You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

301 lines
8.0 KiB

#include "Arith256.h"
#include "Runtime.h"
#include "Type.h"
#include "Endianness.h"
#include <llvm/IR/Function.h>
#include <gmp.h>
namespace dev
{
namespace eth
{
namespace jit
{
Arith256::Arith256(llvm::IRBuilder<>& _builder) :
CompilerHelper(_builder)
{
using namespace llvm;
m_result = m_builder.CreateAlloca(Type::Word, nullptr, "arith.result");
m_arg1 = m_builder.CreateAlloca(Type::Word, nullptr, "arith.arg1");
m_arg2 = m_builder.CreateAlloca(Type::Word, nullptr, "arith.arg2");
m_arg3 = m_builder.CreateAlloca(Type::Word, nullptr, "arith.arg3");
using Linkage = GlobalValue::LinkageTypes;
llvm::Type* arg2Types[] = {Type::WordPtr, Type::WordPtr, Type::WordPtr};
llvm::Type* arg3Types[] = {Type::WordPtr, Type::WordPtr, Type::WordPtr, Type::WordPtr};
m_mul = Function::Create(FunctionType::get(Type::Void, arg2Types, false), Linkage::ExternalLinkage, "arith_mul", getModule());
m_div = Function::Create(FunctionType::get(Type::Void, arg2Types, false), Linkage::ExternalLinkage, "arith_div", getModule());
m_mod = Function::Create(FunctionType::get(Type::Void, arg2Types, false), Linkage::ExternalLinkage, "arith_mod", getModule());
m_sdiv = Function::Create(FunctionType::get(Type::Void, arg2Types, false), Linkage::ExternalLinkage, "arith_sdiv", getModule());
m_smod = Function::Create(FunctionType::get(Type::Void, arg2Types, false), Linkage::ExternalLinkage, "arith_smod", getModule());
m_exp = Function::Create(FunctionType::get(Type::Void, arg2Types, false), Linkage::ExternalLinkage, "arith_exp", getModule());
m_addmod = Function::Create(FunctionType::get(Type::Void, arg3Types, false), Linkage::ExternalLinkage, "arith_addmod", getModule());
m_mulmod = Function::Create(FunctionType::get(Type::Void, arg3Types, false), Linkage::ExternalLinkage, "arith_mulmod", getModule());
}
Arith256::~Arith256()
{}
llvm::Value* Arith256::binaryOp(llvm::Function* _op, llvm::Value* _arg1, llvm::Value* _arg2)
{
m_builder.CreateStore(_arg1, m_arg1);
m_builder.CreateStore(_arg2, m_arg2);
m_builder.CreateCall3(_op, m_arg1, m_arg2, m_result);
return m_builder.CreateLoad(m_result);
}
llvm::Value* Arith256::ternaryOp(llvm::Function* _op, llvm::Value* _arg1, llvm::Value* _arg2, llvm::Value* _arg3)
{
m_builder.CreateStore(_arg1, m_arg1);
m_builder.CreateStore(_arg2, m_arg2);
m_builder.CreateStore(_arg3, m_arg3);
m_builder.CreateCall4(_op, m_arg1, m_arg2, m_arg3, m_result);
return m_builder.CreateLoad(m_result);
}
llvm::Value* Arith256::mul(llvm::Value* _arg1, llvm::Value* _arg2)
{
return binaryOp(m_mul, _arg1, _arg2);
}
llvm::Value* Arith256::div(llvm::Value* _arg1, llvm::Value* _arg2)
{
//return Endianness::toNative(m_builder, binaryOp(m_div, Endianness::toBE(m_builder, _arg1), Endianness::toBE(m_builder, _arg2)));
return binaryOp(m_div, _arg1, _arg2);
}
llvm::Value* Arith256::mod(llvm::Value* _arg1, llvm::Value* _arg2)
{
return binaryOp(m_mod, _arg1, _arg2);
}
llvm::Value* Arith256::sdiv(llvm::Value* _arg1, llvm::Value* _arg2)
{
return binaryOp(m_sdiv, _arg1, _arg2);
}
llvm::Value* Arith256::smod(llvm::Value* _arg1, llvm::Value* _arg2)
{
return binaryOp(m_smod, _arg1, _arg2);
}
llvm::Value* Arith256::exp(llvm::Value* _arg1, llvm::Value* _arg2)
{
return binaryOp(m_exp, _arg1, _arg2);
}
llvm::Value* Arith256::addmod(llvm::Value* _arg1, llvm::Value* _arg2, llvm::Value* _arg3)
{
return ternaryOp(m_addmod, _arg1, _arg2, _arg3);
}
llvm::Value* Arith256::mulmod(llvm::Value* _arg1, llvm::Value* _arg2, llvm::Value* _arg3)
{
return ternaryOp(m_mulmod, _arg1, _arg2, _arg3);
}
namespace
{
using s256 = boost::multiprecision::int256_t;
inline s256 u2s(u256 _u)
{
static const bigint c_end = (bigint)1 << 256;
static const u256 c_send = (u256)1 << 255;
if (_u < c_send)
return (s256)_u;
else
return (s256)-(c_end - _u);
}
inline u256 s2u(s256 _u)
{
static const bigint c_end = (bigint)1 << 256;
if (_u >= 0)
return (u256)_u;
else
return (u256)(c_end + _u);
}
using uint128 = __uint128_t;
// uint128 add(uint128 a, uint128 b) { return a + b; }
// uint128 mul(uint128 a, uint128 b) { return a * b; }
//
// uint128 mulq(uint64_t x, uint64_t y)
// {
// return (uint128)x * (uint128)y;
// }
//
// uint128 addc(uint64_t x, uint64_t y)
// {
// return (uint128)x * (uint128)y;
// }
struct uint256
{
uint64_t lo;
uint64_t mid;
uint128 hi;
};
// uint256 add(uint256 x, uint256 y)
// {
// auto lo = (uint128) x.lo + y.lo;
// auto mid = (uint128) x.mid + y.mid + (lo >> 64);
// return {lo, mid, x.hi + y.hi + (mid >> 64)};
// }
uint256 mul(uint256 x, uint256 y)
{
auto t1 = (uint128) x.lo * y.lo;
auto t2 = (uint128) x.lo * y.mid;
auto t3 = x.lo * y.hi;
auto t4 = (uint128) x.mid * y.lo;
auto t5 = (uint128) x.mid * y.mid;
auto t6 = x.mid * y.hi;
auto t7 = x.hi * y.lo;
auto t8 = x.hi * y.mid;
auto lo = (uint64_t) t1;
auto m1 = (t1 >> 64) + (uint64_t) t2;
auto m2 = (uint64_t) m1;
auto mid = (uint128) m2 + (uint64_t) t4;
auto hi = (t2 >> 64) + t3 + (t4 >> 64) + t5 + (t6 << 64) + t7
+ (t8 << 64) + (m1 >> 64) + (mid >> 64);
return {lo, (uint64_t)mid, hi};
}
bool isZero(i256 const* _n)
{
return _n->a == 0 && _n->b == 0 && _n->c == 0 && _n->d == 0;
}
const auto nLimbs = sizeof(i256) / sizeof(mp_limb_t);
int countLimbs(i256 const* _n)
{
static const auto limbsInWord = sizeof(_n->a) / sizeof(mp_limb_t);
static_assert(limbsInWord == 1, "E?");
int l = nLimbs;
if (_n->d != 0) return l;
l -= limbsInWord;
if (_n->c != 0) return l;
l -= limbsInWord;
if (_n->b != 0) return l;
l -= limbsInWord;
if (_n->a != 0) return l;
return 0;
}
}
}
}
}
extern "C"
{
using namespace dev::eth::jit;
EXPORT void arith_mul(uint256* _arg1, uint256* _arg2, uint256* o_result)
{
*o_result = mul(*_arg1, *_arg2);
}
EXPORT void arith_div(i256* _arg1, i256* _arg2, i256* o_result)
{
*o_result = {};
if (isZero(_arg2))
return;
mpz_t x{nLimbs, countLimbs(_arg1), reinterpret_cast<mp_limb_t*>(_arg1)};
mpz_t y{nLimbs, countLimbs(_arg2), reinterpret_cast<mp_limb_t*>(_arg2)};
mpz_t z{nLimbs, 0, reinterpret_cast<mp_limb_t*>(o_result)};
mpz_tdiv_q(z, x, y);
// auto arg1 = llvm2eth(*_arg1);
// auto arg2 = llvm2eth(*_arg2);
// auto res = arg2 == 0 ? arg2 : arg1 / arg2;
// std::cout << "DIV " << arg1 << "/" << arg2 << " = " << res << std::endl;
// gmp_printf("GMP %Zd / %Zd = %Zd\n", x, y, z);
}
EXPORT void arith_mod(i256* _arg1, i256* _arg2, i256* o_result)
{
*o_result = {};
if (isZero(_arg2))
return;
mpz_t x{nLimbs, countLimbs(_arg1), reinterpret_cast<mp_limb_t*>(_arg1)};
mpz_t y{nLimbs, countLimbs(_arg2), reinterpret_cast<mp_limb_t*>(_arg2)};
mpz_t z{nLimbs, 0, reinterpret_cast<mp_limb_t*>(o_result)};
mpz_tdiv_r(z, x, y);
}
EXPORT void arith_sdiv(i256* _arg1, i256* _arg2, i256* o_result)
{
auto arg1 = llvm2eth(*_arg1);
auto arg2 = llvm2eth(*_arg2);
*o_result = eth2llvm(arg2 == 0 ? arg2 : s2u(u2s(arg1) / u2s(arg2)));
}
EXPORT void arith_smod(i256* _arg1, i256* _arg2, i256* o_result)
{
auto arg1 = llvm2eth(*_arg1);
auto arg2 = llvm2eth(*_arg2);
*o_result = eth2llvm(arg2 == 0 ? arg2 : s2u(u2s(arg1) % u2s(arg2)));
}
EXPORT void arith_exp(i256* _arg1, i256* _arg2, i256* o_result)
{
*o_result = {};
static mp_limb_t mod_limbs[nLimbs + 1] = {};
mod_limbs[nLimbs] = 1;
static const mpz_t mod{nLimbs + 1, nLimbs + 1, &mod_limbs[0]};
mpz_t x{nLimbs, countLimbs(_arg1), reinterpret_cast<mp_limb_t*>(_arg1)};
mpz_t y{nLimbs, countLimbs(_arg2), reinterpret_cast<mp_limb_t*>(_arg2)};
mpz_t z{nLimbs, 0, reinterpret_cast<mp_limb_t*>(o_result)};
mpz_powm(z, x, y, mod);
}
EXPORT void arith_mulmod(i256* _arg1, i256* _arg2, i256* _arg3, i256* o_result)
{
auto arg1 = llvm2eth(*_arg1);
auto arg2 = llvm2eth(*_arg2);
auto arg3 = llvm2eth(*_arg3);
if (arg3 != 0)
*o_result = eth2llvm(u256((bigint(arg1) * bigint(arg2)) % arg3));
else
*o_result = {};
}
EXPORT void arith_addmod(i256* _arg1, i256* _arg2, i256* _arg3, i256* o_result)
{
auto arg1 = llvm2eth(*_arg1);
auto arg2 = llvm2eth(*_arg2);
auto arg3 = llvm2eth(*_arg3);
if (arg3 != 0)
*o_result = eth2llvm(u256((bigint(arg1) + bigint(arg2)) % arg3));
else
*o_result = {};
}
}