|
|
|
// Copyright 2011 the V8 project authors. All rights reserved.
|
|
|
|
// Redistribution and use in source and binary forms, with or without
|
|
|
|
// modification, are permitted provided that the following conditions are
|
|
|
|
// met:
|
|
|
|
//
|
|
|
|
// * Redistributions of source code must retain the above copyright
|
|
|
|
// notice, this list of conditions and the following disclaimer.
|
|
|
|
// * Redistributions in binary form must reproduce the above
|
|
|
|
// copyright notice, this list of conditions and the following
|
|
|
|
// disclaimer in the documentation and/or other materials provided
|
|
|
|
// with the distribution.
|
|
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
|
|
// contributors may be used to endorse or promote products derived
|
|
|
|
// from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
|
|
#ifndef V8_X64_MACRO_ASSEMBLER_X64_H_
|
|
|
|
#define V8_X64_MACRO_ASSEMBLER_X64_H_
|
|
|
|
|
|
|
|
#include "assembler.h"
|
|
|
|
#include "v8globals.h"
|
|
|
|
|
|
|
|
namespace v8 {
|
|
|
|
namespace internal {
|
|
|
|
|
|
|
|
// Flags used for the AllocateInNewSpace functions.
|
|
|
|
enum AllocationFlags {
|
|
|
|
// No special flags.
|
|
|
|
NO_ALLOCATION_FLAGS = 0,
|
|
|
|
// Return the pointer to the allocated already tagged as a heap object.
|
|
|
|
TAG_OBJECT = 1 << 0,
|
|
|
|
// The content of the result register already contains the allocation top in
|
|
|
|
// new space.
|
|
|
|
RESULT_CONTAINS_TOP = 1 << 1
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// Default scratch register used by MacroAssembler (and other code that needs
|
|
|
|
// a spare register). The register isn't callee save, and not used by the
|
|
|
|
// function calling convention.
|
|
|
|
static const Register kScratchRegister = { 10 }; // r10.
|
|
|
|
static const Register kSmiConstantRegister = { 12 }; // r12 (callee save).
|
|
|
|
static const Register kRootRegister = { 13 }; // r13 (callee save).
|
|
|
|
// Value of smi in kSmiConstantRegister.
|
|
|
|
static const int kSmiConstantRegisterValue = 1;
|
|
|
|
// Actual value of root register is offset from the root array's start
|
|
|
|
// to take advantage of negitive 8-bit displacement values.
|
|
|
|
static const int kRootRegisterBias = 128;
|
|
|
|
|
|
|
|
// Convenience for platform-independent signatures.
|
|
|
|
typedef Operand MemOperand;
|
|
|
|
|
|
|
|
// Forward declaration.
|
|
|
|
class JumpTarget;
|
|
|
|
|
|
|
|
struct SmiIndex {
|
|
|
|
SmiIndex(Register index_register, ScaleFactor scale)
|
|
|
|
: reg(index_register),
|
|
|
|
scale(scale) {}
|
|
|
|
Register reg;
|
|
|
|
ScaleFactor scale;
|
|
|
|
};
|
|
|
|
|
|
|
|
// MacroAssembler implements a collection of frequently used macros.
|
|
|
|
class MacroAssembler: public Assembler {
|
|
|
|
public:
|
|
|
|
// The isolate parameter can be NULL if the macro assembler should
|
|
|
|
// not use isolate-dependent functionality. In this case, it's the
|
|
|
|
// responsibility of the caller to never invoke such function on the
|
|
|
|
// macro assembler.
|
|
|
|
MacroAssembler(Isolate* isolate, void* buffer, int size);
|
|
|
|
|
|
|
|
// Prevent the use of the RootArray during the lifetime of this
|
|
|
|
// scope object.
|
|
|
|
class NoRootArrayScope BASE_EMBEDDED {
|
|
|
|
public:
|
|
|
|
explicit NoRootArrayScope(MacroAssembler* assembler)
|
|
|
|
: variable_(&assembler->root_array_available_),
|
|
|
|
old_value_(assembler->root_array_available_) {
|
|
|
|
assembler->root_array_available_ = false;
|
|
|
|
}
|
|
|
|
~NoRootArrayScope() {
|
|
|
|
*variable_ = old_value_;
|
|
|
|
}
|
|
|
|
private:
|
|
|
|
bool* variable_;
|
|
|
|
bool old_value_;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Operand pointing to an external reference.
|
|
|
|
// May emit code to set up the scratch register. The operand is
|
|
|
|
// only guaranteed to be correct as long as the scratch register
|
|
|
|
// isn't changed.
|
|
|
|
// If the operand is used more than once, use a scratch register
|
|
|
|
// that is guaranteed not to be clobbered.
|
|
|
|
Operand ExternalOperand(ExternalReference reference,
|
|
|
|
Register scratch = kScratchRegister);
|
|
|
|
// Loads and stores the value of an external reference.
|
|
|
|
// Special case code for load and store to take advantage of
|
|
|
|
// load_rax/store_rax if possible/necessary.
|
|
|
|
// For other operations, just use:
|
|
|
|
// Operand operand = ExternalOperand(extref);
|
|
|
|
// operation(operand, ..);
|
|
|
|
void Load(Register destination, ExternalReference source);
|
|
|
|
void Store(ExternalReference destination, Register source);
|
|
|
|
// Loads the address of the external reference into the destination
|
|
|
|
// register.
|
|
|
|
void LoadAddress(Register destination, ExternalReference source);
|
|
|
|
// Returns the size of the code generated by LoadAddress.
|
|
|
|
// Used by CallSize(ExternalReference) to find the size of a call.
|
|
|
|
int LoadAddressSize(ExternalReference source);
|
|
|
|
|
|
|
|
// Operations on roots in the root-array.
|
|
|
|
void LoadRoot(Register destination, Heap::RootListIndex index);
|
|
|
|
void StoreRoot(Register source, Heap::RootListIndex index);
|
|
|
|
// Load a root value where the index (or part of it) is variable.
|
|
|
|
// The variable_offset register is added to the fixed_offset value
|
|
|
|
// to get the index into the root-array.
|
|
|
|
void LoadRootIndexed(Register destination,
|
|
|
|
Register variable_offset,
|
|
|
|
int fixed_offset);
|
|
|
|
void CompareRoot(Register with, Heap::RootListIndex index);
|
|
|
|
void CompareRoot(const Operand& with, Heap::RootListIndex index);
|
|
|
|
void PushRoot(Heap::RootListIndex index);
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// GC Support
|
|
|
|
|
|
|
|
// For page containing |object| mark region covering |addr| dirty.
|
|
|
|
// RecordWriteHelper only works if the object is not in new
|
|
|
|
// space.
|
|
|
|
void RecordWriteHelper(Register object,
|
|
|
|
Register addr,
|
|
|
|
Register scratch);
|
|
|
|
|
|
|
|
// Check if object is in new space. The condition cc can be equal or
|
|
|
|
// not_equal. If it is equal a jump will be done if the object is on new
|
|
|
|
// space. The register scratch can be object itself, but it will be clobbered.
|
|
|
|
void InNewSpace(Register object,
|
|
|
|
Register scratch,
|
|
|
|
Condition cc,
|
|
|
|
Label* branch,
|
|
|
|
Label::Distance near_jump = Label::kFar);
|
|
|
|
|
|
|
|
// For page containing |object| mark region covering [object+offset]
|
|
|
|
// dirty. |object| is the object being stored into, |value| is the
|
|
|
|
// object being stored. If |offset| is zero, then the |scratch|
|
|
|
|
// register contains the array index into the elements array
|
|
|
|
// represented as an untagged 32-bit integer. All registers are
|
|
|
|
// clobbered by the operation. RecordWrite filters out smis so it
|
|
|
|
// does not update the write barrier if the value is a smi.
|
|
|
|
void RecordWrite(Register object,
|
|
|
|
int offset,
|
|
|
|
Register value,
|
|
|
|
Register scratch);
|
|
|
|
|
|
|
|
// For page containing |object| mark region covering [address]
|
|
|
|
// dirty. |object| is the object being stored into, |value| is the
|
|
|
|
// object being stored. All registers are clobbered by the
|
|
|
|
// operation. RecordWrite filters out smis so it does not update
|
|
|
|
// the write barrier if the value is a smi.
|
|
|
|
void RecordWrite(Register object,
|
|
|
|
Register address,
|
|
|
|
Register value);
|
|
|
|
|
|
|
|
// For page containing |object| mark region covering [object+offset] dirty.
|
|
|
|
// The value is known to not be a smi.
|
|
|
|
// object is the object being stored into, value is the object being stored.
|
|
|
|
// If offset is zero, then the scratch register contains the array index into
|
|
|
|
// the elements array represented as an untagged 32-bit integer.
|
|
|
|
// All registers are clobbered by the operation.
|
|
|
|
void RecordWriteNonSmi(Register object,
|
|
|
|
int offset,
|
|
|
|
Register value,
|
|
|
|
Register scratch);
|
|
|
|
|
|
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// Debugger Support
|
|
|
|
|
|
|
|
void DebugBreak();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// Activation frames
|
|
|
|
|
|
|
|
void EnterInternalFrame() { EnterFrame(StackFrame::INTERNAL); }
|
|
|
|
void LeaveInternalFrame() { LeaveFrame(StackFrame::INTERNAL); }
|
|
|
|
|
|
|
|
void EnterConstructFrame() { EnterFrame(StackFrame::CONSTRUCT); }
|
|
|
|
void LeaveConstructFrame() { LeaveFrame(StackFrame::CONSTRUCT); }
|
|
|
|
|
|
|
|
// Enter specific kind of exit frame; either in normal or
|
|
|
|
// debug mode. Expects the number of arguments in register rax and
|
|
|
|
// sets up the number of arguments in register rdi and the pointer
|
|
|
|
// to the first argument in register rsi.
|
|
|
|
//
|
|
|
|
// Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack
|
|
|
|
// accessible via StackSpaceOperand.
|
|
|
|
void EnterExitFrame(int arg_stack_space = 0, bool save_doubles = false);
|
|
|
|
|
|
|
|
// Enter specific kind of exit frame. Allocates arg_stack_space * kPointerSize
|
|
|
|
// memory (not GCed) on the stack accessible via StackSpaceOperand.
|
|
|
|
void EnterApiExitFrame(int arg_stack_space);
|
|
|
|
|
|
|
|
// Leave the current exit frame. Expects/provides the return value in
|
|
|
|
// register rax:rdx (untouched) and the pointer to the first
|
|
|
|
// argument in register rsi.
|
|
|
|
void LeaveExitFrame(bool save_doubles = false);
|
|
|
|
|
|
|
|
// Leave the current exit frame. Expects/provides the return value in
|
|
|
|
// register rax (untouched).
|
|
|
|
void LeaveApiExitFrame();
|
|
|
|
|
|
|
|
// Push and pop the registers that can hold pointers.
|
|
|
|
void PushSafepointRegisters() { Pushad(); }
|
|
|
|
void PopSafepointRegisters() { Popad(); }
|
|
|
|
// Store the value in register src in the safepoint register stack
|
|
|
|
// slot for register dst.
|
|
|
|
void StoreToSafepointRegisterSlot(Register dst, Register src);
|
|
|
|
void LoadFromSafepointRegisterSlot(Register dst, Register src);
|
|
|
|
|
|
|
|
void InitializeRootRegister() {
|
|
|
|
ExternalReference roots_address =
|
|
|
|
ExternalReference::roots_address(isolate());
|
|
|
|
movq(kRootRegister, roots_address);
|
|
|
|
addq(kRootRegister, Immediate(kRootRegisterBias));
|
|
|
|
}
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// JavaScript invokes
|
|
|
|
|
|
|
|
// Setup call kind marking in rcx. The method takes rcx as an
|
|
|
|
// explicit first parameter to make the code more readable at the
|
|
|
|
// call sites.
|
|
|
|
void SetCallKind(Register dst, CallKind kind);
|
|
|
|
|
|
|
|
// Invoke the JavaScript function code by either calling or jumping.
|
|
|
|
void InvokeCode(Register code,
|
|
|
|
const ParameterCount& expected,
|
|
|
|
const ParameterCount& actual,
|
|
|
|
InvokeFlag flag,
|
|
|
|
const CallWrapper& call_wrapper,
|
|
|
|
CallKind call_kind);
|
|
|
|
|
|
|
|
void InvokeCode(Handle<Code> code,
|
|
|
|
const ParameterCount& expected,
|
|
|
|
const ParameterCount& actual,
|
|
|
|
RelocInfo::Mode rmode,
|
|
|
|
InvokeFlag flag,
|
|
|
|
const CallWrapper& call_wrapper,
|
|
|
|
CallKind call_kind);
|
|
|
|
|
|
|
|
// Invoke the JavaScript function in the given register. Changes the
|
|
|
|
// current context to the context in the function before invoking.
|
|
|
|
void InvokeFunction(Register function,
|
|
|
|
const ParameterCount& actual,
|
|
|
|
InvokeFlag flag,
|
|
|
|
const CallWrapper& call_wrapper,
|
|
|
|
CallKind call_kind);
|
|
|
|
|
|
|
|
void InvokeFunction(JSFunction* function,
|
|
|
|
const ParameterCount& actual,
|
|
|
|
InvokeFlag flag,
|
|
|
|
const CallWrapper& call_wrapper,
|
|
|
|
CallKind call_kind);
|
|
|
|
|
|
|
|
// Invoke specified builtin JavaScript function. Adds an entry to
|
|
|
|
// the unresolved list if the name does not resolve.
|
|
|
|
void InvokeBuiltin(Builtins::JavaScript id,
|
|
|
|
InvokeFlag flag,
|
|
|
|
const CallWrapper& call_wrapper = NullCallWrapper());
|
|
|
|
|
|
|
|
// Store the function for the given builtin in the target register.
|
|
|
|
void GetBuiltinFunction(Register target, Builtins::JavaScript id);
|
|
|
|
|
|
|
|
// Store the code object for the given builtin in the target register.
|
|
|
|
void GetBuiltinEntry(Register target, Builtins::JavaScript id);
|
|
|
|
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// Smi tagging, untagging and operations on tagged smis.
|
|
|
|
|
|
|
|
void InitializeSmiConstantRegister() {
|
|
|
|
movq(kSmiConstantRegister,
|
|
|
|
reinterpret_cast<uint64_t>(Smi::FromInt(kSmiConstantRegisterValue)),
|
|
|
|
RelocInfo::NONE);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Conversions between tagged smi values and non-tagged integer values.
|
|
|
|
|
|
|
|
// Tag an integer value. The result must be known to be a valid smi value.
|
|
|
|
// Only uses the low 32 bits of the src register. Sets the N and Z flags
|
|
|
|
// based on the value of the resulting smi.
|
|
|
|
void Integer32ToSmi(Register dst, Register src);
|
|
|
|
|
|
|
|
// Stores an integer32 value into a memory field that already holds a smi.
|
|
|
|
void Integer32ToSmiField(const Operand& dst, Register src);
|
|
|
|
|
|
|
|
// Adds constant to src and tags the result as a smi.
|
|
|
|
// Result must be a valid smi.
|
|
|
|
void Integer64PlusConstantToSmi(Register dst, Register src, int constant);
|
|
|
|
|
|
|
|
// Convert smi to 32-bit integer. I.e., not sign extended into
|
|
|
|
// high 32 bits of destination.
|
|
|
|
void SmiToInteger32(Register dst, Register src);
|
|
|
|
void SmiToInteger32(Register dst, const Operand& src);
|
|
|
|
|
|
|
|
// Convert smi to 64-bit integer (sign extended if necessary).
|
|
|
|
void SmiToInteger64(Register dst, Register src);
|
|
|
|
void SmiToInteger64(Register dst, const Operand& src);
|
|
|
|
|
|
|
|
// Multiply a positive smi's integer value by a power of two.
|
|
|
|
// Provides result as 64-bit integer value.
|
|
|
|
void PositiveSmiTimesPowerOfTwoToInteger64(Register dst,
|
|
|
|
Register src,
|
|
|
|
int power);
|
|
|
|
|
|
|
|
// Divide a positive smi's integer value by a power of two.
|
|
|
|
// Provides result as 32-bit integer value.
|
|
|
|
void PositiveSmiDivPowerOfTwoToInteger32(Register dst,
|
|
|
|
Register src,
|
|
|
|
int power);
|
|
|
|
|
|
|
|
// Perform the logical or of two smi values and return a smi value.
|
|
|
|
// If either argument is not a smi, jump to on_not_smis and retain
|
|
|
|
// the original values of source registers. The destination register
|
|
|
|
// may be changed if it's not one of the source registers.
|
|
|
|
void SmiOrIfSmis(Register dst,
|
|
|
|
Register src1,
|
|
|
|
Register src2,
|
|
|
|
Label* on_not_smis,
|
|
|
|
Label::Distance near_jump = Label::kFar);
|
|
|
|
|
|
|
|
|
|
|
|
// Simple comparison of smis. Both sides must be known smis to use these,
|
|
|
|
// otherwise use Cmp.
|
|
|
|
void SmiCompare(Register smi1, Register smi2);
|
|
|
|
void SmiCompare(Register dst, Smi* src);
|
|
|
|
void SmiCompare(Register dst, const Operand& src);
|
|
|
|
void SmiCompare(const Operand& dst, Register src);
|
|
|
|
void SmiCompare(const Operand& dst, Smi* src);
|
|
|
|
// Compare the int32 in src register to the value of the smi stored at dst.
|
|
|
|
void SmiCompareInteger32(const Operand& dst, Register src);
|
|
|
|
// Sets sign and zero flags depending on value of smi in register.
|
|
|
|
void SmiTest(Register src);
|
|
|
|
|
|
|
|
// Functions performing a check on a known or potential smi. Returns
|
|
|
|
// a condition that is satisfied if the check is successful.
|
|
|
|
|
|
|
|
// Is the value a tagged smi.
|
|
|
|
Condition CheckSmi(Register src);
|
|
|
|
Condition CheckSmi(const Operand& src);
|
|
|
|
|
|
|
|
// Is the value a non-negative tagged smi.
|
|
|
|
Condition CheckNonNegativeSmi(Register src);
|
|
|
|
|
|
|
|
// Are both values tagged smis.
|
|
|
|
Condition CheckBothSmi(Register first, Register second);
|
|
|
|
|
|
|
|
// Are both values non-negative tagged smis.
|
|
|
|
Condition CheckBothNonNegativeSmi(Register first, Register second);
|
|
|
|
|
|
|
|
// Are either value a tagged smi.
|
|
|
|
Condition CheckEitherSmi(Register first,
|
|
|
|
Register second,
|
|
|
|
Register scratch = kScratchRegister);
|
|
|
|
|
|
|
|
// Is the value the minimum smi value (since we are using
|
|
|
|
// two's complement numbers, negating the value is known to yield
|
|
|
|
// a non-smi value).
|
|
|
|
Condition CheckIsMinSmi(Register src);
|
|
|
|
|
|
|
|
// Checks whether an 32-bit integer value is a valid for conversion
|
|
|
|
// to a smi.
|
|
|
|
Condition CheckInteger32ValidSmiValue(Register src);
|
|
|
|
|
|
|
|
// Checks whether an 32-bit unsigned integer value is a valid for
|
|
|
|
// conversion to a smi.
|
|
|
|
Condition CheckUInteger32ValidSmiValue(Register src);
|
|
|
|
|
|
|
|
// Check whether src is a Smi, and set dst to zero if it is a smi,
|
|
|
|
// and to one if it isn't.
|
|
|
|
void CheckSmiToIndicator(Register dst, Register src);
|
|
|
|
void CheckSmiToIndicator(Register dst, const Operand& src);
|
|
|
|
|
|
|
|
// Test-and-jump functions. Typically combines a check function
|
|
|
|
// above with a conditional jump.
|
|
|
|
|
|
|
|
// Jump if the value cannot be represented by a smi.
|
|
|
|
void JumpIfNotValidSmiValue(Register src, Label* on_invalid,
|
|
|
|
Label::Distance near_jump = Label::kFar);
|
|
|
|
|
|
|
|
// Jump if the unsigned integer value cannot be represented by a smi.
|
|
|
|
void JumpIfUIntNotValidSmiValue(Register src, Label* on_invalid,
|
|
|
|
Label::Distance near_jump = Label::kFar);
|
|
|
|
|
|
|
|
// Jump to label if the value is a tagged smi.
|
|
|
|
void JumpIfSmi(Register src,
|
|
|
|
Label* on_smi,
|
|
|
|
Label::Distance near_jump = Label::kFar);
|
|
|
|
|
|
|
|
// Jump to label if the value is not a tagged smi.
|
|
|
|
void JumpIfNotSmi(Register src,
|
|
|
|
Label* on_not_smi,
|
|
|
|
Label::Distance near_jump = Label::kFar);
|
|
|
|
|
|
|
|
// Jump to label if the value is not a non-negative tagged smi.
|
|
|
|
void JumpUnlessNonNegativeSmi(Register src,
|
|
|
|
Label* on_not_smi,
|
|
|
|
Label::Distance near_jump = Label::kFar);
|
|
|
|
|
|
|
|
// Jump to label if the value, which must be a tagged smi, has value equal
|
|
|
|
// to the constant.
|
|
|
|
void JumpIfSmiEqualsConstant(Register src,
|
|
|
|
Smi* constant,
|
|
|
|
Label* on_equals,
|
|
|
|
Label::Distance near_jump = Label::kFar);
|
|
|
|
|
|
|
|
// Jump if either or both register are not smi values.
|
|
|
|
void JumpIfNotBothSmi(Register src1,
|
|
|
|
Register src2,
|
|
|
|
Label* on_not_both_smi,
|
|
|
|
Label::Distance near_jump = Label::kFar);
|
|
|
|
|
|
|
|
// Jump if either or both register are not non-negative smi values.
|
|
|
|
void JumpUnlessBothNonNegativeSmi(Register src1, Register src2,
|
|
|
|
Label* on_not_both_smi,
|
|
|
|
Label::Distance near_jump = Label::kFar);
|
|
|
|
|
|
|
|
// Operations on tagged smi values.
|
|
|
|
|
|
|
|
// Smis represent a subset of integers. The subset is always equivalent to
|
|
|
|
// a two's complement interpretation of a fixed number of bits.
|
|
|
|
|
|
|
|
// Optimistically adds an integer constant to a supposed smi.
|
|
|
|
// If the src is not a smi, or the result is not a smi, jump to
|
|
|
|
// the label.
|
|
|
|
void SmiTryAddConstant(Register dst,
|
|
|
|
Register src,
|
|
|
|
Smi* constant,
|
|
|
|
Label* on_not_smi_result,
|
|
|
|
Label::Distance near_jump = Label::kFar);
|
|
|
|
|
|
|
|
// Add an integer constant to a tagged smi, giving a tagged smi as result.
|
|
|
|
// No overflow testing on the result is done.
|
|
|
|
void SmiAddConstant(Register dst, Register src, Smi* constant);
|
|
|
|
|
|
|
|
// Add an integer constant to a tagged smi, giving a tagged smi as result.
|
|
|
|
// No overflow testing on the result is done.
|
|
|
|
void SmiAddConstant(const Operand& dst, Smi* constant);
|
|
|
|
|
|
|
|
// Add an integer constant to a tagged smi, giving a tagged smi as result,
|
|
|
|
// or jumping to a label if the result cannot be represented by a smi.
|
|
|
|
void SmiAddConstant(Register dst,
|
|
|
|
Register src,
|
|
|
|
Smi* constant,
|
|
|
|
Label* on_not_smi_result,
|
|
|
|
Label::Distance near_jump = Label::kFar);
|
|
|
|
|
|
|
|
// Subtract an integer constant from a tagged smi, giving a tagged smi as
|
|
|
|
// result. No testing on the result is done. Sets the N and Z flags
|
|
|
|
// based on the value of the resulting integer.
|
|
|
|
void SmiSubConstant(Register dst, Register src, Smi* constant);
|
|
|
|
|
|
|
|
// Subtract an integer constant from a tagged smi, giving a tagged smi as
|
|
|
|
// result, or jumping to a label if the result cannot be represented by a smi.
|
|
|
|
void SmiSubConstant(Register dst,
|
|
|
|
Register src,
|
|
|
|
Smi* constant,
|
|
|
|
Label* on_not_smi_result,
|
|
|
|
Label::Distance near_jump = Label::kFar);
|
|
|
|
|
|
|
|
// Negating a smi can give a negative zero or too large positive value.
|
|
|
|
// NOTICE: This operation jumps on success, not failure!
|
|
|
|
void SmiNeg(Register dst,
|
|
|
|
Register src,
|
|
|
|
Label* on_smi_result,
|
|
|
|
Label::Distance near_jump = Label::kFar);
|
|
|
|
|
|
|
|
// Adds smi values and return the result as a smi.
|
|
|
|
// If dst is src1, then src1 will be destroyed, even if
|
|
|
|
// the operation is unsuccessful.
|
|
|
|
void SmiAdd(Register dst,
|
|
|
|
Register src1,
|
|
|
|
Register src2,
|
|
|
|
Label* on_not_smi_result,
|
|
|
|
Label::Distance near_jump = Label::kFar);
|
|
|
|
void SmiAdd(Register dst,
|
|
|
|
Register src1,
|
|
|
|
const Operand& src2,
|
|
|
|
Label* on_not_smi_result,
|
|
|
|
Label::Distance near_jump = Label::kFar);
|
|
|
|
|
|
|
|
void SmiAdd(Register dst,
|
|
|
|
Register src1,
|
|
|
|
Register src2);
|
|
|
|
|
|
|
|
// Subtracts smi values and return the result as a smi.
|
|
|
|
// If dst is src1, then src1 will be destroyed, even if
|
|
|
|
// the operation is unsuccessful.
|
|
|
|
void SmiSub(Register dst,
|
|
|
|
Register src1,
|
|
|
|
Register src2,
|
|
|
|
Label* on_not_smi_result,
|
|
|
|
Label::Distance near_jump = Label::kFar);
|
|
|
|
|
|
|
|
void SmiSub(Register dst,
|
|
|
|
Register src1,
|
|
|
|
Register src2);
|
|
|
|
|
|
|
|
void SmiSub(Register dst,
|
|
|
|
Register src1,
|
|
|
|
const Operand& src2,
|
|
|
|
Label* on_not_smi_result,
|
|
|
|
Label::Distance near_jump = Label::kFar);
|
|
|
|
|
|
|
|
void SmiSub(Register dst,
|
|
|
|
Register src1,
|
|
|
|
const Operand& src2);
|
|
|
|
|
|
|
|
// Multiplies smi values and return the result as a smi,
|
|
|
|
// if possible.
|
|
|
|
// If dst is src1, then src1 will be destroyed, even if
|
|
|
|
// the operation is unsuccessful.
|
|
|
|
void SmiMul(Register dst,
|
|
|
|
Register src1,
|
|
|
|
Register src2,
|
|
|
|
Label* on_not_smi_result,
|
|
|
|
Label::Distance near_jump = Label::kFar);
|
|
|
|
|
|
|
|
// Divides one smi by another and returns the quotient.
|
|
|
|
// Clobbers rax and rdx registers.
|
|
|
|
void SmiDiv(Register dst,
|
|
|
|
Register src1,
|
|
|
|
Register src2,
|
|
|
|
Label* on_not_smi_result,
|
|
|
|
Label::Distance near_jump = Label::kFar);
|
|
|
|
|
|
|
|
// Divides one smi by another and returns the remainder.
|
|
|
|
// Clobbers rax and rdx registers.
|
|
|
|
void SmiMod(Register dst,
|
|
|
|
Register src1,
|
|
|
|
Register src2,
|
|
|
|
Label* on_not_smi_result,
|
|
|
|
Label::Distance near_jump = Label::kFar);
|
|
|
|
|
|
|
|
// Bitwise operations.
|
|
|
|
void SmiNot(Register dst, Register src);
|
|
|
|
void SmiAnd(Register dst, Register src1, Register src2);
|
|
|
|
void SmiOr(Register dst, Register src1, Register src2);
|
|
|
|
void SmiXor(Register dst, Register src1, Register src2);
|
|
|
|
void SmiAndConstant(Register dst, Register src1, Smi* constant);
|
|
|
|
void SmiOrConstant(Register dst, Register src1, Smi* constant);
|
|
|
|
void SmiXorConstant(Register dst, Register src1, Smi* constant);
|
|
|
|
|
|
|
|
void SmiShiftLeftConstant(Register dst,
|
|
|
|
Register src,
|
|
|
|
int shift_value);
|
|
|
|
void SmiShiftLogicalRightConstant(Register dst,
|
|
|
|
Register src,
|
|
|
|
int shift_value,
|
|
|
|
Label* on_not_smi_result,
|
|
|
|
Label::Distance near_jump = Label::kFar);
|
|
|
|
void SmiShiftArithmeticRightConstant(Register dst,
|
|
|
|
Register src,
|
|
|
|
int shift_value);
|
|
|
|
|
|
|
|
// Shifts a smi value to the left, and returns the result if that is a smi.
|
|
|
|
// Uses and clobbers rcx, so dst may not be rcx.
|
|
|
|
void SmiShiftLeft(Register dst,
|
|
|
|
Register src1,
|
|
|
|
Register src2);
|
|
|
|
// Shifts a smi value to the right, shifting in zero bits at the top, and
|
|
|
|
// returns the unsigned intepretation of the result if that is a smi.
|
|
|
|
// Uses and clobbers rcx, so dst may not be rcx.
|
|
|
|
void SmiShiftLogicalRight(Register dst,
|
|
|
|
Register src1,
|
|
|
|
Register src2,
|
|
|
|
Label* on_not_smi_result,
|
|
|
|
Label::Distance near_jump = Label::kFar);
|
|
|
|
// Shifts a smi value to the right, sign extending the top, and
|
|
|
|
// returns the signed intepretation of the result. That will always
|
|
|
|
// be a valid smi value, since it's numerically smaller than the
|
|
|
|
// original.
|
|
|
|
// Uses and clobbers rcx, so dst may not be rcx.
|
|
|
|
void SmiShiftArithmeticRight(Register dst,
|
|
|
|
Register src1,
|
|
|
|
Register src2);
|
|
|
|
|
|
|
|
// Specialized operations
|
|
|
|
|
|
|
|
// Select the non-smi register of two registers where exactly one is a
|
|
|
|
// smi. If neither are smis, jump to the failure label.
|
|
|
|
void SelectNonSmi(Register dst,
|
|
|
|
Register src1,
|
|
|
|
Register src2,
|
|
|
|
Label* on_not_smis,
|
|
|
|
Label::Distance near_jump = Label::kFar);
|
|
|
|
|
|
|
|
// Converts, if necessary, a smi to a combination of number and
|
|
|
|
// multiplier to be used as a scaled index.
|
|
|
|
// The src register contains a *positive* smi value. The shift is the
|
|
|
|
// power of two to multiply the index value by (e.g.
|
|
|
|
// to index by smi-value * kPointerSize, pass the smi and kPointerSizeLog2).
|
|
|
|
// The returned index register may be either src or dst, depending
|
|
|
|
// on what is most efficient. If src and dst are different registers,
|
|
|
|
// src is always unchanged.
|
|
|
|
SmiIndex SmiToIndex(Register dst, Register src, int shift);
|
|
|
|
|
|
|
|
// Converts a positive smi to a negative index.
|
|
|
|
SmiIndex SmiToNegativeIndex(Register dst, Register src, int shift);
|
|
|
|
|
|
|
|
// Add the value of a smi in memory to an int32 register.
|
|
|
|
// Sets flags as a normal add.
|
|
|
|
void AddSmiField(Register dst, const Operand& src);
|
|
|
|
|
|
|
|
// Basic Smi operations.
|
|
|
|
void Move(Register dst, Smi* source) {
|
|
|
|
LoadSmiConstant(dst, source);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Move(const Operand& dst, Smi* source) {
|
|
|
|
Register constant = GetSmiConstant(source);
|
|
|
|
movq(dst, constant);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Push(Smi* smi);
|
|
|
|
void Test(const Operand& dst, Smi* source);
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// String macros.
|
|
|
|
|
|
|
|
// If object is a string, its map is loaded into object_map.
|
|
|
|
void JumpIfNotString(Register object,
|
|
|
|
Register object_map,
|
|
|
|
Label* not_string,
|
|
|
|
Label::Distance near_jump = Label::kFar);
|
|
|
|
|
|
|
|
|
|
|
|
void JumpIfNotBothSequentialAsciiStrings(
|
|
|
|
Register first_object,
|
|
|
|
Register second_object,
|
|
|
|
Register scratch1,
|
|
|
|
Register scratch2,
|
|
|
|
Label* on_not_both_flat_ascii,
|
|
|
|
Label::Distance near_jump = Label::kFar);
|
|
|
|
|
|
|
|
// Check whether the instance type represents a flat ascii string. Jump to the
|
|
|
|
// label if not. If the instance type can be scratched specify same register
|
|
|
|
// for both instance type and scratch.
|
|
|
|
void JumpIfInstanceTypeIsNotSequentialAscii(
|
|
|
|
Register instance_type,
|
|
|
|
Register scratch,
|
|
|
|
Label*on_not_flat_ascii_string,
|
|
|
|
Label::Distance near_jump = Label::kFar);
|
|
|
|
|
|
|
|
void JumpIfBothInstanceTypesAreNotSequentialAscii(
|
|
|
|
Register first_object_instance_type,
|
|
|
|
Register second_object_instance_type,
|
|
|
|
Register scratch1,
|
|
|
|
Register scratch2,
|
|
|
|
Label* on_fail,
|
|
|
|
Label::Distance near_jump = Label::kFar);
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// Macro instructions.
|
|
|
|
|
|
|
|
// Load a register with a long value as efficiently as possible.
|
|
|
|
void Set(Register dst, int64_t x);
|
|
|
|
void Set(const Operand& dst, int64_t x);
|
|
|
|
|
|
|
|
// Move if the registers are not identical.
|
|
|
|
void Move(Register target, Register source);
|
|
|
|
|
|
|
|
// Handle support
|
|
|
|
void Move(Register dst, Handle<Object> source);
|
|
|
|
void Move(const Operand& dst, Handle<Object> source);
|
|
|
|
void Cmp(Register dst, Handle<Object> source);
|
|
|
|
void Cmp(const Operand& dst, Handle<Object> source);
|
|
|
|
void Cmp(Register dst, Smi* src);
|
|
|
|
void Cmp(const Operand& dst, Smi* src);
|
|
|
|
void Push(Handle<Object> source);
|
|
|
|
|
|
|
|
// Emit code to discard a non-negative number of pointer-sized elements
|
|
|
|
// from the stack, clobbering only the rsp register.
|
|
|
|
void Drop(int stack_elements);
|
|
|
|
|
|
|
|
void Call(Label* target) { call(target); }
|
|
|
|
|
|
|
|
// Control Flow
|
|
|
|
void Jump(Address destination, RelocInfo::Mode rmode);
|
|
|
|
void Jump(ExternalReference ext);
|
|
|
|
void Jump(Handle<Code> code_object, RelocInfo::Mode rmode);
|
|
|
|
|
|
|
|
void Call(Address destination, RelocInfo::Mode rmode);
|
|
|
|
void Call(ExternalReference ext);
|
|
|
|
void Call(Handle<Code> code_object,
|
|
|
|
RelocInfo::Mode rmode,
|
|
|
|
unsigned ast_id = kNoASTId);
|
|
|
|
|
|
|
|
// The size of the code generated for different call instructions.
|
|
|
|
int CallSize(Address destination, RelocInfo::Mode rmode) {
|
|
|
|
return kCallInstructionLength;
|
|
|
|
}
|
|
|
|
int CallSize(ExternalReference ext);
|
|
|
|
int CallSize(Handle<Code> code_object) {
|
|
|
|
// Code calls use 32-bit relative addressing.
|
|
|
|
return kShortCallInstructionLength;
|
|
|
|
}
|
|
|
|
int CallSize(Register target) {
|
|
|
|
// Opcode: REX_opt FF /2 m64
|
|
|
|
return (target.high_bit() != 0) ? 3 : 2;
|
|
|
|
}
|
|
|
|
int CallSize(const Operand& target) {
|
|
|
|
// Opcode: REX_opt FF /2 m64
|
|
|
|
return (target.requires_rex() ? 2 : 1) + target.operand_size();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Emit call to the code we are currently generating.
|
|
|
|
void CallSelf() {
|
|
|
|
Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location()));
|
|
|
|
Call(self, RelocInfo::CODE_TARGET);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Non-x64 instructions.
|
|
|
|
// Push/pop all general purpose registers.
|
|
|
|
// Does not push rsp/rbp nor any of the assembler's special purpose registers
|
|
|
|
// (kScratchRegister, kSmiConstantRegister, kRootRegister).
|
|
|
|
void Pushad();
|
|
|
|
void Popad();
|
|
|
|
// Sets the stack as after performing Popad, without actually loading the
|
|
|
|
// registers.
|
|
|
|
void Dropad();
|
|
|
|
|
|
|
|
// Compare object type for heap object.
|
|
|
|
// Always use unsigned comparisons: above and below, not less and greater.
|
|
|
|
// Incoming register is heap_object and outgoing register is map.
|
|
|
|
// They may be the same register, and may be kScratchRegister.
|
|
|
|
void CmpObjectType(Register heap_object, InstanceType type, Register map);
|
|
|
|
|
|
|
|
// Compare instance type for map.
|
|
|
|
// Always use unsigned comparisons: above and below, not less and greater.
|
|
|
|
void CmpInstanceType(Register map, InstanceType type);
|
|
|
|
|
|
|
|
// Check if a map for a JSObject indicates that the object has fast elements.
|
|
|
|
// Jump to the specified label if it does not.
|
|
|
|
void CheckFastElements(Register map,
|
|
|
|
Label* fail,
|
|
|
|
Label::Distance distance = Label::kFar);
|
|
|
|
|
|
|
|
// Check if the map of an object is equal to a specified map and
|
|
|
|
// branch to label if not. Skip the smi check if not required
|
|
|
|
// (object is known to be a heap object)
|
|
|
|
void CheckMap(Register obj,
|
|
|
|
Handle<Map> map,
|
|
|
|
Label* fail,
|
|
|
|
SmiCheckType smi_check_type);
|
|
|
|
|
|
|
|
// Check if the map of an object is equal to a specified map and branch to a
|
|
|
|
// specified target if equal. Skip the smi check if not required (object is
|
|
|
|
// known to be a heap object)
|
|
|
|
void DispatchMap(Register obj,
|
|
|
|
Handle<Map> map,
|
|
|
|
Handle<Code> success,
|
|
|
|
SmiCheckType smi_check_type);
|
|
|
|
|
|
|
|
// Check if the object in register heap_object is a string. Afterwards the
|
|
|
|
// register map contains the object map and the register instance_type
|
|
|
|
// contains the instance_type. The registers map and instance_type can be the
|
|
|
|
// same in which case it contains the instance type afterwards. Either of the
|
|
|
|
// registers map and instance_type can be the same as heap_object.
|
|
|
|
Condition IsObjectStringType(Register heap_object,
|
|
|
|
Register map,
|
|
|
|
Register instance_type);
|
|
|
|
|
|
|
|
// FCmp compares and pops the two values on top of the FPU stack.
|
|
|
|
// The flag results are similar to integer cmp, but requires unsigned
|
|
|
|
// jcc instructions (je, ja, jae, jb, jbe, je, and jz).
|
|
|
|
void FCmp();
|
|
|
|
|
|
|
|
void ClampUint8(Register reg);
|
|
|
|
|
|
|
|
void ClampDoubleToUint8(XMMRegister input_reg,
|
|
|
|
XMMRegister temp_xmm_reg,
|
|
|
|
Register result_reg,
|
|
|
|
Register temp_reg);
|
|
|
|
|
|
|
|
void LoadInstanceDescriptors(Register map, Register descriptors);
|
|
|
|
|
|
|
|
// Abort execution if argument is not a number. Used in debug code.
|
|
|
|
void AbortIfNotNumber(Register object);
|
|
|
|
|
|
|
|
// Abort execution if argument is a smi. Used in debug code.
|
|
|
|
void AbortIfSmi(Register object);
|
|
|
|
|
|
|
|
// Abort execution if argument is not a smi. Used in debug code.
|
|
|
|
void AbortIfNotSmi(Register object);
|
|
|
|
void AbortIfNotSmi(const Operand& object);
|
|
|
|
|
|
|
|
// Abort execution if argument is a string. Used in debug code.
|
|
|
|
void AbortIfNotString(Register object);
|
|
|
|
|
|
|
|
// Abort execution if argument is not the root value with the given index.
|
|
|
|
void AbortIfNotRootValue(Register src,
|
|
|
|
Heap::RootListIndex root_value_index,
|
|
|
|
const char* message);
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// Exception handling
|
|
|
|
|
|
|
|
// Push a new try handler and link into try handler chain. The return
|
|
|
|
// address must be pushed before calling this helper.
|
|
|
|
void PushTryHandler(CodeLocation try_location, HandlerType type);
|
|
|
|
|
|
|
|
// Unlink the stack handler on top of the stack from the try handler chain.
|
|
|
|
void PopTryHandler();
|
|
|
|
|
|
|
|
// Activate the top handler in the try hander chain and pass the
|
|
|
|
// thrown value.
|
|
|
|
void Throw(Register value);
|
|
|
|
|
|
|
|
// Propagate an uncatchable exception out of the current JS stack.
|
|
|
|
void ThrowUncatchable(UncatchableExceptionType type, Register value);
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// Inline caching support
|
|
|
|
|
|
|
|
// Generate code for checking access rights - used for security checks
|
|
|
|
// on access to global objects across environments. The holder register
|
|
|
|
// is left untouched, but the scratch register and kScratchRegister,
|
|
|
|
// which must be different, are clobbered.
|
|
|
|
void CheckAccessGlobalProxy(Register holder_reg,
|
|
|
|
Register scratch,
|
|
|
|
Label* miss);
|
|
|
|
|
|
|
|
|
|
|
|
void LoadFromNumberDictionary(Label* miss,
|
|
|
|
Register elements,
|
|
|
|
Register key,
|
|
|
|
Register r0,
|
|
|
|
Register r1,
|
|
|
|
Register r2,
|
|
|
|
Register result);
|
|
|
|
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// Allocation support
|
|
|
|
|
|
|
|
// Allocate an object in new space. If the new space is exhausted control
|
|
|
|
// continues at the gc_required label. The allocated object is returned in
|
|
|
|
// result and end of the new object is returned in result_end. The register
|
|
|
|
// scratch can be passed as no_reg in which case an additional object
|
|
|
|
// reference will be added to the reloc info. The returned pointers in result
|
|
|
|
// and result_end have not yet been tagged as heap objects. If
|
|
|
|
// result_contains_top_on_entry is true the content of result is known to be
|
|
|
|
// the allocation top on entry (could be result_end from a previous call to
|
|
|
|
// AllocateInNewSpace). If result_contains_top_on_entry is true scratch
|
|
|
|
// should be no_reg as it is never used.
|
|
|
|
void AllocateInNewSpace(int object_size,
|
|
|
|
Register result,
|
|
|
|
Register result_end,
|
|
|
|
Register scratch,
|
|
|
|
Label* gc_required,
|
|
|
|
AllocationFlags flags);
|
|
|
|
|
|
|
|
void AllocateInNewSpace(int header_size,
|
|
|
|
ScaleFactor element_size,
|
|
|
|
Register element_count,
|
|
|
|
Register result,
|
|
|
|
Register result_end,
|
|
|
|
Register scratch,
|
|
|
|
Label* gc_required,
|
|
|
|
AllocationFlags flags);
|
|
|
|
|
|
|
|
void AllocateInNewSpace(Register object_size,
|
|
|
|
Register result,
|
|
|
|
Register result_end,
|
|
|
|
Register scratch,
|
|
|
|
Label* gc_required,
|
|
|
|
AllocationFlags flags);
|
|
|
|
|
|
|
|
// Undo allocation in new space. The object passed and objects allocated after
|
|
|
|
// it will no longer be allocated. Make sure that no pointers are left to the
|
|
|
|
// object(s) no longer allocated as they would be invalid when allocation is
|
|
|
|
// un-done.
|
|
|
|
void UndoAllocationInNewSpace(Register object);
|
|
|
|
|
|
|
|
// Allocate a heap number in new space with undefined value. Returns
|
|
|
|
// tagged pointer in result register, or jumps to gc_required if new
|
|
|
|
// space is full.
|
|
|
|
void AllocateHeapNumber(Register result,
|
|
|
|
Register scratch,
|
|
|
|
Label* gc_required);
|
|
|
|
|
|
|
|
// Allocate a sequential string. All the header fields of the string object
|
|
|
|
// are initialized.
|
|
|
|
void AllocateTwoByteString(Register result,
|
|
|
|
Register length,
|
|
|
|
Register scratch1,
|
|
|
|
Register scratch2,
|
|
|
|
Register scratch3,
|
|
|
|
Label* gc_required);
|
|
|
|
void AllocateAsciiString(Register result,
|
|
|
|
Register length,
|
|
|
|
Register scratch1,
|
|
|
|
Register scratch2,
|
|
|
|
Register scratch3,
|
|
|
|
Label* gc_required);
|
|
|
|
|
|
|
|
// Allocate a raw cons string object. Only the map field of the result is
|
|
|
|
// initialized.
|
|
|
|
void AllocateConsString(Register result,
|
|
|
|
Register scratch1,
|
|
|
|
Register scratch2,
|
|
|
|
Label* gc_required);
|
|
|
|
void AllocateAsciiConsString(Register result,
|
|
|
|
Register scratch1,
|
|
|
|
Register scratch2,
|
|
|
|
Label* gc_required);
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// Support functions.
|
|
|
|
|
|
|
|
// Check if result is zero and op is negative.
|
|
|
|
void NegativeZeroTest(Register result, Register op, Label* then_label);
|
|
|
|
|
|
|
|
// Check if result is zero and op is negative in code using jump targets.
|
|
|
|
void NegativeZeroTest(CodeGenerator* cgen,
|
|
|
|
Register result,
|
|
|
|
Register op,
|
|
|
|
JumpTarget* then_target);
|
|
|
|
|
|
|
|
// Check if result is zero and any of op1 and op2 are negative.
|
|
|
|
// Register scratch is destroyed, and it must be different from op2.
|
|
|
|
void NegativeZeroTest(Register result, Register op1, Register op2,
|
|
|
|
Register scratch, Label* then_label);
|
|
|
|
|
|
|
|
// Try to get function prototype of a function and puts the value in
|
|
|
|
// the result register. Checks that the function really is a
|
|
|
|
// function and jumps to the miss label if the fast checks fail. The
|
|
|
|
// function register will be untouched; the other register may be
|
|
|
|
// clobbered.
|
|
|
|
void TryGetFunctionPrototype(Register function,
|
|
|
|
Register result,
|
|
|
|
Label* miss);
|
|
|
|
|
|
|
|
// Generates code for reporting that an illegal operation has
|
|
|
|
// occurred.
|
|
|
|
void IllegalOperation(int num_arguments);
|
|
|
|
|
|
|
|
// Picks out an array index from the hash field.
|
|
|
|
// Register use:
|
|
|
|
// hash - holds the index's hash. Clobbered.
|
|
|
|
// index - holds the overwritten index on exit.
|
|
|
|
void IndexFromHash(Register hash, Register index);
|
|
|
|
|
|
|
|
// Find the function context up the context chain.
|
|
|
|
void LoadContext(Register dst, int context_chain_length);
|
|
|
|
|
|
|
|
// Load the global function with the given index.
|
|
|
|
void LoadGlobalFunction(int index, Register function);
|
|
|
|
|
|
|
|
// Load the initial map from the global function. The registers
|
|
|
|
// function and map can be the same.
|
|
|
|
void LoadGlobalFunctionInitialMap(Register function, Register map);
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// Runtime calls
|
|
|
|
|
|
|
|
// Call a code stub.
|
|
|
|
void CallStub(CodeStub* stub, unsigned ast_id = kNoASTId);
|
|
|
|
|
|
|
|
// Call a code stub and return the code object called. Try to generate
|
|
|
|
// the code if necessary. Do not perform a GC but instead return a retry
|
|
|
|
// after GC failure.
|
|
|
|
MUST_USE_RESULT MaybeObject* TryCallStub(CodeStub* stub);
|
|
|
|
|
|
|
|
// Tail call a code stub (jump).
|
|
|
|
void TailCallStub(CodeStub* stub);
|
|
|
|
|
|
|
|
// Tail call a code stub (jump) and return the code object called. Try to
|
|
|
|
// generate the code if necessary. Do not perform a GC but instead return
|
|
|
|
// a retry after GC failure.
|
|
|
|
MUST_USE_RESULT MaybeObject* TryTailCallStub(CodeStub* stub);
|
|
|
|
|
|
|
|
// Return from a code stub after popping its arguments.
|
|
|
|
void StubReturn(int argc);
|
|
|
|
|
|
|
|
// Call a runtime routine.
|
|
|
|
void CallRuntime(const Runtime::Function* f, int num_arguments);
|
|
|
|
|
|
|
|
// Call a runtime function and save the value of XMM registers.
|
|
|
|
void CallRuntimeSaveDoubles(Runtime::FunctionId id);
|
|
|
|
|
|
|
|
// Call a runtime function, returning the CodeStub object called.
|
|
|
|
// Try to generate the stub code if necessary. Do not perform a GC
|
|
|
|
// but instead return a retry after GC failure.
|
|
|
|
MUST_USE_RESULT MaybeObject* TryCallRuntime(const Runtime::Function* f,
|
|
|
|
int num_arguments);
|
|
|
|
|
|
|
|
// Convenience function: Same as above, but takes the fid instead.
|
|
|
|
void CallRuntime(Runtime::FunctionId id, int num_arguments);
|
|
|
|
|
|
|
|
// Convenience function: Same as above, but takes the fid instead.
|
|
|
|
MUST_USE_RESULT MaybeObject* TryCallRuntime(Runtime::FunctionId id,
|
|
|
|
int num_arguments);
|
|
|
|
|
|
|
|
// Convenience function: call an external reference.
|
|
|
|
void CallExternalReference(const ExternalReference& ext,
|
|
|
|
int num_arguments);
|
|
|
|
|
|
|
|
// Tail call of a runtime routine (jump).
|
|
|
|
// Like JumpToExternalReference, but also takes care of passing the number
|
|
|
|
// of parameters.
|
|
|
|
void TailCallExternalReference(const ExternalReference& ext,
|
|
|
|
int num_arguments,
|
|
|
|
int result_size);
|
|
|
|
|
|
|
|
MUST_USE_RESULT MaybeObject* TryTailCallExternalReference(
|
|
|
|
const ExternalReference& ext, int num_arguments, int result_size);
|
|
|
|
|
|
|
|
// Convenience function: tail call a runtime routine (jump).
|
|
|
|
void TailCallRuntime(Runtime::FunctionId fid,
|
|
|
|
int num_arguments,
|
|
|
|
int result_size);
|
|
|
|
|
|
|
|
MUST_USE_RESULT MaybeObject* TryTailCallRuntime(Runtime::FunctionId fid,
|
|
|
|
int num_arguments,
|
|
|
|
int result_size);
|
|
|
|
|
|
|
|
// Jump to a runtime routine.
|
|
|
|
void JumpToExternalReference(const ExternalReference& ext, int result_size);
|
|
|
|
|
|
|
|
// Jump to a runtime routine.
|
|
|
|
MaybeObject* TryJumpToExternalReference(const ExternalReference& ext,
|
|
|
|
int result_size);
|
|
|
|
|
|
|
|
// Prepares stack to put arguments (aligns and so on).
|
|
|
|
// WIN64 calling convention requires to put the pointer to the return value
|
|
|
|
// slot into rcx (rcx must be preserverd until TryCallApiFunctionAndReturn).
|
|
|
|
// Saves context (rsi). Clobbers rax. Allocates arg_stack_space * kPointerSize
|
|
|
|
// inside the exit frame (not GCed) accessible via StackSpaceOperand.
|
|
|
|
void PrepareCallApiFunction(int arg_stack_space);
|
|
|
|
|
|
|
|
// Calls an API function. Allocates HandleScope, extracts
|
|
|
|
// returned value from handle and propagates exceptions.
|
|
|
|
// Clobbers r14, r15, rbx and caller-save registers. Restores context.
|
|
|
|
// On return removes stack_space * kPointerSize (GCed).
|
|
|
|
MUST_USE_RESULT MaybeObject* TryCallApiFunctionAndReturn(
|
|
|
|
ApiFunction* function, int stack_space);
|
|
|
|
|
|
|
|
// Before calling a C-function from generated code, align arguments on stack.
|
|
|
|
// After aligning the frame, arguments must be stored in esp[0], esp[4],
|
|
|
|
// etc., not pushed. The argument count assumes all arguments are word sized.
|
|
|
|
// The number of slots reserved for arguments depends on platform. On Windows
|
|
|
|
// stack slots are reserved for the arguments passed in registers. On other
|
|
|
|
// platforms stack slots are only reserved for the arguments actually passed
|
|
|
|
// on the stack.
|
|
|
|
void PrepareCallCFunction(int num_arguments);
|
|
|
|
|
|
|
|
// Calls a C function and cleans up the space for arguments allocated
|
|
|
|
// by PrepareCallCFunction. The called function is not allowed to trigger a
|
|
|
|
// garbage collection, since that might move the code and invalidate the
|
|
|
|
// return address (unless this is somehow accounted for by the called
|
|
|
|
// function).
|
|
|
|
void CallCFunction(ExternalReference function, int num_arguments);
|
|
|
|
void CallCFunction(Register function, int num_arguments);
|
|
|
|
|
|
|
|
// Calculate the number of stack slots to reserve for arguments when calling a
|
|
|
|
// C function.
|
|
|
|
int ArgumentStackSlotsForCFunctionCall(int num_arguments);
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// Utilities
|
|
|
|
|
|
|
|
void Ret();
|
|
|
|
|
|
|
|
// Return and drop arguments from stack, where the number of arguments
|
|
|
|
// may be bigger than 2^16 - 1. Requires a scratch register.
|
|
|
|
void Ret(int bytes_dropped, Register scratch);
|
|
|
|
|
|
|
|
Handle<Object> CodeObject() {
|
|
|
|
ASSERT(!code_object_.is_null());
|
|
|
|
return code_object_;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Copy length bytes from source to destination.
|
|
|
|
// Uses scratch register internally (if you have a low-eight register
|
|
|
|
// free, do use it, otherwise kScratchRegister will be used).
|
|
|
|
// The min_length is a minimum limit on the value that length will have.
|
|
|
|
// The algorithm has some special cases that might be omitted if the string
|
|
|
|
// is known to always be long.
|
|
|
|
void CopyBytes(Register destination,
|
|
|
|
Register source,
|
|
|
|
Register length,
|
|
|
|
int min_length = 0,
|
|
|
|
Register scratch = kScratchRegister);
|
|
|
|
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// StatsCounter support
|
|
|
|
|
|
|
|
void SetCounter(StatsCounter* counter, int value);
|
|
|
|
void IncrementCounter(StatsCounter* counter, int value);
|
|
|
|
void DecrementCounter(StatsCounter* counter, int value);
|
|
|
|
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// Debugging
|
|
|
|
|
|
|
|
// Calls Abort(msg) if the condition cc is not satisfied.
|
|
|
|
// Use --debug_code to enable.
|
|
|
|
void Assert(Condition cc, const char* msg);
|
|
|
|
|
|
|
|
void AssertFastElements(Register elements);
|
|
|
|
|
|
|
|
// Like Assert(), but always enabled.
|
|
|
|
void Check(Condition cc, const char* msg);
|
|
|
|
|
|
|
|
// Print a message to stdout and abort execution.
|
|
|
|
void Abort(const char* msg);
|
|
|
|
|
|
|
|
// Check that the stack is aligned.
|
|
|
|
void CheckStackAlignment();
|
|
|
|
|
|
|
|
// Verify restrictions about code generated in stubs.
|
|
|
|
void set_generating_stub(bool value) { generating_stub_ = value; }
|
|
|
|
bool generating_stub() { return generating_stub_; }
|
|
|
|
void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; }
|
|
|
|
bool allow_stub_calls() { return allow_stub_calls_; }
|
|
|
|
|
|
|
|
static int SafepointRegisterStackIndex(Register reg) {
|
|
|
|
return SafepointRegisterStackIndex(reg.code());
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
// Order general registers are pushed by Pushad.
|
|
|
|
// rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r14, r15.
|
|
|
|
static int kSafepointPushRegisterIndices[Register::kNumRegisters];
|
|
|
|
static const int kNumSafepointSavedRegisters = 11;
|
|
|
|
static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
|
|
|
|
|
|
|
|
bool generating_stub_;
|
|
|
|
bool allow_stub_calls_;
|
|
|
|
bool root_array_available_;
|
|
|
|
|
|
|
|
// Returns a register holding the smi value. The register MUST NOT be
|
|
|
|
// modified. It may be the "smi 1 constant" register.
|
|
|
|
Register GetSmiConstant(Smi* value);
|
|
|
|
|
|
|
|
// Moves the smi value to the destination register.
|
|
|
|
void LoadSmiConstant(Register dst, Smi* value);
|
|
|
|
|
|
|
|
// This handle will be patched with the code object on installation.
|
|
|
|
Handle<Object> code_object_;
|
|
|
|
|
|
|
|
// Helper functions for generating invokes.
|
|
|
|
void InvokePrologue(const ParameterCount& expected,
|
|
|
|
const ParameterCount& actual,
|
|
|
|
Handle<Code> code_constant,
|
|
|
|
Register code_register,
|
|
|
|
Label* done,
|
|
|
|
InvokeFlag flag,
|
|
|
|
Label::Distance near_jump = Label::kFar,
|
|
|
|
const CallWrapper& call_wrapper = NullCallWrapper(),
|
|
|
|
CallKind call_kind = CALL_AS_METHOD);
|
|
|
|
|
|
|
|
// Activation support.
|
|
|
|
void EnterFrame(StackFrame::Type type);
|
|
|
|
void LeaveFrame(StackFrame::Type type);
|
|
|
|
|
|
|
|
void EnterExitFramePrologue(bool save_rax);
|
|
|
|
|
|
|
|
// Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack
|
|
|
|
// accessible via StackSpaceOperand.
|
|
|
|
void EnterExitFrameEpilogue(int arg_stack_space, bool save_doubles);
|
|
|
|
|
|
|
|
void LeaveExitFrameEpilogue();
|
|
|
|
|
|
|
|
// Allocation support helpers.
|
|
|
|
// Loads the top of new-space into the result register.
|
|
|
|
// Otherwise the address of the new-space top is loaded into scratch (if
|
|
|
|
// scratch is valid), and the new-space top is loaded into result.
|
|
|
|
void LoadAllocationTopHelper(Register result,
|
|
|
|
Register scratch,
|
|
|
|
AllocationFlags flags);
|
|
|
|
// Update allocation top with value in result_end register.
|
|
|
|
// If scratch is valid, it contains the address of the allocation top.
|
|
|
|
void UpdateAllocationTopHelper(Register result_end, Register scratch);
|
|
|
|
|
|
|
|
// Helper for PopHandleScope. Allowed to perform a GC and returns
|
|
|
|
// NULL if gc_allowed. Does not perform a GC if !gc_allowed, and
|
|
|
|
// possibly returns a failure object indicating an allocation failure.
|
|
|
|
Object* PopHandleScopeHelper(Register saved,
|
|
|
|
Register scratch,
|
|
|
|
bool gc_allowed);
|
|
|
|
|
|
|
|
|
|
|
|
// Compute memory operands for safepoint stack slots.
|
|
|
|
Operand SafepointRegisterSlot(Register reg);
|
|
|
|
static int SafepointRegisterStackIndex(int reg_code) {
|
|
|
|
return kNumSafepointRegisters - kSafepointPushRegisterIndices[reg_code] - 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Needs access to SafepointRegisterStackIndex for optimized frame
|
|
|
|
// traversal.
|
|
|
|
friend class OptimizedFrame;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// The code patcher is used to patch (typically) small parts of code e.g. for
|
|
|
|
// debugging and other types of instrumentation. When using the code patcher
|
|
|
|
// the exact number of bytes specified must be emitted. Is not legal to emit
|
|
|
|
// relocation information. If any of these constraints are violated it causes
|
|
|
|
// an assertion.
|
|
|
|
class CodePatcher {
|
|
|
|
public:
|
|
|
|
CodePatcher(byte* address, int size);
|
|
|
|
virtual ~CodePatcher();
|
|
|
|
|
|
|
|
// Macro assembler to emit code.
|
|
|
|
MacroAssembler* masm() { return &masm_; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
byte* address_; // The address of the code being patched.
|
|
|
|
int size_; // Number of bytes of the expected patch size.
|
|
|
|
MacroAssembler masm_; // Macro assembler used to generate the code.
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
// Static helper functions.
|
|
|
|
|
|
|
|
// Generate an Operand for loading a field from an object.
|
|
|
|
static inline Operand FieldOperand(Register object, int offset) {
|
|
|
|
return Operand(object, offset - kHeapObjectTag);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Generate an Operand for loading an indexed field from an object.
|
|
|
|
static inline Operand FieldOperand(Register object,
|
|
|
|
Register index,
|
|
|
|
ScaleFactor scale,
|
|
|
|
int offset) {
|
|
|
|
return Operand(object, index, scale, offset - kHeapObjectTag);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static inline Operand ContextOperand(Register context, int index) {
|
|
|
|
return Operand(context, Context::SlotOffset(index));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static inline Operand GlobalObjectOperand() {
|
|
|
|
return ContextOperand(rsi, Context::GLOBAL_INDEX);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Provides access to exit frame stack space (not GCed).
|
|
|
|
static inline Operand StackSpaceOperand(int index) {
|
|
|
|
#ifdef _WIN64
|
|
|
|
const int kShaddowSpace = 4;
|
|
|
|
return Operand(rsp, (index + kShaddowSpace) * kPointerSize);
|
|
|
|
#else
|
|
|
|
return Operand(rsp, index * kPointerSize);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef GENERATED_CODE_COVERAGE
|
|
|
|
extern void LogGeneratedCodeCoverage(const char* file_line);
|
|
|
|
#define CODE_COVERAGE_STRINGIFY(x) #x
|
|
|
|
#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
|
|
|
|
#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
|
|
|
|
#define ACCESS_MASM(masm) { \
|
|
|
|
byte* x64_coverage_function = \
|
|
|
|
reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \
|
|
|
|
masm->pushfd(); \
|
|
|
|
masm->pushad(); \
|
|
|
|
masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__))); \
|
|
|
|
masm->call(x64_coverage_function, RelocInfo::RUNTIME_ENTRY); \
|
|
|
|
masm->pop(rax); \
|
|
|
|
masm->popad(); \
|
|
|
|
masm->popfd(); \
|
|
|
|
} \
|
|
|
|
masm->
|
|
|
|
#else
|
|
|
|
#define ACCESS_MASM(masm) masm->
|
|
|
|
#endif
|
|
|
|
|
|
|
|
} } // namespace v8::internal
|
|
|
|
|
|
|
|
#endif // V8_X64_MACRO_ASSEMBLER_X64_H_
|