Browse Source

src: replace naive search in Buffer::IndexOf

Adds the string search implementation from v8
which uses naive search if pattern length < 8
or to a specific badness then uses Boyer-Moore-Horspool

Added benchmark shows the expected improvements
Added option to use ucs2 encoding with Buffer::IndexOf

Reviewed-By: James M Snell <jasnell@gmail.com>
Reviewed-By: Trevor Norris <trev.norris@gmail.com>
PR-URL: https://github.com/nodejs/node/pull/2539
v5.x
Karl Skomski 9 years ago
committed by James M Snell
parent
commit
a18dd7b788
  1. 38
      benchmark/buffers/buffer-indexof.js
  2. 3865
      benchmark/fixtures/alice.html
  3. 45
      lib/buffer.js
  4. 1
      node.gyp
  5. 174
      src/node_buffer.cc
  6. 10
      src/string_search.cc
  7. 671
      src/string_search.h
  8. 187
      test/parallel/test-buffer-indexof.js

38
benchmark/buffers/buffer-indexof.js

@ -0,0 +1,38 @@
var common = require('../common.js');
var fs = require('fs');
var bench = common.createBenchmark(main, {
search: ['@', 'SQ', '10x', '--l', 'Alice', 'Gryphon', 'Panther',
'Ou est ma chatte?', 'found it very', 'among mad people',
'neighbouring pool', 'Soo--oop', 'aaaaaaaaaaaaaaaaa',
'venture to go near the house till she had brought herself down to',
'</i> to the Caterpillar'],
encoding: ['undefined', 'utf8', 'ucs2', 'binary'],
type: ['buffer', 'string'],
iter: [1]
});
function main(conf) {
var iter = (conf.iter) * 100000;
var aliceBuffer = fs.readFileSync(__dirname + '/../fixtures/alice.html');
var search = conf.search;
var encoding = conf.encoding;
if (encoding === 'undefined') {
encoding = undefined;
}
if (encoding === 'ucs2') {
aliceBuffer = new Buffer(aliceBuffer.toString(), encoding);
}
if (conf.type === 'buffer') {
search = new Buffer(new Buffer(search).toString(), encoding);
}
bench.start();
for (var i = 0; i < iter; i++) {
aliceBuffer.indexOf(search, 0, encoding);
}
bench.end(iter);
}

3865
benchmark/fixtures/alice.html

File diff suppressed because it is too large

45
lib/buffer.js

@ -410,20 +410,53 @@ Buffer.prototype.compare = function compare(b) {
return binding.compare(this, b);
};
function slowIndexOf(buffer, val, byteOffset, encoding) {
var loweredCase = false;
for (;;) {
switch (encoding) {
case 'utf8':
case 'utf-8':
case 'ucs2':
case 'ucs-2':
case 'utf16le':
case 'utf-16le':
case 'binary':
return binding.indexOfString(buffer, val, byteOffset, encoding);
case 'base64':
case 'ascii':
case 'hex':
return binding.indexOfBuffer(
buffer, Buffer(val, encoding), byteOffset, encoding);
Buffer.prototype.indexOf = function indexOf(val, byteOffset) {
default:
if (loweredCase) {
throw new TypeError('Unknown encoding: ' + encoding);
}
encoding = ('' + encoding).toLowerCase();
loweredCase = true;
}
}
}
Buffer.prototype.indexOf = function indexOf(val, byteOffset, encoding) {
if (byteOffset > 0x7fffffff)
byteOffset = 0x7fffffff;
else if (byteOffset < -0x80000000)
byteOffset = -0x80000000;
byteOffset >>= 0;
if (typeof val === 'string')
return binding.indexOfString(this, val, byteOffset);
if (val instanceof Buffer)
return binding.indexOfBuffer(this, val, byteOffset);
if (typeof val === 'number')
if (typeof val === 'string') {
if (encoding === undefined) {
return binding.indexOfString(this, val, byteOffset, encoding);
}
return slowIndexOf(this, val, byteOffset, encoding);
} else if (val instanceof Buffer) {
return binding.indexOfBuffer(this, val, byteOffset, encoding);
} else if (typeof val === 'number') {
return binding.indexOfNumber(this, val, byteOffset);
}
throw new TypeError('val must be string, number or Buffer');
};

1
node.gyp

@ -169,6 +169,7 @@
'src/util.h',
'src/util-inl.h',
'src/util.cc',
'src/string_search.cc',
'deps/http_parser/http_parser.h',
'deps/v8/include/v8.h',
'deps/v8/include/v8-debug.h',

174
src/node_buffer.cc

@ -4,6 +4,7 @@
#include "env.h"
#include "env-inl.h"
#include "string_bytes.h"
#include "string_search.h"
#include "util.h"
#include "util-inl.h"
#include "v8-profiler.h"
@ -792,87 +793,156 @@ void Compare(const FunctionCallbackInfo<Value> &args) {
}
int32_t IndexOf(const char* haystack,
size_t h_length,
const char* needle,
size_t n_length) {
CHECK_GE(h_length, n_length);
// TODO(trevnorris): Implement Boyer-Moore string search algorithm.
for (size_t i = 0; i < h_length - n_length + 1; i++) {
if (haystack[i] == needle[0]) {
if (memcmp(haystack + i, needle, n_length) == 0)
return i;
}
}
return -1;
}
void IndexOfString(const FunctionCallbackInfo<Value>& args) {
ASSERT(args[1]->IsString());
ASSERT(args[2]->IsNumber());
enum encoding enc = ParseEncoding(args.GetIsolate(),
args[3],
UTF8);
THROW_AND_RETURN_UNLESS_BUFFER(Environment::GetCurrent(args), args[0]);
SPREAD_ARG(args[0], ts_obj);
node::Utf8Value str(args.GetIsolate(), args[1]);
int32_t offset_i32 = args[2]->Int32Value();
uint32_t offset;
Local<String> needle = args[1].As<String>();
const char* haystack = ts_obj_data;
const size_t haystack_length = ts_obj_length;
const size_t needle_length = needle->Utf8Length();
if (needle_length == 0 || haystack_length == 0) {
return args.GetReturnValue().Set(-1);
}
int64_t offset_i64 = args[2]->IntegerValue();
size_t offset = 0;
if (offset_i32 < 0) {
if (offset_i32 + static_cast<int32_t>(ts_obj_length) < 0)
if (offset_i64 < 0) {
if (offset_i64 + static_cast<int64_t>(haystack_length) < 0) {
offset = 0;
else
offset = static_cast<uint32_t>(ts_obj_length + offset_i32);
} else {
offset = static_cast<uint32_t>(offset_i32);
offset = static_cast<size_t>(haystack_length + offset_i64);
}
} else {
offset = static_cast<size_t>(offset_i64);
}
if (haystack_length < offset || needle_length + offset > haystack_length) {
return args.GetReturnValue().Set(-1);
}
size_t result = haystack_length;
if (enc == UCS2) {
String::Value needle_value(needle);
if (*needle_value == nullptr)
return args.GetReturnValue().Set(-1);
if (haystack_length < 2 || needle_value.length() < 1) {
return args.GetReturnValue().Set(-1);
}
if (str.length() == 0 ||
ts_obj_length == 0 ||
(offset != 0 && str.length() + offset <= str.length()) ||
str.length() + offset > ts_obj_length)
result = SearchString(reinterpret_cast<const uint16_t*>(haystack),
haystack_length / 2,
reinterpret_cast<const uint16_t*>(*needle_value),
needle_value.length(),
offset / 2);
result *= 2;
} else if (enc == UTF8) {
String::Utf8Value needle_value(needle);
if (*needle_value == nullptr)
return args.GetReturnValue().Set(-1);
result = SearchString(reinterpret_cast<const uint8_t*>(haystack),
haystack_length,
reinterpret_cast<const uint8_t*>(*needle_value),
needle_length,
offset);
} else if (enc == BINARY) {
uint8_t* needle_data = static_cast<uint8_t*>(malloc(needle_length));
if (needle_data == nullptr) {
return args.GetReturnValue().Set(-1);
}
needle->WriteOneByte(
needle_data, 0, needle_length, String::NO_NULL_TERMINATION);
int32_t r =
IndexOf(ts_obj_data + offset, ts_obj_length - offset, *str, str.length());
args.GetReturnValue().Set(r == -1 ? -1 : static_cast<int32_t>(r + offset));
result = SearchString(reinterpret_cast<const uint8_t*>(haystack),
haystack_length,
needle_data,
needle_length,
offset);
free(needle_data);
}
args.GetReturnValue().Set(
result == haystack_length ? -1 : static_cast<int>(result));
}
void IndexOfBuffer(const FunctionCallbackInfo<Value>& args) {
ASSERT(args[1]->IsObject());
ASSERT(args[2]->IsNumber());
enum encoding enc = ParseEncoding(args.GetIsolate(),
args[3],
UTF8);
THROW_AND_RETURN_UNLESS_BUFFER(Environment::GetCurrent(args), args[0]);
SPREAD_ARG(args[0], ts_obj);
SPREAD_ARG(args[1], buf);
const int32_t offset_i32 = args[2]->Int32Value();
uint32_t offset;
if (buf_length > 0)
CHECK_NE(buf_data, nullptr);
if (offset_i32 < 0) {
if (offset_i32 + static_cast<int32_t>(ts_obj_length) < 0)
const char* haystack = ts_obj_data;
const size_t haystack_length = ts_obj_length;
const char* needle = buf_data;
const size_t needle_length = buf_length;
if (needle_length == 0 || haystack_length == 0) {
return args.GetReturnValue().Set(-1);
}
int64_t offset_i64 = args[2]->IntegerValue();
size_t offset = 0;
if (offset_i64 < 0) {
if (offset_i64 + static_cast<int64_t>(haystack_length) < 0)
offset = 0;
else
offset = static_cast<uint32_t>(ts_obj_length + offset_i32);
offset = static_cast<size_t>(haystack_length + offset_i64);
} else {
offset = static_cast<uint32_t>(offset_i32);
offset = static_cast<size_t>(offset_i64);
}
if (buf_length == 0 ||
ts_obj_length == 0 ||
(offset != 0 && buf_length + offset <= buf_length) ||
buf_length + offset > ts_obj_length)
if (haystack_length < offset || needle_length + offset > haystack_length) {
return args.GetReturnValue().Set(-1);
}
size_t result = haystack_length;
int32_t r =
IndexOf(ts_obj_data + offset, ts_obj_length - offset, buf_data, buf_length);
args.GetReturnValue().Set(r == -1 ? -1 : static_cast<int32_t>(r + offset));
if (enc == UCS2) {
if (haystack_length < 2 || needle_length < 2) {
return args.GetReturnValue().Set(-1);
}
result = SearchString(
reinterpret_cast<const uint16_t*>(haystack),
haystack_length / 2,
reinterpret_cast<const uint16_t*>(needle),
needle_length / 2,
offset / 2);
result *= 2;
} else {
result = SearchString(
reinterpret_cast<const uint8_t*>(haystack),
haystack_length,
reinterpret_cast<const uint8_t*>(needle),
needle_length,
offset);
}
args.GetReturnValue().Set(
result == haystack_length ? -1 : static_cast<int>(result));
}
void IndexOfNumber(const FunctionCallbackInfo<Value>& args) {
ASSERT(args[1]->IsNumber());
@ -882,16 +952,16 @@ void IndexOfNumber(const FunctionCallbackInfo<Value>& args) {
SPREAD_ARG(args[0], ts_obj);
uint32_t needle = args[1]->Uint32Value();
int32_t offset_i32 = args[2]->Int32Value();
uint32_t offset;
int64_t offset_i64 = args[2]->IntegerValue();
size_t offset;
if (offset_i32 < 0) {
if (offset_i32 + static_cast<int32_t>(ts_obj_length) < 0)
if (offset_i64 < 0) {
if (offset_i64 + static_cast<int64_t>(ts_obj_length) < 0)
offset = 0;
else
offset = static_cast<uint32_t>(ts_obj_length + offset_i32);
offset = static_cast<size_t>(ts_obj_length + offset_i64);
} else {
offset = static_cast<uint32_t>(offset_i32);
offset = static_cast<size_t>(offset_i64);
}
if (ts_obj_length == 0 || offset + 1 > ts_obj_length)
@ -899,8 +969,8 @@ void IndexOfNumber(const FunctionCallbackInfo<Value>& args) {
void* ptr = memchr(ts_obj_data + offset, needle, ts_obj_length - offset);
char* ptr_char = static_cast<char*>(ptr);
args.GetReturnValue().Set(
ptr ? static_cast<int32_t>(ptr_char - ts_obj_data) : -1);
args.GetReturnValue().Set(ptr ? static_cast<int>(ptr_char - ts_obj_data)
: -1);
}

10
src/string_search.cc

@ -0,0 +1,10 @@
#include "string_search.h"
namespace node {
namespace stringsearch {
int StringSearchBase::kBadCharShiftTable[kUC16AlphabetSize];
int StringSearchBase::kGoodSuffixShiftTable[kBMMaxShift + 1];
int StringSearchBase::kSuffixTable[kBMMaxShift + 1];
}
} // namespace node::stringsearch

671
src/string_search.h

@ -0,0 +1,671 @@
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef SRC_STRING_SEARCH_H_
#define SRC_STRING_SEARCH_H_
#include "node.h"
#include <string.h>
namespace node {
namespace stringsearch {
// Returns the maximum of the two parameters.
template <typename T>
T Max(T a, T b) {
return a < b ? b : a;
}
static const uint32_t kMaxOneByteCharCodeU = 0xff;
static inline size_t NonOneByteStart(const uint16_t* chars, size_t length) {
const uint16_t* limit = chars + length;
const uint16_t* start = chars;
while (chars < limit) {
if (*chars > kMaxOneByteCharCodeU)
return static_cast<size_t>(chars - start);
++chars;
}
return static_cast<size_t>(chars - start);
}
static inline bool IsOneByte(const uint16_t* chars, size_t length) {
return NonOneByteStart(chars, length) >= length;
}
template <typename T>
class Vector {
public:
Vector(T* data, size_t length) : start_(data), length_(length) {
ASSERT(length > 0 && data != nullptr);
}
// Returns the length of the vector.
size_t length() const { return length_; }
T* start() const { return start_; }
// Access individual vector elements - checks bounds in debug mode.
T& operator[](size_t index) const {
ASSERT(0 <= index && index < length_);
return start_[index];
}
const T& at(size_t index) const { return operator[](index); }
bool operator==(const Vector<T>& other) const {
if (length_ != other.length_)
return false;
if (start_ == other.start_)
return true;
for (size_t i = 0; i < length_; ++i) {
if (start_[i] != other.start_[i]) {
return false;
}
}
return true;
}
private:
T* start_;
size_t length_;
};
//---------------------------------------------------------------------
// String Search object.
//---------------------------------------------------------------------
// Class holding constants and methods that apply to all string search variants,
// independently of subject and pattern char size.
class StringSearchBase {
protected:
// Cap on the maximal shift in the Boyer-Moore implementation. By setting a
// limit, we can fix the size of tables. For a needle longer than this limit,
// search will not be optimal, since we only build tables for a suffix
// of the string, but it is a safe approximation.
static const int kBMMaxShift = 250;
// Reduce alphabet to this size.
// One of the tables used by Boyer-Moore and Boyer-Moore-Horspool has size
// proportional to the input alphabet. We reduce the alphabet size by
// equating input characters modulo a smaller alphabet size. This gives
// a potentially less efficient searching, but is a safe approximation.
// For needles using only characters in the same Unicode 256-code point page,
// there is no search speed degradation.
static const int kLatin1AlphabetSize = 256;
static const int kUC16AlphabetSize = 256;
// Bad-char shift table stored in the state. It's length is the alphabet size.
// For patterns below this length, the skip length of Boyer-Moore is too short
// to compensate for the algorithmic overhead compared to simple brute force.
static const int kBMMinPatternLength = 8;
// Store for the BoyerMoore(Horspool) bad char shift table.
static int kBadCharShiftTable[kUC16AlphabetSize];
// Store for the BoyerMoore good suffix shift table.
static int kGoodSuffixShiftTable[kBMMaxShift + 1];
// Table used temporarily while building the BoyerMoore good suffix
// shift table.
static int kSuffixTable[kBMMaxShift + 1];
static inline bool IsOneByteString(Vector<const uint8_t> string) {
return true;
}
static inline bool IsOneByteString(Vector<const uint16_t> string) {
return IsOneByte(string.start(), string.length());
}
};
template <typename PatternChar, typename SubjectChar>
class StringSearch : private StringSearchBase {
public:
explicit StringSearch(Vector<const PatternChar> pattern)
: pattern_(pattern), start_(0) {
if (pattern.length() >= kBMMaxShift) {
start_ = pattern.length() - kBMMaxShift;
}
if (sizeof(PatternChar) > sizeof(SubjectChar)) {
if (!IsOneByteString(pattern_)) {
strategy_ = &FailSearch;
return;
}
}
size_t pattern_length = pattern_.length();
CHECK_GT(pattern_length, 0);
if (pattern_length < kBMMinPatternLength) {
if (pattern_length == 1) {
strategy_ = &SingleCharSearch;
return;
}
strategy_ = &LinearSearch;
return;
}
strategy_ = &InitialSearch;
}
size_t Search(Vector<const SubjectChar> subject, size_t index) {
return strategy_(this, subject, index);
}
static inline int AlphabetSize() {
if (sizeof(PatternChar) == 1) {
// Latin1 needle.
return kLatin1AlphabetSize;
} else {
// UC16 needle.
return kUC16AlphabetSize;
}
static_assert(sizeof(PatternChar) == sizeof(uint8_t) ||
sizeof(PatternChar) == sizeof(uint16_t),
"sizeof(PatternChar) == sizeof(uint16_t) || sizeof(uint8_t)");
}
private:
typedef size_t (*SearchFunction)( // NOLINT - it's not a cast!
StringSearch<PatternChar, SubjectChar>*,
Vector<const SubjectChar>,
size_t);
static size_t FailSearch(StringSearch<PatternChar, SubjectChar>*,
Vector<const SubjectChar> subject,
size_t) {
return subject.length();
}
static size_t SingleCharSearch(StringSearch<PatternChar, SubjectChar>* search,
Vector<const SubjectChar> subject,
size_t start_index);
static size_t LinearSearch(StringSearch<PatternChar, SubjectChar>* search,
Vector<const SubjectChar> subject,
size_t start_index);
static size_t InitialSearch(StringSearch<PatternChar, SubjectChar>* search,
Vector<const SubjectChar> subject,
size_t start_index);
static size_t BoyerMooreHorspoolSearch(
StringSearch<PatternChar, SubjectChar>* search,
Vector<const SubjectChar> subject,
size_t start_index);
static size_t BoyerMooreSearch(StringSearch<PatternChar, SubjectChar>* search,
Vector<const SubjectChar> subject,
size_t start_index);
void PopulateBoyerMooreHorspoolTable();
void PopulateBoyerMooreTable();
static inline bool exceedsOneByte(uint8_t c) { return false; }
static inline bool exceedsOneByte(uint16_t c) {
return c > kMaxOneByteCharCodeU;
}
static inline int CharOccurrence(int* bad_char_occurrence,
SubjectChar char_code) {
if (sizeof(SubjectChar) == 1) {
return bad_char_occurrence[static_cast<int>(char_code)];
}
if (sizeof(PatternChar) == 1) {
if (exceedsOneByte(char_code)) {
return -1;
}
return bad_char_occurrence[static_cast<unsigned int>(char_code)];
}
// Both pattern and subject are UC16. Reduce character to equivalence class.
int equiv_class = char_code % kUC16AlphabetSize;
return bad_char_occurrence[equiv_class];
}
// Store for the BoyerMoore(Horspool) bad char shift table.
// Return a table covering the last kBMMaxShift+1 positions of
// pattern.
int* bad_char_table() { return kBadCharShiftTable; }
// Store for the BoyerMoore good suffix shift table.
int* good_suffix_shift_table() {
// Return biased pointer that maps the range [start_..pattern_.length()
// to the kGoodSuffixShiftTable array.
return kGoodSuffixShiftTable - start_;
}
// Table used temporarily while building the BoyerMoore good suffix
// shift table.
int* suffix_table() {
// Return biased pointer that maps the range [start_..pattern_.length()
// to the kSuffixTable array.
return kSuffixTable - start_;
}
// The pattern to search for.
Vector<const PatternChar> pattern_;
// Pointer to implementation of the search.
SearchFunction strategy_;
// Cache value of Max(0, pattern_length() - kBMMaxShift)
size_t start_;
};
template <typename T, typename U>
inline T AlignDown(T value, U alignment) {
return reinterpret_cast<T>(
(reinterpret_cast<uintptr_t>(value) & ~(alignment - 1)));
}
inline uint8_t GetHighestValueByte(uint16_t character) {
return Max(static_cast<uint8_t>(character & 0xFF),
static_cast<uint8_t>(character >> 8));
}
inline uint8_t GetHighestValueByte(uint8_t character) { return character; }
template <typename PatternChar, typename SubjectChar>
inline size_t FindFirstCharacter(Vector<const PatternChar> pattern,
Vector<const SubjectChar> subject, size_t index) {
const PatternChar pattern_first_char = pattern[0];
const size_t max_n = (subject.length() - pattern.length() + 1);
const uint8_t search_byte = GetHighestValueByte(pattern_first_char);
const SubjectChar search_char = static_cast<SubjectChar>(pattern_first_char);
size_t pos = index;
do {
const SubjectChar* char_pos = reinterpret_cast<const SubjectChar*>(
memchr(subject.start() + pos, search_byte,
(max_n - pos) * sizeof(SubjectChar)));
if (char_pos == nullptr)
return subject.length();
char_pos = AlignDown(char_pos, sizeof(SubjectChar));
pos = static_cast<size_t>(char_pos - subject.start());
if (subject[pos] == search_char)
return pos;
} while (++pos < max_n);
return subject.length();
}
template <>
inline size_t FindFirstCharacter(Vector<const uint8_t> pattern,
Vector<const uint8_t> subject,
size_t index) {
const uint8_t pattern_first_char = pattern[0];
const size_t max_n = (subject.length() - pattern.length() + 1);
const uint8_t* char_pos = reinterpret_cast<const uint8_t*>(
memchr(subject.start() + index, pattern_first_char, max_n - index));
if (char_pos == nullptr)
return subject.length();
return static_cast<size_t>(char_pos - subject.start());
}
//---------------------------------------------------------------------
// Single Character Pattern Search Strategy
//---------------------------------------------------------------------
template <typename PatternChar, typename SubjectChar>
size_t StringSearch<PatternChar, SubjectChar>::SingleCharSearch(
StringSearch<PatternChar, SubjectChar>* search,
Vector<const SubjectChar> subject,
size_t index) {
CHECK_EQ(1, search->pattern_.length());
PatternChar pattern_first_char = search->pattern_[0];
if (sizeof(SubjectChar) == 1 && sizeof(PatternChar) == 1) {
return FindFirstCharacter(search->pattern_, subject, index);
} else {
if (sizeof(PatternChar) > sizeof(SubjectChar)) {
if (exceedsOneByte(pattern_first_char)) {
return -1;
}
}
return FindFirstCharacter(search->pattern_, subject, index);
}
}
//---------------------------------------------------------------------
// Linear Search Strategy
//---------------------------------------------------------------------
template <typename PatternChar, typename SubjectChar>
inline bool CharCompare(const PatternChar* pattern,
const SubjectChar* subject,
size_t length) {
ASSERT_GT(length, 0);
size_t pos = 0;
do {
if (pattern[pos] != subject[pos]) {
return false;
}
pos++;
} while (pos < length);
return true;
}
// Simple linear search for short patterns. Never bails out.
template <typename PatternChar, typename SubjectChar>
size_t StringSearch<PatternChar, SubjectChar>::LinearSearch(
StringSearch<PatternChar, SubjectChar>* search,
Vector<const SubjectChar> subject,
size_t index) {
Vector<const PatternChar> pattern = search->pattern_;
CHECK_GT(pattern.length(), 1);
const size_t pattern_length = pattern.length();
size_t i = index;
const size_t n = subject.length() - pattern_length;
while (i <= n) {
i = FindFirstCharacter(pattern, subject, i);
if (i == subject.length())
return subject.length();
ASSERT_LE(i, n);
i++;
// Loop extracted to separate function to allow using return to do
// a deeper break.
if (CharCompare(pattern.start() + 1, subject.start() + i,
pattern_length - 1)) {
return i - 1;
}
}
return subject.length();
}
//---------------------------------------------------------------------
// Boyer-Moore string search
//---------------------------------------------------------------------
template <typename PatternChar, typename SubjectChar>
size_t StringSearch<PatternChar, SubjectChar>::BoyerMooreSearch(
StringSearch<PatternChar, SubjectChar>* search,
Vector<const SubjectChar> subject,
size_t start_index) {
Vector<const PatternChar> pattern = search->pattern_;
const size_t subject_length = subject.length();
const size_t pattern_length = pattern.length();
// Only preprocess at most kBMMaxShift last characters of pattern.
size_t start = search->start_;
int* bad_char_occurence = search->bad_char_table();
int* good_suffix_shift = search->good_suffix_shift_table();
PatternChar last_char = pattern[pattern_length - 1];
size_t index = start_index;
// Continue search from i.
while (index <= subject_length - pattern_length) {
size_t j = pattern_length - 1;
int c;
while (last_char != (c = subject[index + j])) {
int shift = j - CharOccurrence(bad_char_occurence, c);
index += shift;
if (index > subject_length - pattern_length) {
return subject.length();
}
}
while (j >= 0 && pattern[j] == (c = subject[index + j])) {
if (j == 0) {
return index;
}
j--;
}
if (j < start) {
// we have matched more than our tables allow us to be smart about.
// Fall back on BMH shift.
index += pattern_length - 1 -
CharOccurrence(bad_char_occurence,
static_cast<SubjectChar>(last_char));
} else {
int gs_shift = good_suffix_shift[j + 1];
int bc_occ = CharOccurrence(bad_char_occurence, c);
int shift = j - bc_occ;
if (gs_shift > shift) {
shift = gs_shift;
}
index += shift;
}
}
return subject.length();
}
template <typename PatternChar, typename SubjectChar>
void StringSearch<PatternChar, SubjectChar>::PopulateBoyerMooreTable() {
const size_t pattern_length = pattern_.length();
const PatternChar* pattern = pattern_.start();
// Only look at the last kBMMaxShift characters of pattern (from start_
// to pattern_length).
const size_t start = start_;
const size_t length = pattern_length - start;
// Biased tables so that we can use pattern indices as table indices,
// even if we only cover the part of the pattern from offset start.
int* shift_table = good_suffix_shift_table();
int* suffix_table = this->suffix_table();
// Initialize table.
for (size_t i = start; i < pattern_length; i++) {
shift_table[i] = length;
}
shift_table[pattern_length] = 1;
suffix_table[pattern_length] = pattern_length + 1;
if (pattern_length <= start) {
return;
}
// Find suffixes.
PatternChar last_char = pattern[pattern_length - 1];
size_t suffix = pattern_length + 1;
{
size_t i = pattern_length;
while (i > start) {
PatternChar c = pattern[i - 1];
while (suffix <= pattern_length && c != pattern[suffix - 1]) {
if (static_cast<size_t>(shift_table[suffix]) == length) {
shift_table[suffix] = suffix - i;
}
suffix = suffix_table[suffix];
}
suffix_table[--i] = --suffix;
if (suffix == pattern_length) {
// No suffix to extend, so we check against last_char only.
while ((i > start) && (pattern[i - 1] != last_char)) {
if (static_cast<size_t>(shift_table[pattern_length]) == length) {
shift_table[pattern_length] = pattern_length - i;
}
suffix_table[--i] = pattern_length;
}
if (i > start) {
suffix_table[--i] = --suffix;
}
}
}
}
// Build shift table using suffixes.
if (suffix < pattern_length) {
for (size_t i = start; i <= pattern_length; i++) {
if (static_cast<size_t>(shift_table[i]) == length) {
shift_table[i] = suffix - start;
}
if (i == suffix) {
suffix = suffix_table[suffix];
}
}
}
}
//---------------------------------------------------------------------
// Boyer-Moore-Horspool string search.
//---------------------------------------------------------------------
template <typename PatternChar, typename SubjectChar>
size_t StringSearch<PatternChar, SubjectChar>::BoyerMooreHorspoolSearch(
StringSearch<PatternChar, SubjectChar>* search,
Vector<const SubjectChar> subject,
size_t start_index) {
Vector<const PatternChar> pattern = search->pattern_;
const size_t subject_length = subject.length();
const size_t pattern_length = pattern.length();
int* char_occurrences = search->bad_char_table();
int64_t badness = -pattern_length;
// How bad we are doing without a good-suffix table.
PatternChar last_char = pattern[pattern_length - 1];
int last_char_shift =
pattern_length - 1 -
CharOccurrence(char_occurrences, static_cast<SubjectChar>(last_char));
// Perform search
size_t index = start_index; // No matches found prior to this index.
while (index <= subject_length - pattern_length) {
size_t j = pattern_length - 1;
int subject_char;
while (last_char != (subject_char = subject[index + j])) {
int bc_occ = CharOccurrence(char_occurrences, subject_char);
int shift = j - bc_occ;
index += shift;
badness += 1 - shift; // at most zero, so badness cannot increase.
if (index > subject_length - pattern_length) {
return subject_length;
}
}
j--;
while (j >= 0 && pattern[j] == (subject[index + j])) {
if (j == 0) {
return index;
}
j--;
}
index += last_char_shift;
// Badness increases by the number of characters we have
// checked, and decreases by the number of characters we
// can skip by shifting. It's a measure of how we are doing
// compared to reading each character exactly once.
badness += (pattern_length - j) - last_char_shift;
if (badness > 0) {
search->PopulateBoyerMooreTable();
search->strategy_ = &BoyerMooreSearch;
return BoyerMooreSearch(search, subject, index);
}
}
return subject.length();
}
template <typename PatternChar, typename SubjectChar>
void StringSearch<PatternChar, SubjectChar>::PopulateBoyerMooreHorspoolTable() {
const size_t pattern_length = pattern_.length();
int* bad_char_occurrence = bad_char_table();
// Only preprocess at most kBMMaxShift last characters of pattern.
const size_t start = start_;
// Run forwards to populate bad_char_table, so that *last* instance
// of character equivalence class is the one registered.
// Notice: Doesn't include the last character.
const size_t table_size = AlphabetSize();
if (start == 0) {
// All patterns less than kBMMaxShift in length.
memset(bad_char_occurrence, -1, table_size * sizeof(*bad_char_occurrence));
} else {
for (size_t i = 0; i < table_size; i++) {
bad_char_occurrence[i] = start - 1;
}
}
for (size_t i = start; i < pattern_length - 1; i++) {
PatternChar c = pattern_[i];
int bucket = (sizeof(PatternChar) == 1) ? c : c % AlphabetSize();
bad_char_occurrence[bucket] = i;
}
}
//---------------------------------------------------------------------
// Linear string search with bailout to BMH.
//---------------------------------------------------------------------
// Simple linear search for short patterns, which bails out if the string
// isn't found very early in the subject. Upgrades to BoyerMooreHorspool.
template <typename PatternChar, typename SubjectChar>
size_t StringSearch<PatternChar, SubjectChar>::InitialSearch(
StringSearch<PatternChar, SubjectChar>* search,
Vector<const SubjectChar> subject,
size_t index) {
Vector<const PatternChar> pattern = search->pattern_;
const size_t pattern_length = pattern.length();
// Badness is a count of how much work we have done. When we have
// done enough work we decide it's probably worth switching to a better
// algorithm.
int64_t badness = -10 - (pattern_length << 2);
// We know our pattern is at least 2 characters, we cache the first so
// the common case of the first character not matching is faster.
for (size_t i = index, n = subject.length() - pattern_length; i <= n; i++) {
badness++;
if (badness <= 0) {
i = FindFirstCharacter(pattern, subject, i);
if (i == subject.length())
return subject.length();
ASSERT_LE(i, n);
size_t j = 1;
do {
if (pattern[j] != subject[i + j]) {
break;
}
j++;
} while (j < pattern_length);
if (j == pattern_length) {
return i;
}
badness += j;
} else {
search->PopulateBoyerMooreHorspoolTable();
search->strategy_ = &BoyerMooreHorspoolSearch;
return BoyerMooreHorspoolSearch(search, subject, i);
}
}
return subject.length();
}
// Perform a a single stand-alone search.
// If searching multiple times for the same pattern, a search
// object should be constructed once and the Search function then called
// for each search.
template <typename SubjectChar, typename PatternChar>
size_t SearchString(Vector<const SubjectChar> subject,
Vector<const PatternChar> pattern,
size_t start_index) {
StringSearch<PatternChar, SubjectChar> search(pattern);
return search.Search(subject, start_index);
}
}
} // namespace node::stringsearch
namespace node {
using node::stringsearch::Vector;
template <typename SubjectChar, typename PatternChar>
size_t SearchString(const SubjectChar* haystack,
size_t haystack_length,
const PatternChar* needle,
size_t needle_length,
size_t start_index) {
return node::stringsearch::SearchString(
Vector<const SubjectChar>(haystack, haystack_length),
Vector<const PatternChar>(needle, needle_length),
start_index);
}
} // namespace node
#endif // SRC_STRING_SEARCH_H_

187
test/parallel/test-buffer-indexof.js

@ -65,6 +65,193 @@ assert.equal(b.indexOf(0x61, -Infinity), 0);
assert.equal(b.indexOf(0x61, Infinity), -1);
assert.equal(b.indexOf(0x0), -1);
// test offsets
assert.equal(b.indexOf('d', 2), 3);
assert.equal(b.indexOf('f', 5), 5);
assert.equal(b.indexOf('f', -1), 5);
assert.equal(b.indexOf('f', 6), -1);
assert.equal(b.indexOf(Buffer('d'), 2), 3);
assert.equal(b.indexOf(Buffer('f'), 5), 5);
assert.equal(b.indexOf(Buffer('f'), -1), 5);
assert.equal(b.indexOf(Buffer('f'), 6), -1);
assert.equal(Buffer('ff').indexOf(Buffer('f'), 1, 'ucs2'), -1);
// test hex encoding
assert.equal(
Buffer(b.toString('hex'), 'hex')
.indexOf('64', 0, 'hex'), 3);
assert.equal(
Buffer(b.toString('hex'), 'hex')
.indexOf(Buffer('64', 'hex'), 0, 'hex'), 3);
// test base64 encoding
assert.equal(
Buffer(b.toString('base64'), 'base64')
.indexOf('ZA==', 0, 'base64'), 3);
assert.equal(
Buffer(b.toString('base64'), 'base64')
.indexOf(Buffer('ZA==', 'base64'), 0, 'base64'), 3);
// test ascii encoding
assert.equal(
Buffer(b.toString('ascii'), 'ascii')
.indexOf('d', 0, 'ascii'), 3);
assert.equal(
Buffer(b.toString('ascii'), 'ascii')
.indexOf(Buffer('d', 'ascii'), 0, 'ascii'), 3);
// test binary encoding
assert.equal(
Buffer(b.toString('binary'), 'binary')
.indexOf('d', 0, 'binary'), 3);
assert.equal(
Buffer(b.toString('binary'), 'binary')
.indexOf(Buffer('d', 'binary'), 0, 'binary'), 3);
// test usc2 encoding
var twoByteString = new Buffer('\u039a\u0391\u03a3\u03a3\u0395', 'ucs2');
assert.equal(8, twoByteString.indexOf('\u0395', 4, 'ucs2'));
assert.equal(6, twoByteString.indexOf('\u03a3', -4, 'ucs2'));
assert.equal(4, twoByteString.indexOf('\u03a3', -6, 'ucs2'));
assert.equal(4, twoByteString.indexOf(
new Buffer('\u03a3', 'ucs2'), -6, 'ucs2'));
assert.equal(-1, twoByteString.indexOf('\u03a3', -2, 'ucs2'));
var mixedByteStringUcs2 =
new Buffer('\u039a\u0391abc\u03a3\u03a3\u0395', 'ucs2');
assert.equal(6, mixedByteStringUcs2.indexOf('bc', 0, 'ucs2'));
assert.equal(10, mixedByteStringUcs2.indexOf('\u03a3', 0, 'ucs2'));
assert.equal(-1, mixedByteStringUcs2.indexOf('\u0396', 0, 'ucs2'));
assert.equal(
6, mixedByteStringUcs2.indexOf(new Buffer('bc', 'ucs2'), 0, 'ucs2'));
assert.equal(
10, mixedByteStringUcs2.indexOf(new Buffer('\u03a3', 'ucs2'), 0, 'ucs2'));
assert.equal(
-1, mixedByteStringUcs2.indexOf(new Buffer('\u0396', 'ucs2'), 0, 'ucs2'));
var twoByteString = new Buffer('\u039a\u0391\u03a3\u03a3\u0395', 'ucs2');
// Test single char pattern
assert.equal(0, twoByteString.indexOf('\u039a', 0, 'ucs2'));
assert.equal(2, twoByteString.indexOf('\u0391', 0, 'ucs2'), 'Alpha');
assert.equal(4, twoByteString.indexOf('\u03a3', 0, 'ucs2'), 'First Sigma');
assert.equal(6, twoByteString.indexOf('\u03a3', 6, 'ucs2'), 'Second Sigma');
assert.equal(8, twoByteString.indexOf('\u0395', 0, 'ucs2'), 'Epsilon');
assert.equal(-1, twoByteString.indexOf('\u0392', 0, 'ucs2'), 'Not beta');
// Test multi-char pattern
assert.equal(
0, twoByteString.indexOf('\u039a\u0391', 0, 'ucs2'), 'Lambda Alpha');
assert.equal(
2, twoByteString.indexOf('\u0391\u03a3', 0, 'ucs2'), 'Alpha Sigma');
assert.equal(
4, twoByteString.indexOf('\u03a3\u03a3', 0, 'ucs2'), 'Sigma Sigma');
assert.equal(
6, twoByteString.indexOf('\u03a3\u0395', 0, 'ucs2'), 'Sigma Epsilon');
var mixedByteStringUtf8 = new Buffer('\u039a\u0391abc\u03a3\u03a3\u0395');
assert.equal(5, mixedByteStringUtf8.indexOf('bc'));
assert.equal(5, mixedByteStringUtf8.indexOf('bc', 5));
assert.equal(5, mixedByteStringUtf8.indexOf('bc', -8));
assert.equal(7, mixedByteStringUtf8.indexOf('\u03a3'));
assert.equal(-1, mixedByteStringUtf8.indexOf('\u0396'));
// Test complex string indexOf algorithms. Only trigger for long strings.
// Long string that isn't a simple repeat of a shorter string.
var longString = 'A';
for (var i = 66; i < 76; i++) { // from 'B' to 'K'
longString = longString + String.fromCharCode(i) + longString;
}
var longBufferString = new Buffer(longString);
// pattern of 15 chars, repeated every 16 chars in long
var pattern = 'ABACABADABACABA';
for (var i = 0; i < longBufferString.length - pattern.length; i += 7) {
var index = longBufferString.indexOf(pattern, i);
assert.equal((i + 15) & ~0xf, index, 'Long ABACABA...-string at index ' + i);
}
assert.equal(510, longBufferString.indexOf('AJABACA'), 'Long AJABACA, First J');
assert.equal(
1534, longBufferString.indexOf('AJABACA', 511), 'Long AJABACA, Second J');
pattern = 'JABACABADABACABA';
assert.equal(
511, longBufferString.indexOf(pattern), 'Long JABACABA..., First J');
assert.equal(
1535, longBufferString.indexOf(pattern, 512), 'Long JABACABA..., Second J');
// Search for a non-ASCII string in a pure ASCII string.
var asciiString = new Buffer(
'arglebargleglopglyfarglebargleglopglyfarglebargleglopglyf');
assert.equal(-1, asciiString.indexOf('\x2061'));
assert.equal(3, asciiString.indexOf('leb', 0));
// Search in string containing many non-ASCII chars.
var allCodePoints = [];
for (var i = 0; i < 65536; i++) allCodePoints[i] = i;
var allCharsString = String.fromCharCode.apply(String, allCodePoints);
var allCharsBufferUtf8 = new Buffer(allCharsString);
var allCharsBufferUcs2 = new Buffer(allCharsString, 'ucs2');
// Search for string long enough to trigger complex search with ASCII pattern
// and UC16 subject.
assert.equal(-1, allCharsBufferUtf8.indexOf('notfound'));
assert.equal(-1, allCharsBufferUcs2.indexOf('notfound'));
// Find substrings in Utf8.
var lengths = [1, 3, 15]; // Single char, simple and complex.
var indices = [0x5, 0x60, 0x400, 0x680, 0x7ee, 0xFF02, 0x16610, 0x2f77b];
for (var lengthIndex = 0; lengthIndex < lengths.length; lengthIndex++) {
for (var i = 0; i < indices.length; i++) {
var index = indices[i];
var length = lengths[lengthIndex];
if (index + length > 0x7F) {
length = 2 * length;
}
if (index + length > 0x7FF) {
length = 3 * length;
}
if (index + length > 0xFFFF) {
length = 4 * length;
}
var patternBufferUtf8 = allCharsBufferUtf8.slice(index, index + length);
assert.equal(index, allCharsBufferUtf8.indexOf(patternBufferUtf8));
var patternStringUtf8 = patternBufferUtf8.toString();
assert.equal(index, allCharsBufferUtf8.indexOf(patternStringUtf8));
}
}
// Find substrings in Usc2.
var lengths = [2, 4, 16]; // Single char, simple and complex.
var indices = [0x5, 0x65, 0x105, 0x205, 0x285, 0x2005, 0x2085, 0xfff0];
for (var lengthIndex = 0; lengthIndex < lengths.length; lengthIndex++) {
for (var i = 0; i < indices.length; i++) {
var index = indices[i] * 2;
var length = lengths[lengthIndex];
var patternBufferUcs2 =
allCharsBufferUcs2.slice(index, index + length);
assert.equal(
index, allCharsBufferUcs2.indexOf(patternBufferUcs2, 0, 'ucs2'));
var patternStringUcs2 = patternBufferUcs2.toString('ucs2');
assert.equal(
index, allCharsBufferUcs2.indexOf(patternStringUcs2, 0, 'ucs2'));
}
}
assert.throws(function() {
b.indexOf(function() { });
});

Loading…
Cancel
Save