAY_WORDS, 262144) == 7339636527154847008ULL);
ok1(hash64_stable(u32array, ARRAY_WORDS, 524288) == 15243305400579108736ULL);
ok1(hash64_stable(u32array, ARRAY_WORDS, 1048576) == 16737926245392043198ULL);
ok1(hash64_stable(u32array, ARRAY_WORDS, 2097152) == 15725083267699862972ULL);
ok1(hash64_stable(u32array, ARRAY_WORDS, 4194304) == 12527834265678833794ULL);
ok1(hash64_stable(u32array, ARRAY_WORDS, 8388608) == 13908436455987824848ULL);
ok1(hash64_stable(u32array, ARRAY_WORDS, 16777216) == 9672773345173872588ULL);
ok1(hash64_stable(u32array, ARRAY_WORDS, 33554432) == 2305314279896710501ULL);
ok1(hash64_stable(u32array, ARRAY_WORDS, 67108864) == 1866733780381408751ULL);
ok1(hash64_stable(u32array, ARRAY_WORDS, 134217728) == 11906263969465724709ULL);
ok1(hash64_stable(u32array, ARRAY_WORDS, 268435456) == 5501594918093830069ULL);
ok1(hash64_stable(u32array, ARRAY_WORDS, 536870912) == 15823785789276225477ULL);
ok1(hash64_stable(u32array, ARRAY_WORDS, 1073741824) == 17353000723889475410ULL);
ok1(hash64_stable(u32array, ARRAY_WORDS, 2147483648U) == 7494736910655503182ULL);
ok1(hash64_stable(u64array, ARRAY_WORDS, 0) == 9765419389786481410ULL);
ok1(hash64_stable(u64array, ARRAY_WORDS, 1) == 11182806172127114246ULL);
ok1(hash64_stable(u64array, ARRAY_WORDS, 2) == 2559155171395472619ULL);
ok1(hash64_stable(u64array, ARRAY_WORDS, 4) == 3311692033324815378ULL);
ok1(hash64_stable(u64array, ARRAY_WORDS, 8) == 1297175419505333844ULL);
ok1(hash64_stable(u64array, ARRAY_WORDS, 16) == 617896928653569210ULL);
ok1(hash64_stable(u64array, ARRAY_WORDS, 32) == 1517398559958603553ULL);
ok1(hash64_stable(u64array, ARRAY_WORDS, 64) == 4504821917445110758ULL);
ok1(hash64_stable(u64array, ARRAY_WORDS, 128) == 1971743331114904452ULL);
ok1(hash64_stable(u64array, ARRAY_WORDS, 256) == 6177667912354374306ULL);
ok1(hash64_stable(u64array, ARRAY_WORDS, 512) == 15570521289777792458ULL);
ok1(hash64_stable(u64array, ARRAY_WORDS, 1024) == 9204559632415917331ULL);
ok1(hash64_stable(u64array, ARRAY_WORDS, 2048) == 9008982669760028237ULL);
ok1(hash64_stable(u64array, ARRAY_WORDS, 4096) == 14803537660281700281ULL);
ok1(hash64_stable(u64array, ARRAY_WORDS, 8192) == 2873966517448487327ULL);
ok1(hash64_stable(u64array, ARRAY_WORDS, 16384) == 5859277625928363661ULL);
ok1(hash64_stable(u64array, ARRAY_WORDS, 32768) == 15520461285618185970ULL);
ok1(hash64_stable(u64array, ARRAY_WORDS, 65536) == 16746489793331175369ULL);
ok1(hash64_stable(u64array, ARRAY_WORDS, 131072) == 514952025484227461ULL);
ok1(hash64_stable(u64array, ARRAY_WORDS, 262144) == 10867212269810675249ULL);
ok1(hash64_stable(u64array, ARRAY_WORDS, 524288) == 9822204377278314587ULL);
ok1(hash64_stable(u64array, ARRAY_WORDS, 1048576) == 3295088921987850465ULL);
ok1(hash64_stable(u64array, ARRAY_WORDS, 2097152) == 7559197431498053712ULL);
ok1(hash64_stable(u64array, ARRAY_WORDS, 4194304) == 1667267269116771849ULL);
ok1(hash64_stable(u64array, ARRAY_WORDS, 8388608) == 2916804068951374862ULL);
ok1(hash64_stable(u64array, ARRAY_WORDS, 16777216) == 14422558383125688561ULL);
ok1(hash64_stable(u64array, ARRAY_WORDS, 33554432) == 10083112683694342602ULL);
ok1(hash64_stable(u64array, ARRAY_WORDS, 67108864) == 7222777647078298513ULL);
ok1(hash64_stable(u64array, ARRAY_WORDS, 134217728) == 18424513674048212529ULL);
ok1(hash64_stable(u64array, ARRAY_WORDS, 268435456) == 14913668581101810784ULL);
ok1(hash64_stable(u64array, ARRAY_WORDS, 536870912) == 14377721174297902048ULL);
ok1(hash64_stable(u64array, ARRAY_WORDS, 1073741824) == 6031715005667500948ULL);
ok1(hash64_stable(u64array, ARRAY_WORDS, 2147483648U) == 4827100319722378642ULL);
return exit_status();
}

149
ccan/ccan/hash/test/run.c

@ -1,149 +0,0 @@
#include <ccan/hash/hash.h>
#include <ccan/tap/tap.h>
#include <ccan/hash/hash.c>
#include <stdbool.h>
#include <string.h>
#define ARRAY_WORDS 5
int main(int argc, char *argv[])
{
unsigned int i, j, k;
uint32_t array[ARRAY_WORDS], val;
char array2[sizeof(array) + sizeof(uint32_t)];
uint32_t results[256];
/* Initialize array. */
for (i = 0; i < ARRAY_WORDS; i++)
array[i] = i;
plan_tests(39);
/* Hash should be the same, indep of memory alignment. */
val = hash(array, ARRAY_WORDS, 0);
for (i = 0; i < sizeof(uint32_t); i++) {
memcpy(array2 + i, array, sizeof(array));
ok(hash(array2 + i, ARRAY_WORDS, 0) != val,
"hash matched at offset %i", i);
}
/* Hash of random values should have random distribution:
* check one byte at a time. */
for (i = 0; i < sizeof(uint32_t); i++) {
unsigned int lowest = -1U, highest = 0;
memset(results, 0, sizeof(results));
for (j = 0; j < 256000; j++) {
for (k = 0; k < ARRAY_WORDS; k++)
array[k] = random();
results[(hash(array, ARRAY_WORDS, 0) >> i*8)&0xFF]++;
}
for (j = 0; j < 256; j++) {
if (results[j] < lowest)
lowest = results[j];
if (results[j] > highest)
highest = results[j];
}
/* Expect within 20% */
ok(lowest > 800, "Byte %i lowest %i", i, lowest);
ok(highest < 1200, "Byte %i highest %i", i, highest);
diag("Byte %i, range %u-%u", i, lowest, highest);
}
/* Hash of random values should have random distribution:
* check one byte at a time. */
for (i = 0; i < sizeof(uint64_t); i++) {
unsigned int lowest = -1U, highest = 0;
memset(results, 0, sizeof(results));
for (j = 0; j < 256000; j++) {
for (k = 0; k < ARRAY_WORDS; k++)
array[k] = random();
results[(hash64(array, sizeof(array)/sizeof(uint64_t),
0) >> i*8)&0xFF]++;
}
for (j = 0; j < 256; j++) {
if (results[j] < lowest)
lowest = results[j];
if (results[j] > highest)
highest = results[j];
}
/* Expect within 20% */
ok(lowest > 800, "Byte %i lowest %i", i, lowest);
ok(highest < 1200, "Byte %i highest %i", i, highest);
diag("Byte %i, range %u-%u", i, lowest, highest);
}
/* Hash of pointer values should also have random distribution. */
for (i = 0; i < sizeof(uint32_t); i++) {
unsigned int lowest = -1U, highest = 0;
char *p = malloc(256000);
memset(results, 0, sizeof(results));
for (j = 0; j < 256000; j++)
results[(hash_pointer(p + j, 0) >> i*8)&0xFF]++;
free(p);
for (j = 0; j < 256; j++) {
if (results[j] < lowest)
lowest = results[j];
if (results[j] > highest)
highest = results[j];
}
/* Expect within 20% */
ok(lowest > 800, "hash_pointer byte %i lowest %i", i, lowest);
ok(highest < 1200, "hash_pointer byte %i highest %i",
i, highest);
diag("hash_pointer byte %i, range %u-%u", i, lowest, highest);
}
if (sizeof(long) == sizeof(uint32_t))
ok1(hashl(array, ARRAY_WORDS, 0)
== hash(array, ARRAY_WORDS, 0));
else
ok1(hashl(array, ARRAY_WORDS, 0)
== hash64(array, ARRAY_WORDS, 0));
/* String hash: weak, so only test bottom byte */
for (i = 0; i < 1; i++) {
unsigned int num = 0, cursor, lowest = -1U, highest = 0;
char p[5];
memset(results, 0, sizeof(results));
memset(p, 'A', sizeof(p));
p[sizeof(p)-1] = '\0';
for (;;) {
for (cursor = 0; cursor < sizeof(p)-1; cursor++) {
p[cursor]++;
if (p[cursor] <= 'z')
break;
p[cursor] = 'A';
}
if (cursor == sizeof(p)-1)
break;
results[(hash_string(p) >> i*8)&0xFF]++;
num++;
}
for (j = 0; j < 256; j++) {
if (results[j] < lowest)
lowest = results[j];
if (results[j] > highest)
highest = results[j];
}
/* Expect within 20% */
ok(lowest > 35000, "hash_pointer byte %i lowest %i", i, lowest);
ok(highest < 53000, "hash_pointer byte %i highest %i",
i, highest);
diag("hash_pointer byte %i, range %u-%u", i, lowest, highest);
}
return exit_status();
}

28
daemon/pseudorand.c

@ -1,28 +1,42 @@
#include "pseudorand.h"
#include <assert.h>
#include <ccan/crypto/siphash24/siphash24.h>
#include <ccan/err/err.h>
#include <ccan/isaac/isaac64.h>
#include <ccan/likely/likely.h>
#include <openssl/err.h>
#include <openssl/rand.h>
#include <sodium/randombytes.h>
#include <stdbool.h>
#include <string.h>
static struct isaac64_ctx isaac64;
static struct siphash_seed siphashseed;
static bool pseudorand_initted = false;
uint64_t pseudorand(uint64_t max)
static void init_if_needed(void)
{
if (unlikely(!pseudorand_initted)) {
unsigned char seedbuf[16];
/* PRNG */
if (RAND_bytes(seedbuf, sizeof(seedbuf)) != 1)
errx(1, "Could not seed PRNG: %s",
ERR_error_string(ERR_get_error(), NULL));
randombytes_buf(seedbuf, sizeof(seedbuf));
isaac64_init(&isaac64, seedbuf, sizeof(seedbuf));
memcpy(&siphashseed, seedbuf, sizeof(siphashseed));
pseudorand_initted = true;
}
}
uint64_t pseudorand(uint64_t max)
{
init_if_needed();
assert(max);
return isaac64_next_uint(&isaac64, max);
}
const struct siphash_seed *siphash_seed(void)
{
init_if_needed();
return &siphashseed;
}

6
daemon/pseudorand.h

@ -7,4 +7,10 @@
* pseudorand - pseudo (guessable!) random number between 0 and max-1.
*/
uint64_t pseudorand(uint64_t max);
/**
* Get the siphash seed for hash tables.
*/
const struct siphash_seed *siphash_seed(void);
#endif /* LIGHTNING_DAEMON_PSEUDORAND_H */

11
daemon/watch.c

@ -33,9 +33,10 @@
#include "lightningd.h"
#include "log.h"
#include "peer.h"
#include "pseudorand.h"
#include "timeout.h"
#include "watch.h"
#include <ccan/hash/hash.h>
#include <ccan/crypto/siphash24/siphash24.h>
#include <ccan/ptrint/ptrint.h>
#include <ccan/structeq/structeq.h>
@ -46,7 +47,11 @@ const struct txwatch_output *txowatch_keyof(const struct txowatch *w)
size_t txo_hash(const struct txwatch_output *out)
{
return hash(&out->txid, 1, out->index);
/* This hash-in-one-go trick only works if they're consecutive. */
BUILD_ASSERT(offsetof(struct txwatch_output, index)
== sizeof(((struct txwatch_output *)NULL)->txid));
return siphash24(siphash_seed(), &out->txid,
sizeof(out->txid) + sizeof(out->index));
}
bool txowatch_eq(const struct txowatch *w, const struct txwatch_output *out)
@ -67,7 +72,7 @@ const struct sha256_double *txwatch_keyof(const struct txwatch *w)
size_t txid_hash(const struct sha256_double *txid)
{
return hash(txid->sha.u.u8, sizeof(txid->sha.u.u8), 0);
return siphash24(siphash_seed(), txid->sha.u.u8, sizeof(txid->sha.u.u8));
}
bool txwatch_eq(const struct txwatch *w, const struct sha256_double *txid)

Loading…
Cancel
Save